
Accurate Smart Contract Verification through Direct Modelling

Matteo Marescotti1, Rodrigo Otoni1, Leonardo Alt2,
Patrick Eugster1, Antti E. J. Hyvärinen1, and Natasha Sharygina1

1 Università della Svizzera italiana, Lugano, Switzerland
2 Ethereum Foundation

28th October 2020

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 1 / 13



Foreword

Industrial application of our work

Part of the SMTChecker module of the official Solidity compiler

SMTChecker’s constrained Horn clauses model checking engine

Availability of our tool

github.com/ethereum/solidity

Add pragma experimental SMTChecker; to the source file

Formal verification of smart contracts

verify.inf.usi.ch/research/fvsc

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 2 / 13

github.com/ethereum/solidity
verify.inf.usi.ch/research/fvsc


Motivation

Why verify smart contracts?

Smart contracts can hold significant financial assets

Immutable after deployment

Source code is publicly available

Anyone can submit a transaction to a contract

Main approaches used

Symbolic execution

◦ Oyente [Luu et al. CCS’16]
◦ MAIAN [Nikolić et al. ACSAC’18]

Model checking

◦ ZEUS [Kalra et al. NDSS’18]
◦ SAFEVM [Albert et al. ISSTA’19]

Interactive theorem proving

◦ KEVM [Hildenbrandt et al. CSF’18]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 3 / 13



Current Limitation and Proposed Solution

Common feature of existing approaches

Either imprecise or not fully automated

Imprecision due to translation

Reuse of established off-the-shelf tools

◦ LLVM
◦ Boogie

Need of a translation layer

◦ Error prone to develop
◦ Requires correctness proofs
◦ Adverse effect on precision and efficiency

Our approach

Direct encoding with native support for transactionality

Solidity as our target language

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 4 / 13



Example of Transactionality
1 contract campaign {

2 uint8 sum = 0;

3 uint8 count = 0;

4

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

11

12 function withdraw(address receiver) public {

13 receiver.transfer(sum);

14 sum = 0;

15 count = 0;

16 }

17 }

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5 / 13



Example of Transactionality - Initial State
1 contract campaign {

2 uint8 sum = 0;

3 uint8 count = 0;

4

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

11

12 function withdraw(address receiver) public {

13 receiver.transfer(sum);

14 sum = 0;

15 count = 0;

16 }

17 }

State S0

sum = 0

count = 0

Initialization

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5 / 13



Example of Transactionality - donate.value(100)()
1 contract campaign {

2 uint8 sum = 0;

3 uint8 count = 0;

4

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

11

12 function withdraw(address receiver) public {

13 receiver.transfer(sum);

14 sum = 0;

15 count = 0;

16 }

17 }

State S0

sum = 0

count = 0

State S1

sum = 100

count = 1

Initialization donate 100

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5 / 13



Example of Transactionality - donate.value(155)()
1 contract campaign {

2 uint8 sum = 0;

3 uint8 count = 0;

4

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

11

12 function withdraw(address receiver) public {

13 receiver.transfer(sum);

14 sum = 0;

15 count = 0;

16 }

17 }

State S0

sum = 0

count = 0

State S1

sum = 100

count = 1

State S2

sum = 255

count = 2

Initialization donate 100 donate 155

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5 / 13



Example of Transactionality - donate.value(1)()
1 contract campaign {

2 uint8 sum = 0;

3 uint8 count = 0;

4

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

11

12 function withdraw(address receiver) public {

13 receiver.transfer(sum);

14 sum = 0;

15 count = 0;

16 }

17 }

State S0

sum = 0

count = 0

State S1

sum = 100

count = 1

State S2

sum = 255

count = 2

Initialization donate 100 donate 155 donate 1

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5 / 13



Example of Transactionality - donate.value(1)()
1 contract campaign {

2 uint8 sum = 0;

3 uint8 count = 0;

4

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

11

12 function withdraw(address receiver) public {

13 receiver.transfer(sum);

14 sum = 0;

15 count = 0;

16 }

17 }

State S0

sum = 0

count = 0

State S1

sum = 100

count = 1

State S2

sum = 255

count = 2

Initialization donate 100 donate 155

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5 / 13



Example of Transactionality - withdraw(0xdCad3a6d...)
1 contract campaign {

2 uint8 sum = 0;

3 uint8 count = 0;

4

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

11

12 function withdraw(address receiver) public {

13 receiver.transfer(sum);

14 sum = 0;

15 count = 0;

16 }

17 }

State S0

sum = 0

count = 0

State S1

sum = 100

count = 1

State S2

sum = 255

count = 2

State S3

sum = 0

count = 0

Initialization donate 100 donate 155 withdraw

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5 / 13



Our Direct Encoding

Direct encoding based on first-order logic

◦ Encoding of smart contracts’ control-flow graphs

Constrained Horn clauses (CHCs)

◦ Models the Turing-completeness of smart contracts
◦ Used for program verification1, e.g. C/C++2 and Java3 programs

CHC rule format

p1(X1) ∧ . . . ∧ pn(Xn) ∧ φ =⇒ h(X )

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

1Horn Clause Solvers for Program Verification [Bjørner et al. FLC II’15]
2The SeaHorn Verification Framework [Gurfinkel et al. CAV’15]
3JayHorn: A Framework for Verifying Java programs [Kahsai et al. CAV’16]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 6 / 13



Our Direct Encoding

Direct encoding based on first-order logic

◦ Encoding of smart contracts’ control-flow graphs

Constrained Horn clauses (CHCs)

◦ Models the Turing-completeness of smart contracts
◦ Used for program verification1, e.g. C/C++2 and Java3 programs

CHC rule format

p1(X1) ∧ . . . ∧ pn(Xn) ∧ φ =⇒ h(X )

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

1Horn Clause Solvers for Program Verification [Bjørner et al. FLC II’15]
2The SeaHorn Verification Framework [Gurfinkel et al. CAV’15]
3JayHorn: A Framework for Verifying Java programs [Kahsai et al. CAV’16]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 6 / 13



Our Direct Encoding

Direct encoding based on first-order logic

◦ Encoding of smart contracts’ control-flow graphs

Constrained Horn clauses (CHCs)

◦ Models the Turing-completeness of smart contracts
◦ Used for program verification1, e.g. C/C++2 and Java3 programs

CHC rule format

p1(X1) ∧ . . . ∧ pn(Xn) ∧ φ =⇒ h(X )

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

1Horn Clause Solvers for Program Verification [Bjørner et al. FLC II’15]
2The SeaHorn Verification Framework [Gurfinkel et al. CAV’15]
3JayHorn: A Framework for Verifying Java programs [Kahsai et al. CAV’16]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 6 / 13



Our Direct Encoding

Direct encoding based on first-order logic

◦ Encoding of smart contracts’ control-flow graphs

Constrained Horn clauses (CHCs)

◦ Models the Turing-completeness of smart contracts
◦ Used for program verification1, e.g. C/C++2 and Java3 programs

CHC rule format

p1(X1) ∧ . . . ∧ pn(Xn) ∧ φ =⇒ h(X )

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

1Horn Clause Solvers for Program Verification [Bjørner et al. FLC II’15]
2The SeaHorn Verification Framework [Gurfinkel et al. CAV’15]
3JayHorn: A Framework for Verifying Java programs [Kahsai et al. CAV’16]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 6 / 13



Our Direct Encoding - Rule Application

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

donate1(sum, count, lsum, lcount , lmsg .value , revert) ∧
lmsg .value > 0 ∧
l′sum = lsum + lmsg .value ∧
l′count = lcount + 1 ∧
(revert′ = revert ∨ ¬(l′count ≤ l′sum)) ∧
true
=⇒

donate2(sum, count, l′sum, l′count , lmsg .value , revert′)

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7 / 13



Our Direct Encoding - Rule Application

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

donate1(sum, count, lsum, lcount , lmsg .value , revert) ∧
lmsg .value > 0 ∧
l′sum = lsum + lmsg .value ∧
l′count = lcount + 1 ∧
(revert′ = revert ∨ ¬(l′count ≤ l′sum)) ∧
true
=⇒

donate2(sum, count, l′sum, l′count , lmsg .value , revert′)

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7 / 13



Our Direct Encoding - Rule Application

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

donate1(sum, count, lsum, lcount , lmsg .value , revert) ∧
lmsg .value > 0 ∧
l′sum = lsum + lmsg .value ∧
l′count = lcount + 1 ∧
(revert′ = revert ∨ ¬(l′count ≤ l′sum)) ∧
true
=⇒

donate2(sum, count, l′sum, l′count , lmsg .value , revert′)

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7 / 13



Our Direct Encoding - Rule Application

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

donate1(sum, count, lsum, lcount , lmsg .value , revert) ∧
lmsg .value > 0 ∧
l′sum = lsum + lmsg .value ∧
l′count = lcount + 1 ∧
(revert′ = revert ∨ ¬(l′count ≤ l′sum)) ∧
true
=⇒

donate2(sum, count, l′sum, l′count , lmsg .value , revert′)

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7 / 13



Our Direct Encoding - Rule Application

Rule Jumpf ,e

Pv
f (s, a, l ) ∧ SSAλv (l , l ′) ∧ SSAµe (l ′) =⇒ Pw

f (s, a, l ′)

5 function donate () public payable {

6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert(count <= sum);

10 }

donate1(sum, count, lsum, lcount , lmsg .value , revert) ∧
lmsg .value > 0 ∧
l′sum = lsum + lmsg .value ∧
l′count = lcount + 1 ∧
(revert′ = revert ∨ ¬(l′count ≤ l′sum)) ∧
true
=⇒

donate2(sum, count, l′sum, l′count , lmsg .value , revert′)

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7 / 13



Our Direct Encoding - Verification

Assertion checking

Assertion failures lead to a revert

Reverts lead to error predicates

Queries are made for the reachability of error predicates

Verification procedure

System of CHCs represent a contract

System is provided to a Horn clause solver together with a query

◦ Unsatisfiable: an error predicate can be reached
◦ Satisfiable: no error predicate can be reached

Different back-end solvers can be used

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 8 / 13



Our Tool - Solicitous

SOLIdity Contract verIfication using consTrained hOrn claUSes

Verification of Solidity contracts

Applies the encoding rules to generate a system of CHCs

Generates a contract invariant or a counter-example (CEX)

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 9 / 13



Experimental Set-up

Benchmarks

Gathered all deployed contracts between Jan/2019 and May/2020

Verified 6138 unique real-world contracts containing assertions

◦ 77 from version v0.6
◦ 6061 from version v0.5

Comparison with existing tools

Solidity verification tools

◦ Solc-Verify [Hajdu et al. VSTTE’19, Hajdu et al. ESOP’20]
◦ VeriSol [Wang et al. arXiv’19]

EVM verification tool

◦ Mythril

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 10 / 13



Experimental Results - v0.5 Contracts

INT MOD

SOL SV VS SOL SV VS M

Safe 1720 778 135 1681 54 117 579
Not safe 142 572 298 93 515 198 23
Timeout 586 89 37 678 56 130 5426
Error 3613 4622 5591 3609 5436 5616 33

Verified 30% 22% 7% 29% 9% 5% 9%

SOL: Solicitous

SV: Solc-Verify

VS: VeriSol

M: Mythril

Verified =
Safe + Not safe

Num. of contracts
Timeout at 60 seconds

Error means a tool problem

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 11 / 13



Summary

Problem

Smart contracts can benefit from formal verification

Current approaches rely mainly on general encodings

Proposed solution

Formal verification of safety properties

Novel approach via direct modelling

Results

Solicitous, a tool for automatic verification of Solidity contracts

Improvement in precision when verifying real-world contracts

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 12 / 13



Future Work

Smart contract verification

Evaluation of the encoding with languages other than Solidity

Enhancement of the encoding to account for gas consumption

Creation of certificates of correctness as witnesses of safe results

Tool improvements

Implementation of support for additional Solidity features

Evaluation with different back-end solvers

Formal verification of smart contracts

verify.inf.usi.ch/research/fvsc

Solidity compiler with Solicitous

github.com/ethereum/solidity

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 13 / 13

verify.inf.usi.ch/research/fvsc
github.com/ethereum/solidity

