Accurate Smart Contract Verification through Direct Modelling

Matteo Marescotti!, Rodrigo Otoni®, Leonardo Alt?,
Patrick Eugster®, Antti E. J. Hyvirinen!, and Natasha Sharygina®

1 Universita della Svizzera italiana, Lugano, Switzerland
2 Ethereum Foundation

28th October 2020

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020

Foreword

Industrial application of our work
@ Part of the SMTChecker module of the official Solidity compiler

@ SMTChecker's constrained Horn clauses model checking engine

v

Availability of our tool

@ github.com/ethereum/solidity

to the source file

o Add ‘ pragma experimental SMT Checker;

Formal verification of smart contracts

@ verify.inf.usi.ch/research/fvsc

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 2/13

github.com/ethereum/solidity
verify.inf.usi.ch/research/fvsc

Why verify smart contracts?

@ Smart contracts can hold significant financial assets
o Immutable after deployment

@ Source code is publicly available

o

Anyone can submit a transaction to a contract

Main approaches used

@ Symbolic execution

o Oyente [Luu et al. CCS'16]

o MAIAN [Nikoli¢ et al. ACSAC'18]
@ Model checking

o ZEUS [Kalra et al. NDSS'18]
o SAFEVM [Albert et al. ISSTA'19]

@ Interactive theorem proving
o KEVM [Hildenbrandt et al. CSF'18]

v

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 3/13

Current Limitation and Proposed Solution
Common feature of existing approaches
@ Either imprecise or not fully automated

Imprecision due to translation

@ Reuse of established off-the-shelf tools

o LLVM
o Boogie

@ Need of a translation layer
o Error prone to develop
o Requires correctness proofs
o Adverse effect on precision and efficiency

N

Our approach

@ Direct encoding with native support for transactionality

@ Solidity as our target language

v

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 4/13

Example of Transactionality

1 contract campaign {

2 uint8 sum = O0;

3 uint8 count = 0;

4

5 function donate() public payable {
6 require(msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert (count <= sum);

10 }

11

12 function withdraw(address receiver) public {
13 receiver.transfer (sum) ;

14 sum = 0;

15 count = 0;

16 }

17}

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020

Example of Transactionality - Initial State

1 contract campaign {
2 uint8 sum = 0;
3 uint8 count = 0;
4
5 function donate() public payable {
6 require(msg.value > 0);
7 sum = sum + msg.value;
8 count = count + 1;
9 assert (count <= sum);
10 }
11
12 function withdraw(address receiver) public {
13 receiver.transfer (sum) ;
14 sum = 0;
15 count = 0;
16 }
17}
Initialization

/\

e sum=20

@ count =0

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020

Example of Transactionality - donate.value(100) ()

1 contract campaign {
2 uint8 sum = 0;
3 uint8 count = 0;
4
5 function donate() public payable {
6 require(msg.value > 0);
7 sum = sum + msg.value;
8 count = count + 1;
9 assert (count <= sum);
10 }
11
12 function withdraw(address receiver) public {
13 receiver.transfer (sum) ;
14 sum = 0;
15 count = 0;
16 }
17}
Initialization donate 100

N N

e sum=20 e sum = 100

@ count =0 @ count =1

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5/13

Example of Transactionality - donate.value(155) ()

1 contract campaign {
2 uint8 sum = 0;
3 uint8 count = 0;
4
5 function donate() public payable {
6 require(msg.value > 0);
7 sum = sum + msg.value;
8 count = count + 1;
9 assert (count <= sum);
10 }
11
12 function withdraw(address receiver) public {
13 receiver.transfer (sum) ;
14 sum = 0;
15 count = 0;
16 }
17}
Initialization donate 100 donate 155

e sum=20 e sum = 100 @ sum = 255

@ count =0 @ count =1 @ count = 2

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5/13

Example of Transactionality - donate.value(1) ()

1 contract campaign {
2 uint8 sum = 0;
3 uint8 count = 0;
4
5 function donate() public payable {
6 require(msg.value > 0);
7 sum = sum + msg.value;
8 count = count + 1;
9 assert (count <= sum);
10 }
11
12 function withdraw(address receiver) public {
13 receiver.transfer (sum) ;
14 sum = 0;
15 count = 0;
16 }
17}
Initialization donate 100 donate 155 donate 1

e sum=20 e sum = 100 @ sum = 255

@ count =0 @ count =1 @ count = 2

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5/13

Example of Transactionality - donate.value(1) ()

1 contract campaign {
2 uint8 sum = 0;
3 uint8 count = 0;
4
5 function donate() public payable {
6 require(msg.value > 0);
7 sum = sum + msg.value;
8 count = count + 1;
9 assert (count <= sum);
10 }
11
12 function withdraw(address receiver) public {
13 receiver.transfer (sum) ;
14 sum = 0;
15 count = 0;
16 }
17}
Initialization donate 100 donate 155

e sum=20 e sum = 100 @ sum = 255

@ count =0 @ count =1 @ count = 2

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5/13

Example of Transactionality - withdraw(0xdCad3a6d. . .)

1 contract campaign {
2 uint8 sum = 0;
3 uint8 count = 0;
4
5 function donate() public payable {
6 require(msg.value > 0);
7 sum = sum + msg.value;
8 count = count + 1;
9 assert (count <= sum);
10 }
11
12 function withdraw(address receiver) public {
13 receiver.transfer (sum) ;
14 sum = 0;
15 count = 0;
16 }
17}
Initialization donate 100 donate 155 withdraw

e sum=20 e sum = 100 @ sum = 255 e sum=20

@ count =0 @ count =1 @ count = 2 @ count =0

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 5/13

Our Direct Encoding

@ Direct encoding based on first-order logic
o Encoding of smart contracts’ control-flow graphs
e Constrained Horn clauses (CHCs)

o Models the Turing-completeness of smart contracts
o Used for program verification?, e.g. C/C++?2 and Java® programs

CHC rule format

pl(Xl) ARRRWA pn(Xn) A ¢ = h(X)

Rule Jumpy .

PY(s,a,l) ASSAN, (I, 1) ASSA, (I'Y = PY(s,a,l’)

'Horn Clause Solvers for Program Verification [Bjgrner et al. FLC 11'15]
*The SeaHorn Verification Framework [Gurfinkel et al. CAV'15]
3JayHorn: A Framework for Verifying Java programs [Kahsai et al. CAV'16]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 6/13

Our Direct Encoding

@ Direct encoding based on first-order logic
o Encoding of smart contracts’ control-flow graphs
e Constrained Horn clauses (CHCs)

o Models the Turing-completeness of smart contracts
o Used for program verification?, e.g. C/C++?2 and Java® programs

CHC rule format

pl(Xl) ARRRNA pn(Xn) A ¢ = h(X)

Rule Jumpy .

PY(s,a, 1) ASSAN, (I, I") ASSA, (I'Y = Py(s,a,l’)

'Horn Clause Solvers for Program Verification [Bjgrner et al. FLC 11'15]
*The SeaHorn Verification Framework [Gurfinkel et al. CAV'15]
3JayHorn: A Framework for Verifying Java programs [Kahsai et al. CAV'16]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 6/13

Our Direct Encoding

@ Direct encoding based on first-order logic
o Encoding of smart contracts’ control-flow graphs
e Constrained Horn clauses (CHCs)

o Models the Turing-completeness of smart contracts
o Used for program verification?, e.g. C/C++?2 and Java® programs

CHC rule format

pl(Xl) ARRRWA pn(Xn) A ¢ = h(X)

Rule Jumpy .

PY(s,a,1) ASSA,, (I, I") ASSA,.(I'Y = Py(s,a,l’)

'Horn Clause Solvers for Program Verification [Bjgrner et al. FLC 11'15]
*The SeaHorn Verification Framework [Gurfinkel et al. CAV'15]
3JayHorn: A Framework for Verifying Java programs [Kahsai et al. CAV'16]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 6/13

Our Direct Encoding

@ Direct encoding based on first-order logic
o Encoding of smart contracts’ control-flow graphs
e Constrained Horn clauses (CHCs)

o Models the Turing-completeness of smart contracts
o Used for program verification?, e.g. C/C++?2 and Java® programs

CHC rule format

pl(Xl) ARRRWA pn(Xn) A ¢ = h(X)

Rule Jumpy .

PY(s,a,l) ASSAN, (I, 1) ASSA, (I'Y = PY(s,a,l’)

'Horn Clause Solvers for Program Verification [Bjgrner et al. FLC 11'15]
*The SeaHorn Verification Framework [Gurfinkel et al. CAV'15]
3JayHorn: A Framework for Verifying Java programs [Kahsai et al. CAV'16]

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 6/13

Our Direct Encoding - Rule Application

Rule Jumpy .

PY(s,a, 1) NSSAN, (I, I') ASSA,, (I') = PY(s,a,l’)

5 function donate() public payable {
6 require (msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert (count <= sum);

10 }

donatel(sum, count, lsum, lcount: Imsg.vaive, revert) A
|msg.value >0A

I _

Isum - Isum + Imsg.value A
i

|c0unt - |COLII'It + 1 7A\

’_ / I
(revert’ = revert V =1 0 < 1um)) A
true

f—

/

donate2(sum, count, 12, I, Imsg.vaiwe, revert’)

v

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7/13

Our Direct Encoding - Rule Application

Rule Jumpy .

PY(s,a, 1) ANSSAN, (I, I') ASSA, (I') = PY(s,a,l’)

5 function donate() public payable {
6 require (msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert (count <= sum);

10 }

donatel(sum, count, lsum, lcount, Imsg.vaie, revert) A
|msg.value >0A

I _

Isum - Isum + Imsg.value A
i

|c0unt - |COLII'It + 1 7A\

’_ / I
(revert’ = revert V =1 0 < 1um)) A
true

f—

/

donate2(sum, count, 12, I, Imsg.vaiwe, revert’)

v

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7/13

Our Direct Encoding - Rule Application

Rule Jumpy .

PY(s,a, 1) NSSA,, (1, 1') ASSA, (I') = PY(s,a,l')

5 function donate() public payable {
6 require (msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert (count <= sum);

10 }

donatel(sum, count, lsum, lcount: Imsg.vaive, revert) A
|msg.va/ue >0A

I{sum = lsum + Imsg.value A

l/count = lcount + 1 A

(revert’ = revert V =1L e < IL,m)) A
true

—

/

donate2(sum, count, 12, I, Imsg.vaiwe, revert’)

v

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7/13

Our Direct Encoding - Rule Application

Rule Jumpy .

PY(s,a, 1) NSSAN, (I I') ASSA, (I') = PY(s,a,l')

5 function donate() public payable {
6 require (msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert (count <= sum);

10 }

donatel(sum, count, lsum, lcount: Imsg.vaive, revert) A
|msg.value >0A

Ilsum = llegp - Imsg.value A

llcount = leount + 1 A

(revert’ = revert V =1 0 < 1um)) A
true

eSS K

/

donate2(sum, count, 12, I, Imsg.vaiwe, revert’)

v

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7/13

Our Direct Encoding - Rule Application

Rule Jumpy .

PY(s,a, 1) ANSSAN, (I, I') ASSA, (I') = PY(s,al')

5 function donate() public payable {
6 require (msg.value > 0);

7 sum = sum + msg.value;

8 count = count + 1;

9 assert (count <= sum);

10 }

donatel(sum, count, lsum, lcount: Imsg.vaive, revert) A
|msg.value >0A

I _

Isum - Isum + Imsg.value A
i

|c0unt - |COLII'It + 1 7A\

’_ / I
(revert’ = revert V =1 0 < 1um)) A
true

f—

! |l

donate2(sum, count, 12, 1 ¢, Imsg.vame, revert’)

v

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 7/13

Our Direct Encoding - Verification

Assertion checking

@ Assertion failures lead to a revert
@ Reverts lead to error predicates

@ Queries are made for the reachability of error predicates

v

Verification procedure

@ System of CHCs represent a contract

@ System is provided to a Horn clause solver together with a query

o Unsatisfiable: an error predicate can be reached
o Satisfiable: no error predicate can be reached

@ Different back-end solvers can be used

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 8/13

Our Tool - Solicitous

SOLIdity Contract verlfication using consTrained hOrn claUSes

@ Verification of Solidity contracts

@ Applies the encoding rules to generate a system of CHCs

o Generates a contract invariant or a counter-example (CEX)

Solidity Code |
with Assertions

Solidity Compiler

Compiler Stack

/ 2 |nst)

/ AST Generator 7
L

Solicitous
#I CHC Generator I ‘ CHCs
UNSAT Z3
CEX
Generator SAT

h 4

| EVM Code |

| CEX] |Invariant]

Rodrigo Otoni Accurate Smart Contract Verification

28th October 2020 9/13

Experimental Set-up

@ Gathered all deployed contracts between Jan/2019 and May/2020
@ Verified 6138 unique real-world contracts containing assertions

o 77 from version v0.6
o 6061 from version v0.5

Comparison with existing tools

@ Solidity verification tools

o Solc-Verify [Hajdu et al. VSTTE'19, Hajdu et al. ESOP'20]
o VeriSol [Wang et al. arXiv'19]

o EVM verification tool
o Mythril

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 10/13

Experimental Results - v0.5 Contracts

INT MOD
SOL Sv VS SOL SV VS M
Safe 1720 778 135 1681 54 117 579

Not safe 142 572 298 93 515 198 23
Timeout 586 89 37 678 56 130 5426
Error 3613 4622 5591 | 3609 5436 5616 33

Verified 30% 22% 7% | 29% 9% 5% 9%

e SOL: SoI|C|to.us o Verified — Safe + Not safe
e SV: Solc-Verify " Num. of contracts
o VS: VeriSol @ Timeout at 60 seconds

e M: Mythril @ Error means a tool problem

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 11/13

@ Smart contracts can benefit from formal verification

@ Current approaches rely mainly on general encodings

Proposed solution

@ Formal verification of safety properties

@ Novel approach via direct modelling

@ Solicitous, a tool for automatic verification of Solidity contracts

@ Improvement in precision when verifying real-world contracts

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 12/13

Smart contract verification

@ Evaluation of the encoding with languages other than Solidity

@ Enhancement of the encoding to account for gas consumption

@ Creation of certificates of correctness as witnesses of safe results

v
Tool improvements

@ Implementation of support for additional Solidity features

@ Evaluation with different back-end solvers

Formal verification of smart contracts

@ verify.inf.usi.ch/research/fvsc

Solidity compiler with Solicitous

@ github.com/ethereum/solidity

Rodrigo Otoni Accurate Smart Contract Verification 28th October 2020 13/13

verify.inf.usi.ch/research/fvsc
github.com/ethereum/solidity

