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Abstract—We present a lattice-based satisfiability modulo the-
ory for verification of programs with library functions, for which
the mathematical libraries supporting these functions contain a
high number of equations and inequalities. Common strategies
for dealing with library functions include treating them as
uninterpreted functions or using the theories under which the
functions are fully defined. The full definition could in most cases
lead to instances that are too large to solve efficiently.

Our lightweight theory uses lattices for efficient representation
of library functions by a subset of guarded literals. These lattices
are constructed from equations and inequalities of properties of
the library functions. These subsets are found during the lattice
traversal. We generalise the method to a number of lattices for
functions whose values depend on each other in the program, and
we describe a simultaneous traversal algorithm of several lattices,
so that a combination of guarded literals from all lattices does
not lead to contradictory values of their variables.

We evaluate our approach on benchmarks taken from the
robotics community, and our experimental results demonstrate
that we are able to solve a number of instances that were
previously unsolvable by existing SMT solvers.

I. INTRODUCTION

The satisfiability modulo theories (SMT) [1] reasoning
framework is currently one of the most successful approaches
to verifying software in a scalable way. The approach is based
on modeling the software and its specifications in proposi-
tional logic, while expressing domain-specific knowledge with
first-order theories connected to the logic through equalities.
Successful verification of software relies on finding a model
that is expressive enough to capture software behavior relevant
to correctness, while being sufficiently high-level to prevent
reasoning from becoming prohibitively expensive.

Finding a scalable way for verifying programs or systems
which use library functions as a main part of their appli-
cation (e.g., implementation of robots’ movements in the
Robot Operating System (ROS) [2]) is a non-trivial task: the
code may contain hundreds of interacting expressions of the
properties of the library functions, whose truth values depend
on each other. A straightforward solution would be to use
increasingly precise theories. However, this approach results
in prohibitively expensive computations.

Trigonometric functions serve as a good illustration of the
problem outlined above, as many domains of application,

such as robotics, planning [3], and simulations for physics
and engineering [4], rely on the computation of trigonometric
functions. Verification of software using trigonometric library
functions [5]–[10] either requires a large amount of numerical
calculations of polynomials along with irrational numbers or
uses large look-up trigonometric tables, which tend to be less
precise and memory consuming [11]. The former technique
usually replaces the irrational expressions with rational expres-
sions with a defined error bound [5], [6], [12]–[14] in order
to bound or to evaluate trigonometric expressions to some
precision. A more precise approach relies on Taylor series
representation of trigonometric functions over reals; as it leads
to complex computations, the resulting instances are too large
to solve efficiently for all, but very small programs.

Finally, the solver implemented in HIFROG [15] supports
the addition of sets of equations and inequalities as user-
defined function summaries. We can, therefore, extract the
known properties of library functions from the external li-
braries and encode them as user-defined SMT summaries to
pass to HIFROG, and, ultimately, to the SMT solver. However,
this approach is not scalable either, as we do not know before-
hand which properties are going to be relevant for solving a
particular instance. Hence, for library functions with a large
number of equations (such as trigonometric functions—there
are many equations describing properties of these functions
on some subdomains), the user-defined summaries will render
the instance too large to be solvable efficiently (or at all).

In this paper, we present a novel approach to reasoning
about programs whose correctness depends on the values of
library functions. Our approach uses the concept of subset
lattices to construct an efficient representation of known
properties of these functions. Essentially, we order the set of
subsets of equations describing properties of library functions
in a lattice, where each element corresponds to a set of
properties that hold for some subdomain of the inputs. At every
iteration of the algorithm, we verify the program with only a
subset of equations that corresponds to the current element
in the lattice. If this subset is insufficient for the verification
(that is, does not provide enough information about the library
function), we refine it by traversing the lattice to a higher
element, containing a superset of the equations.
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This lattice-based counter-example-guided abstraction re-
finement algorithm (LB-CEGAR) is based on the tradi-
tional counter-example-guided abstraction refinement (CE-
GAR) [16], [17], but replaces the refinement of the theory by
the refinement of the set of equations for the library function in
the program. Our approach is similar to the traditional CEGAR
approach in the sense that a SAT result may indicate a real
counterexample (in which case there are concrete values of
symbolic variables that show the existence of this execution),
or a spurious counterexample, where the satisfying assignment
provided by the solver is due to overapproximation in the
representation of the program. In contrary to the traditional
CEGAR, where an UNSAT result indicated that there are no
counterexamples in an abstraction of the program and hence
in the concrete program as well, in LB-CEGAR the UNSAT
result merely means that there are no counterexamples in the
current subdomain of the input to the library function. As we
describe in the paper, the lattice is constructed so that every
lattice frontier covers the whole domain of the input variables.
Hence, in case of an UNSAT result, the LB-CEGAR algorithm
attempts to construct a frontier of unsatisfiability. Such a
frontier would indicate that there are no counterexamples in
the current abstraction for each subdomain of the input, and
hence for the whole domain as well.

In our previous work we described a simplified LB-CEGAR
algorithm for the case of one library function in the program
and for small lattices [18]. In this work, we extend LB-
CEGAR to the general case, where the program may contain
several library functions whose values can be interconnected
(for example, sinx and cosx). Furthermore, each function can
appear in the program multiple times, thus inducing several
instances of the lattice, which are traversed simultaneously. We
describe the generalised LB-CEGAR algorithm and analyse its
worst case complexity and heuristics in Sec. IV.

We implemented the generalized LB-CEGAR algorithm in
the bounded model checker HIFROG [15] supporting a subset
of the C language and using the SMT solvers OPENSMT [19]
and Z3 [20] and evaluated the implementation on a large set of
benchmarks containing programs whose correctness depends
on the values of trigonometric functions.The experimental
results clearly demonstrate an advantage to LB-CEGAR over
other approaches. We outline the implementation in Sec. V
and the experimental results in Sec. VI.

Our results are based on the trigonometric functions being
treated as uninterpreted functions in the encoding of the prob-
lem to the SMT solver and the encoding of the mathematical
equations as user-defined function summaries in the semantics
of reals. We assume the correctness of these equations (such
as sin2 x + cos2 x = 1) over real numbers. The challenge
of verifying problems over IEEE floating point semantics,
stemming from the implementation of the trigonometric func-
tions in the underlying architecture, is outside of the scope
of this paper. There are clear advantages to pinpointing the
subset of mathematical equations that are instrumental for
the correctness of the program under verification (which is
what we do in this paper) to the challenge of verification over

1 # i n c l u d e <math . h>
2

3 do ub l e n o n l i n ( do ub l e x ) {
4 do ub l e x s i n = s i n ( x ) ;
5 do ub l e x cos = cos ( x ) ;
6 r e t u r n x s i n * x s i n + x cos * x cos ;
7 }
8

9 vo id main ( ) {
10 do ub l e y = n ond e t ( ) ;
11 do ub l e z = n o n l i n ( y ) ;
12 a s s e r t ( z == 1) ;
13 }
14

Figure 1. A program with two different library functions.

floating point semantics, and we leave the exploration of this
direction to the future work.

The following example illustrates the motivation for LB-
CEGAR on a small program with trigonometric functions.

Example 1: The program in Fig. 1 contains two library
function calls: sinx and cosx. The correctness of the program
follows immediately from the following trigonometric identity:

∀x ∈ R. sin2 x+ cos2 x = 1. (1)

Clearly, verifying this program with sinx and cosx treated
as uninterpreted functions (that is, having nondeterministic
values) would result in numerous spurious counterexamples.
LB-CEGAR overcomes this problem by representing some
salient properties of these functions as lattices of equations,
including, in particular, Eq. (1).

In this case, the elements of the lattices for sinx and for
cosx at each iteration of LB-CEGAR are not independent, as
Eq. (1) should hold for each combination of these elements.
Moreover, having a lattice only for one function would not
suffice for proving the correctness of this program, as then we
would have Eq. 1 only for one of these functions, while leaving
the other one as a non-deterministic variable. This would lead
to spurious counter-examples, stemming from assigning illegal
values to the non-deterministic variable (for example, if cosx
is left as a non-deterministic variable, it could be assigned the
value 2, hence falsifying the assertion). �

Due to the lack of space, the proofs are omitted from this
version, and can be found in the full version of the paper
at [21]. The implementation, the set of benchmarks, and the
experimental results are available at [21]–[23].

II. PRELIMINARIES

A. SMT-based bounded model checking

Let P be a loop-free program represented as a transition
system, and t a safety property, that is, a formula over
the variables of P . The bounded model-checking problem
amounts to determining whether all states of P , reachable
within a predefined bound, satisfy t. In other words, the task of
a model-checker is to find a counterexample, that is, a bounded
execution of P that falsifies t, or to prove absence of such
executions.

In the SMT-based bounded model-checking approach fol-
lowed in this paper, the model-checker encodes all bounded
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executions of P as an SMT formula, conjoins it with the
negation of t, and invokes an SMT solver to check the
satisfiability of the resulting formula. If the formula is deemed
unsatisfiable, the program is safe, that is, P satisfies t. Oth-
erwise, a satisfying assignment found by the SMT solver is
used to build a concrete counter-example. Depending on the
theory used by the SMT solver, an abstract counterexample
can also be spurious, that is, not corresponding to any concrete
execution. This situation arises when the theory is too abstract,
and hence the resulting overapproximation of the behaviors of
the program is too coarse. In this case, the program is re-
verified with a more refined theory.

B. Function summaries

The tool HIFROG allows to incorporate function summaries
into the verification process [15]. These summaries can be
interpolants [24] from one of the previous iterations of model-
checking or user-defined summaries supplied by the user,
based on their external knowledge of the system. Some ex-
amples of user-defined summaries are available on HIFROG’s
webpage [25] and in the full version of this paper. We exploit
this functionality by providing HIFROG with the library of
user-defined summaries derived from external libraries for the
functions, whose values are critical for determining correctness
of the program, and we organise them in lattices as we explain
below. This allows us to verify programs in the most abstract
theory of equality logic with uninterpreted functions (EUF).

C. A subset lattice

For a given set X , the family of all subsets of X , partially
ordered by the inclusion operator, forms a subset lattice
SL(X). The u and t operators are defined on SL(X) as
intersection and union, respectively. The top element > is the
set X , and the bottom element ⊥ is the empty set ∅. We note
that SL(X) is a De-Morgan lattice [26], as meet and join
distribute over each other.

A meet-semilattice 〈L,u〉 of a lattice L is a partially ordered
set (poset) when the u operator is defined for any subset of its
elements (but not necessarily the t operator). A subposet of a
lattice is a subset of elements, which follow the same partial
order as in the poset. A chain of a lattice is a subposet of a
lattice where every two elements are ordered.

In this paper, we consider SL(X) and 〈SL(X),u〉, for X
being a finite set of guarded expressions, as defined in Sec. III.

III. LATTICES OF GUARDED LITERALS

In this section we describe the construction of lattices of
expressions for external functions.

A guarded literal is a Boolean expression describing some
property of the function in question, together with the guard
that defines a continuous subdomain of the inputs for which
this property holds. For example, the property expressing the
fact that for 0 < x < 2, the value of sinx is positive is
described by the guarded literal

(assume(0 < x < 2)) ∧ (sinx > 0),

where (0 < x < 2) is a guard (denoted by G) of the literal
(sinx > 0). Literals that hold for all x (such as, for example,
(sinx ≤ 1) are guarded with assume(true). A guard cannot
refer to a non-continuous domain. For example,

(assume(0 < x < 2) ∨ (7 < x < 8)) ∧ (sinx > 0)

is not a legal guarded literal in our framework.
Given a set of guarded literals F for a library function f , the

subset lattice SL(F ) consists of all subsets of these literals.
However, it is easy to see that some elements in SL(F ) contain
literals with contradictory guards. For example, a lattice of
all subsets of sinx would contain, for example, the element
(assume(0 < x < 2)) ∧ (sinx > 0) and the element
(assume(x = 0))∧(sinx = 0), which do not intersect on any
subdomain of x. To reduce the size of the lattice and avoid
unnecessary calls to the SMT solver, we reduce SL(F ) to a
meet semi-lattice L = 〈SL(F ),u〉 by removing all elements
that have contradictory guards (that is, the conjunction of their
guards is false).

Note that after the removal of contradictory elements, the
resulting set of subsets is no longer closed under union, but it is
still closed under intersection, hence the resulting set is a meet
semi-lattice. Note also that the resulting meet semi-lattice can
have a set of maximal elements instead of the single maximal
element. For brevity, in the rest of the paper we refer to the
meet semi-lattice of guarded literals for a function f simply
as a lattice.

A frontier of a lattice L is a set of elements X(L) such that
each chain from ⊥ to a maximal element in L intersects X(L)
in at least one element. The LB-CEGAR algorithm described
in the next section relies on the fact that the union of guards of
each frontier of the lattice is the whole domain of the inputs.
If this is not the case, we add elements to the lattice to cover
the missing subdomains. For the example of sinx above, if
we have only two guarded literals

(assume(0 < x < 2)) ∧ (sinx > 0)

and
(assume(x = 0)) ∧ (sinx = 0)

in our set, we add the guarded literals

((assume(x < 0)) ∧ true)

and
((assume(x ≥ 2)) ∧ true)

to the set to cover the whole domain of x (recall that the
guards should refer to continuous subdomains, hence we need
to add two guarded literals).

Claim 1: If the union of guards of a given set of guarded
literals S covers the whole domain of the input, then for each
frontier X(LS) of the subset lattice LS of S, the union of
guards of X(LS) also covers the whole domain of the input.
And conversely, if the union of guards of a subset X(LS) of
the elements of LS covers the whole domain of the inputs,
then X(LS) is a frontier of LS .
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Proof 1: We prove by induction that for a subset lattice LS

and any element E ∈ LS its guards refer to the same domain
as the union of guards of all immediate successors of element
E.

(base) The element ∅ has no guards and thus refers to the
whole input domain Din. From the definition of subset lattice
(Sec. III), we know that each immediate successor of ∅ is a
set of a single element from S. Since we added elements to S
to cover the missing subdomains (Sec. III), we know that the
union of all the guards of all items in S captures all values in
Din.

(step) For each element E ∈ LS , the union of guards of
all successors of E is equivalent to the guard of E. Since LS

is a subset lattice, then all immediate upper elements of an
element E ∈ LS contain exactly one additional guarded literal
from S. Since we added elements to S to cover the missing
subdomains, we know that any guarded literal has a guarded
literal (or guarded literals) with an opposite guard in S, thus
the union of any such pair of guards of these guarded literals
leaves the original guard of E the same; since each of the
successor of E must contain either the original guarded literal
or its complementary guarded literal (or guarded literals).
Therefore we get that the guard of the union of the successors
of E stays the same as required.

We assume that the claim holds only if the union of guards
of a given set of guarded literals covers the whole domain
of the input, hence ∅ refers to the whole domain Din; since
all chains start from ∅, and since the guard of an element is
a union of guards of its immediate successors as proved by
induction above, then if there is a frontier X(LS) where the
union of all guards of all the guarded literals in X(LS) is not
Din, then there is a chain from ∅ to maximal element without
an element in X(LS), which contradict the definition of a
frontier (Sec. III).

The LB-CEGAR algorithm (Alg. 1) can use a reduced
lattice of a subset lattice LS (see Sec. III) by applying
the following changes to the original structure: (1) removes
elements with a guard equal to false (i.e., consistency check),
(2) removes logically equivalent elements by keeping a single
element of these (i.e., equivalence check), (3) removes ele-
ments with a single successor where both have the same guard
(i.e., Cleanup), and (4) fixes overlapping guard.

We fix overlapping guards while keeping the union of
guards of all the successor of an element the same; thus the
union of guards stays the same also in a frontier and therefore
refers to the whole domain as before.

The rest of the changes of elements do not affect the
union of guards; consistency check removes elements with
no contribution to the input domain (as this equivalent to
false), equivalence check affects only the number of possible
frontiers, and cleanup removes elements with the same guard
with a weaker expression compared to their single immediate
successor. �

The procedure described in this section is done at the
preprocessing stage, once for each library function, and the

resulting lattices can be used in verification of multiple pro-
grams.

IV. THE LATTICE-BASED COUNTEREXAMPLE GUIDED
ABSTRACTION REFINEMENT (LB-CEGAR) ALGORITHM

In this section we present the main contribution of the
paper—the LB-CEGAR algorithm. We start with an informal
overview and then present the formal description of the algo-
rithm. We proceed with discussing its worst-case complexity
and then present several heuristics that reduce the complexity
for the majority of the cases.

A. Overview of the LB-CEGAR algorithm

The inputs to the Lattice-based Counterexample Guided
Abstraction Refinement (LB-CEGAR) algorithm (Alg. 1) are
a bounded loop-free program P that includes the function f
and a safety property t. The algorithm follows the standard
procedure of translating P and the negation of t to a first
order formula ϕ and invoking an SMT solver in order to find
a satisfying assignment. In contrast to the standard approach,
in LB-CEGAR the SMT solver has access, in addition to ϕ, to
the external lattice Lf of guarded literals for f constructed in
Sec. III. At each iteration LB-CEGAR adds the set of guarded
literals in the current element E of this lattice to ϕ before
sending ϕ to the SMT solver.

The refinement loop in LB-CEGAR, invoked when a sat-
isfying assignment does not correspond to a concrete coun-
terexample, amounts to the traversal of Lf as described below
in the procedure traverseSAT .

The algorithm terminates when it either finds a satisfying
assignment that corresponds to a concrete counterexample
(and hence a bug in P ), reaches all maximal elements of
Lf without finding concrete counterexamples for any of the
satisfying assignments (that is, the current set of properties
of f encoded in Lf is insufficient to verify P ), or finds a
frontier of Lf such that ϕ is unsatisfiable with each element
of the frontier separately. The latter case implies that there
are no counterexamples in the overapproximation of P for the
whole domain of the inputs, and hence P satisfies t.

An iteration of LB-CEGAR with a program P , a safety
property t, and a current element e consisting of the set of
guarded literals S(e) of the lattice Lf results in one of the
following (for one library function f and a single occurrence
of f in the loop-free program P ):
• An SMT solver finds a satisfying assignment for ϕ

with S(e), and there is a concrete counterexample corre-
sponding to this assignment. The algorithm terminates,
outputting the counterexample as an evidence of the
negative result of model-checking P .

• An SMT solver finds a satisfying assignment for ϕ with
S(e), but there is no concrete counterexample corre-
sponding to this assignment. The algorithm invokes a
refinement step that amounts to traversing Lf to an
element e′ that refines e, that is, S(e) ⊂ S(e′). If no such
element exists (in other words, e is a maximal element of
Lf ), the algorithm terminates with inconclusive results.
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• An SMT solver returns the UNSAT result for ϕ with
S(e). In other words, there is no satisfying assignment to
ϕ in the subdomain of inputs induced by e. The refine-
ment step of LB-CEGAR is, then, to check satisfiability
of ϕ with elements of Lf that complement the subdomain
of e to the whole domain of the input (that is, with
elements of Lf that together with e form a frontier of
Lf ).

• An SMT solver returns the UNSAT result for ϕ with
S(e), and e is a part of a frontier of Lf for which ϕ is
unsatisfiable. This result implies that there is no satisfying
assignment to ϕ over the whole domain of the inputs, and
therefore P is safe with respect to t.

If the function f appears in P several times, an instance of
Lf is created for each occurrence. Furthermore, if P contains
more than one library function for which we have a lattice
of guarded literals, all these lattices are incorporated in LB-
CEGAR. For programs with trigonometric functions, which
are the primary domain of application in this paper, it is often
the case that an equation includes several functions—see, for
example, the program in Ex. 1.

In the next section we present a pseudo-code for LB-
CEGAR and discuss the general case of several functions and
several occurrences of each function in the program.

B. The main LB-CEGAR algorithm

The pseudo-code of LB-CEGAR is presented below. The
input to the algorithm is a loop-free program P , a safety
property t, and a set of lattices Lattices.

The sub-procedures and notations in Alg. 1 are defined as
follows.
• The sub-procedure checkSAT (x) determines the satisfi-

ability of an input formula x.
• The sub-procedure checkRealCE (P, t,CE ) returns true

if CE can be concretised to a counterexample, demon-
strating a behaviour of P that falsifies t.

• The set Lattices consists of all occurrences of lattices for
all library functions in P .

• We denote by Li
f a lattice for the i-th occurrence of f in

P , and by e the current element in the lattice traversal.
For an element e, we define literals as the conjunction
of guarded literals of e.

• The sub-procedure traverseUNSAT (Lattices) performs
the traversal of the lattice from the current element e
to the next element e′ if the result of model-checking
ϕ ∧ literals is UNSAT. The next element e′ in the
same lattice as e is e’s ‘sibling’, that is, an element,
whose set of literals corresponds to a different subdomain
of the input. If there is already a frontier of elements
in each lattice such that model-checking ϕ ∧ literals
returns UNSAT for each element of these frontiers, the
procedure traverseUNSAT (Lattices) does not change the
current element e.

• The sub-procedure traverseSAT (Lattices) is invoked
when there is a satisfying assignment for ϕ ∧ literals ,
but the counterexample induced by it is spurious, that is,

Algorithm 1: LB-CEGAR
Input : Program P , safety property t, and set Lattices
Output: 〈Safe〉, 〈Unsafe,CE〉, or 〈Unknown,⊥〉

1 ϕ← P ∧ ¬t
2 Query ← ϕ
3 〈result ,CE〉 ← checkSAT (Query)
4 if result is UNSAT ∨ checkRealCE(ϕ,CE) then
5 go to Exit // No lattice-based refinement needed
6 end
7 χ← true
8 repeat
9 χ′ ← χ // Formula from the previous iteration

10 if result is UNSAT then
11 traverseUNSAT (Lattices)
12 end
13 if result is SAT then
14 traverse2refineSAT (Lattices)
15 end
16 χ← literals(ϕ, Lattices)
17 // Solve again if there are new literals
18 if χ 6= χ′ then
19 Query ← ϕ ∧ χ
20 〈result ,CE〉 ← checkSAT (Query)
21 end
22 until (χ == χ′)∨
∨checkRealCE(Query,CE) ∨ termination(result , Lattices);

23 End-LB-CEGAR:
24 if result is UNSAT then
25 return 〈Safe〉 // Safe
26 end
27 if checkRealCE(P, t,CE) then
28 return 〈Unsafe,CE〉 // Real counterexample
29 end
30 return 〈Unknown〉 // Inconclusive results, further refinement

needed

it does not correspond to a behaviour of P falsifying t.
The procedure traverses the lattice to an element e′ that
refines e, that is, S(e) ⊂ S(e′). If e is a maximal element,
the procedure traverseSAT (Lattices) does not change the
current element e.

• The sub-procedure termination(result ,Lattices) checks
whether one of the termination conditions holds: either
the current satisfying assignment induces a concrete
counterexamples, or there is an UNSAT frontier for
each lattice Li

f ∈ Lattices, or there is a satisfying
assignment for each maximal element in each lattice in
Lattices that does not induce a concrete counterexample.

Finally, we address the complexity resulting from having
several functions in P , whose lattices refer to each other. This
is illustrated by Ex. 1, where the correctness of the program
depends on the guarded literal

(assume(true)) ∧ (sin2 x+ cos2 x) = 1.

In fact, this is quite common in programs with trigonometric
functions, as trigonometric identities often refer to several
functions in the same identity. The algorithm identifies library
functions used in the set Lattices and assigns the same variable
to all occurrences of the same function, hence connecting
between the lattices of different functions.
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C. Correctness and complexity of LB-CEGAR

It is easy to see that LB-CEGAR terminates (Lemma 2 in
Sec. IV-C1). Indeed, the lattice traversal visits every combina-
tion of elements of lattices in Lattices at most once, and for
each combination of elements it invokes the model-checking
procedure of a bounded loop-free program P with respect to
t, which terminates. The number of possible combinations of
elements in the lattices is exponential in the number of lattices,
hence leading to the complexity result below.

Theorem 1: The worst-case running-time complexity of LB-
CEGAR is O(|L|n ×MC(P, t)), where |L| is the bound on
the size of each lattice in the set Lattices, n is the number
of lattices in Lattices, and MC(P, t) is the running-time
complexity of model-checking P with respect to t using the
guarded literals.

Proof 2: From Lemma 2, we know that the LB-CEGAR
terminates. Before termination, the lattice traversal visits every
combination of elements of lattices in Lattices at most once;
since, for the general case, we assume no heuristic or opti-
mization (e.g., from Sec. V C) are used during the traversal.

For each combination of elements, it invokes the model-
checking procedure of a bounded loop-free program P with
respect to t, which terminates. The number of possible combi-
nations of elements in the lattices is exponential in the number
of lattices, hence leading to the complexity result below. �

Moreover, the following theorem states that LB-CEGAR
produces a correct result.

Theorem 2: The following holds for any bounded loop-free
program P and a safety property t, assuming correctness of
the guarded literals in Lattices:
• If LB-CEGAR outputs Safe, the program P is correct

with respect to t.
• If LB-CEGAR outputs Unsafe with an accompanying
CE , the CE demonstrates an execution of P that falsifies
t.

• If LB-CEGAR outputs Unknown, the current theory
and the set of guarded literals are insufficient to produce
a conclusive result.

Proof 3: Once checkRealCE is true with any set of
guarded literals, the condition in line 22 is true, and the
algorithm terminates. After exiting the loop in lines 8-22,
since checkRealCE is true, the condition in line 27 holds, and
LB-CEGAR outputs Unsafe with the real counter-example,
which is the counter-example it used last in the condition in
line 22.

LB-CEGAR outputs Safe only if the conditions in line
24 holds, without lattices if the first query is UNSAT (in
line 3) or with lattices if the last query is UNSAT (in line
20) and the condition for termination holds while using the
frontiers of all lattices (line 22, when termination is true and
result = true). The first case is true in general in bounded
model checking. We prove the second case where we use
lattices.

The last query (line 19) just before violating the condition
in line 22 is a conjunction of ϕ with guarded literals from all

elements of frontiers of all lattices in Lattices. By Lemma 1,
we know that the union of assume statements of elements in
the frontier captures the whole input domain of each of the
functions of the lattices in Lattices.

Therefore, if no satisfying assignment has been found with
all frontiers of lattices in Lattices, there is no satisfying
assignment in the input domain of functions for which we
added guarded literals (i.e., those which have a lattice in
Lattices) in the unwound program P . Since there was no
satisfying assignment for ϕ in line 3, then the program is
indeed safe with respect to the given bound and a property t.

Once LB-CEGAR cannot find a counterexample nor a set of
guarded literals that refines ϕ (that is checkRealCE is false,
χ = χ′, or termination is true but result is SAT) then none
of the conditions in lines 24 and 27 holds and LB-CEGAR
outputs Unknown (line 30). �

We observe that, while the worst-case complexity of LB-
CEGAR is exponential in the number of lattices, in practice
the algorithm is very efficient, as we show in Sec. VI. This
is partly due to the incrementality of the calls to the SMT
solver, as the formula ϕ representing P ∧ ¬t stays the same
for all iterations, and the next element e′ differs from the
current element e of the lattice only slightly. Another reason
for the significantly lower complexity in practice is that our
implementation of LB-CEGAR includes several heuristics,
which we describe in the next section. The heuristics do not
alter the correctness of the algorithm.

1) Termination of LB-CEGAR algorithm: We prove here
two additional lemmas required for the proof of Theorem 1.

The bound of each lattice L in Lattices is as follows.
Lemma 1: The bound of a lattice |L| is (s + 1) ×

(
s
b s2 c

)
,

where s = |F | and F is a set of guarded literals of a function
f .

Proof 4: The lattice L is constructed as a subset lattice
form a set F of guarded literals (Sec. III). The height of L
is (s + 1) by construction. The width of L is bounded by(

s
b s2 c

)
, following from Sperner’s theorem [27] that states that

the width of the inclusion order on a power set is
(

s
b s2 c

)
, where

s is the size of the set. By using the height and the bound on
the width of L, we get that the bound of the size of the lattice
is:

|L| ≤ (s+ 1)×
(
s

b s2c

)
as required. �

Lemma 2: The LB-CEGAR algorithm terminates.
Proof 5: Sine P is a bounded loop-free program then the

set Lattices is finite. From Lemma 1 we know that the size of
each lattice in Lattices is finite (since the size of each lattice
is bounded).

Each iteration of the LB-CEGAR algorithm either in-
vokes the sub-procedure traverseUNSAT or the sub-procedure
traverseSAT . In both cases, we traverse to an element which
we yet visit: in the former case, traverseUNSAT performs
a traversal to an element whose set of literals corresponds
to a different subdomain of the input, and in the latter case,
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traverseSAT performs a traversal to an element with a bigger
set of guarded literals that refines the current counterexample;
if |Lattices| > 1, we label a combination of elements from
Lattices as visited instead of labeling an element.

The number of the lattices is finite; the size of each lattice
is bounded and hence finite too. Accordingly, the number of
times that LB-CEGAR traverses an element that has not yet
been visited in each of the lattices is bounded and hence finite.
Once LB-CEGAR has no new element to visit (but yet found
a counterexample nor found guarded literals that suffice to
prove correctness for all subdomains), then χ is equal to χ′

and the LB-CEGAR algorithm terminates (exits the loop in
line 22 and outputs a result in lines 24-30). �

V. IMPLEMENTATION

The algorithms were implemented on top of the SMT-based
function summarisation bounded model checker HIFROG [15]
with OPENSMT [19] and Z3 [7], [20] solvers. The details
of our initial implementation are described in [18]. Here we
describe the extension of the implementation to support the
full LB-CEGAR algorithm.

Fig. 2 presents a high-level view of the implementation
of LB-CEGAR in HIFROG and a comparison between the
implementation as a flat (non-hierarchical) set of user-defined
summaries, our prototype implementation with one occurrence
of one function, and the current implementation of the general
algorithm.

A. Pre-processing stage

We constructed two lattices for sin and cos functions via
a set of BASH scripts (see [18]) for the evaluation of our
approach. The guarded literals were imported from the raw
data of Coq proof assistant [28] and Wikipedia [29], [30]
and translated to SMT summaries. The definitions of constants
(e.g., π from math.h) and trigonometric tables (values of the
trigonometric functions for x = c · π, for some c ∈ N) were
added to the set of guarded literals manually. The final set
consisted of 80 guarded literals and was used to construct the
meet-semilattices for sinx and cosx functions. Textual files
of these meet-semilattices are available at [21], [23].

B. Implementation in HIFROG

The implementation of LB-CEGAR uploads only the set of
guarded literals in the current element of the lattice. If the
current element is insufficient for solving the formula (that is,
the satisfying assignments produced by the SMT solver do not
induce concrete counterexamples), the algorithm traverses the
lattice to a higher element, translated in the implementation
to adding and removing some subsets of guarded literals. It
is clear that the new formula only differs from the one in
the previous iteration by a subset of guarded literals. The
implementation exploits this fact by using the SMT solver
in an incremental mode.

We extended the support for incremental solving
in HIFROG, adding non-, semi-, and full-incremental
solving modes, to support different degrees of incrementality

(e.g., semi-incremental solving mode allows only push()
calls). With this support, the implementation only modifies
a single query from one iteration to the next, which is less
costly than re-writing the whole formula.

C. Heuristics

We implemented the following heuristics to improve the
complexity of lattice traversal in LB-CEGAR. None of these
heuristics change the worst-case running time complexity, but
our experiments show that they are beneficial on programs in
our benchmark set.
• The choice of the successor in the sub-procedure
traverseSAT (Lattices) is done based on the current spu-
rious counterexample CE , similarly to the traditional
CEGAR. We identify the location in the code where
the abstract counterexample deviates from a concrete
execution and use this information to guide the lattice
traversal to the element that refines this particular location
(if such an element exists).

• The ‘frontier of unsatisfiability’, that is, a frontier of a
lattice that results in UNSAT for each element of this
frontier, is computed once per lattice and is fixed. While
in theory it is possible that the current frontier of a lattice
L1 results in UNSAT when combined with an element
e of a lattice L2, but not with an element e′ of L2, in
practice such cases are rare. There is an option to output
Unknown if the set of frontiers computed gradually
does not result in UNSAT, thus potentially increasing
the number of cases, where LB-CEGAR outputs an
inconclusive result. In our experiments, this heuristic does
not lead to an increase in the number of inconclusive
results.

• For lattices representing different occurrences of a func-
tion f in P which occur in a loop, we traverse these lat-
tices simultaneously. The motivation for the ‘coordinated’
traversal is that all loop iterations, except, perhaps, for the
last one, are similar, and hence there is a high probability
that the same set of guarded literals would fit all these
occurrences.

VI. EVALUATION

For the evaluation of LB-CEGAR, we constructed two
lattices for sin and cos functions with 40 and 38 guarded
literals, respectively. The validation test for these expressions
contains a set of 144 benchmarks in C with a total of 365
assert statements. The scripts for the lattice construction, the
benchmarks for the validation test, and the results of the
validation test are available at [21], [22].

The set of benchmarks contained a mix of our crafted
benchmarks, programs from the software verification compe-
tition SVCOMP [31], and HIFROG benchmarks [15], with a
total of 141 C programs with at least one library function
call, containing in total 194 calls for sin and 179 calls for
cos , with 279 claims (127 SAT and 152 UNSAT). In 42
benchmarks, the library function is called at least 4 times,
and in 8 benchmarks, the library function call is in a loop.
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Figure 2. LB-CEGAR for a program P with several library functions.

The crafted benchmarks either assert known properties of
trigonometric functions or contain a small part of code that is
typical to kinematic problems, mainly examining the ability
of verifying code with multiplication between two library
function calls; e.g., cosφ× sin θ.

We used EUF with a semi-incremental solving mode
in OPENSMT [19] and linear arithmetics with EUF with an
incremental solving mode in Z3 solver [20].

The experiments were performed on a virtual machine (VM)
with Ubuntu 16.04 Linux system, single core, 8GB RAM; the
VM runs on a machine with 4-Intel i7-6600U CPUs clocked
at 2.60GHz. The experimental results, the benchmarks, and
the source code, are available at [21], [23].

A. Evaluation of LB-CEGAR with Real arithmetics

Figure 3 presents the comparison of LB-CEGAR with
CBMC version 5.10 [32], HIFROG [15], and our previous
implementation [18] supporting one library function at a time.

The total number of solved instances is the blue bar and the
orange bar, for Safe and Unsafe instances respectively. The
total number (as a negative number) of unsolved instances is
the gray bar and the yellow bar, for SAT instances that are
classified as Unknown (or SAT without a counterexample),
and for the instances that timed out (TO) or were out-of-
memory (OM), with the timeout set to 4000s and out-of-
memory set to 3GB, respectively.

The four different colours of the bars are consistent across
all six charts. Each chart represents the total solved instances
for a particular tool or a variant of a tool. The tools at the
clockwise order are, LB-CEGAR (top-left), CBMC [33] (top-
right), HIFROG [15] LRA (middle-right), EUF (bottom-
right) and with user defined summaries (bottom-left), and

HIFROG [18] with a single lattice (middle-left). All approaches
with summaries used EUF with LRA (UFLRA).

Verification with function summaries in HIFROG avoids
processing the single static assignment (SSA) expression of
the original function and uses only the SMT summary. Hence,
complicated benchmarks, which contain library function calls
in a loop or in a non-linear expression, were more likely to
be successfully verified with summary-based approaches.

HIFROG with user-defined summaries used ∼ 80 equations
of trigonometric properties, loaded at once as unstructured data
and solved a total of 227 instances (HiFrog - User-Defined,
bottom-left, Fig. 3). HIFROG with a single lattice used ∼ 40
equations aof trigonometric properties, and solved a total of
185 instances (Single-Lattice - LRA, middle-left, Fig. 3).

LB-CEGAR with two lattices, constructed from a set of
∼ 80 equations of trigonometric properties(Mix-lattice graph,
top-left, Fig. 3), outperformed both variants of HIFROG and
had the highest overall number of solved instances: over 260
instances.

Connecting lattices of different functions in LB-CEGAR
algorithm allowed our approach to verify the highest number
of Safe instances, on many on which other tools failed
(including HiFrog-User-Defined and Single-Lattice-LRA). In
comparison with LB-CEGAR (with 261 solved instances, out
of 279), other tools that do not use summaries or insights
on trigonometric functions, managed to solve at most 136
instances (CBMC V. 5. 10, HiFrog-LRA, and HiFrog-EUF,
in Fig. 3, at top-right, bottom-middle, and bottom-right, re-
spectively), mainly because of the use of non-deterministic
variables to represent trigonometric functions.
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Table I
COMPARISON OF LB-CEGAR IN HIFROG WITH DIFFERENT PARAMETERS WITH CBMC AND HIFROG. THE COMPARISON IS ON THE NUMBER OF

SOLVED AND UNSOLVED INSTANCES, WITH THE TIMEOUT (TO) SET TO 4, 000S AND OUT-OF-MEMORY (OM) SET TO 3GB.

Lattice Mix Lattice Single HiFrog UDS HiFrog CBMC
LRA LIA EUF LRA LIA EUF LRA LIA EUF LRA LIA EUF

#S
ol

ve
d UNSAT 134 42 8 59 13 6 100 24 9 2 3 1 9

SAT 127 126 126 126 125 126 127 126 126 127 127 127 127

#F
ai

le
d FN 14 104 136 87 133 139 48 122 136 148 147 149 136

TO+OM 4 7 9 7 8 8 4 7 8 2 2 2 7
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Figure 3. Comparison of the Number (#) of Solved Claims with Different
Approaches and a Set of Trigonometric Benchmarks in C.

B. Evaluation of LB-CEGAR with different parameters of
HIFROG

Table I presents a full comparison of our implementation
of the LB-CEGAR algorithm with other tools. The com-
parison is peformed using various parameters of HIFROG,
even-though LRA with EUF is the most suitable theory-

combination for trigonometric functions, based on our experi-
ence.

The physical files of SMT summaries
for LRA and EUF were the same; HIFROG read an
SMT summary file differently according to the theory in
use. The SMT summaries for linear integer arithmetics were
different to prevent any conversions to real arithmetics (e.g.,
to real token) in the SMT query.

In Table I, the verification results of LB-CEGAR appear in
white and are compared to CBMC [33] and HIFROG [15],
[18] (grey and dark grey), with the best results underlined and
marked in light-yellow.

The evaluation of HIFROG in greyscale is with a single
lattice, and with and without user defined summaries, using:
EUF, LRA with EUF, LIA with EUF, each of which is
a different column in Table I (with the theory being EUF,
LRA or LIA). The symbol # stands for the number of
instances solved (first two lines) or unsolved (last two lines).
Unsolved instances are false negative results (FN-SAT), in-
conclusive (also marked as FN-SAT), or timeout or out-of-
memory (TO +OM ).

The description of each column in Table I is as follows.
• The white columns in Table I (3 columns, Lattice Mix

col.) contain the results the LB-CEGAR algorithm along
with the modifications presented in Sec. IV with different
sets of parameters (with the theory being EUF, LRA ,or
LIA), against other tools in the gray scale columns.

• The gray scale columns in Table I (10 columns from the
end) contain the results of other tools: the lattice-based
refinement approach with a single lattice [18] in Lattice
Single col., HIFROG with a large set of user defined
summaries [15] in HiFrog UDS col., and HIFROG [15]
and CBMC version 5.10 [32] in the most right columns.

The variant of HIFROG with theory refinement is omitted from
the comparison, as its current implementation does not support
trigonometric functions.

For the lattice-based refinement approach for verification
of programs with multiple trigonometric functions, the best
setting was with LRA with EUF (Lattice Mix, LRA col.),
which had the highest overall number of solved instances over
260 instances, and performed almost as well as HIFROG with-
out any summary (ran out of resources 4 times vs. 2
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times HIFROG did). The other two configurations of parame-
ters that we tried with the lattice-based refinement approach for
programs with multiple library functions, were EUF (Lattice
Mix, EUF col.) and LIA with EUF (Lattice Mix, LIA col.).
While EUF performed poorly in general, LIA with EUF has
shown limited potential in solving instances that required
real arithmetics, which indicating the possibility of applying
this method for code with library functions over significantly
different input domains.

The comparison with a single lattice [18] (Lattice Single,
LRA col.) used either a meet-semilattice for sin function or
for cos function per benchmark, which led to a poor per-
formance when both lattices were required; however, perhaps
unsursprisingly, this did not result a poor performance when
a single lattice was sufficient to prove safety of a claim (59
instance, Lattice Single, LRA col.). HIFROG with user-defined
summaries (HiFrog UDS, LRA col.) could not solve around
50 safe instances that required a wider context regarding other
library functions, for one or more expressions with a library
function call.

VII. RELATED WORK

The problem of verification of programs with transcendental
functions and, in particular, trigonometric functions is ad-
dressed by several verification tools, such as iSAT3 [34] via
interval propagation, dReal [35] by using δ-satisfiability, where
δ is associated with the numerical error, Coq interval [36]
and Gappa [37] via interval propagation with Taylor series,
and MathSAT5 [6], [12], [38] by using Taylor series with
a partial set of trigonometric properties and for hardware
verification [39]. In contrast to these approaches, our algorithm
does not require a nonlinear arithmetic or a calculation of
Taylor series, which is computationally expensive for large
programs.

Computationally inexpensive theories can be used to over-
approximate complex problems. This approach has been used
in solving equations on non-linear real arithmetic and transcen-
dental functions based on linear real arithmetic and equality
logic with uninterpreted functions [6], [12], [40], [41], as well
as on scaling up bit-vector solving [15], [42], [43]. Our work
can be seen as a generalisation of these approaches as we
support inclusion of lemmas from more descriptive logics to
increase the expressiveness of computationally lighter logics.

Lattices are a useful mathematical structure in understand-
ing the relationships between different abstractions and have
been widely applied in program solving with Craig interpola-
tion. [44] presents a semantic solver-independent framework
for systematically exploring interpolant lattices using the no-
tion of interpolation abstraction. A lattice-based system for
interpolation in propositional structures is presented in [45],
extended to consider size optimisation techniques in the con-
text of function summaries in [46], [47], and further extended
to partial variable assignments in [48]. Similar lattice-based
reasoning has also been extended to interpolation in first
order logic with other SMT theories [49], [50]. The approach
presented in this work differs from the above in that we do

not rely on interpolation and work in tight integration with the
model-checker.

Lattices and posets are used in abstract interpretation [51] to
model a sound approximation of the semantics of code, where
completeness and partial completeness [52]–[55] refer to the
no loss of precision during the approximation of the semantics
of code. Giacobazzi et al. [54], [55] present the notation of
backward and forward completeness and show the connec-
tion between iteratively computing the backward (forward)-
complete shell to the general CEGAR framework [17]. The
completeness of their algorithm depends on the properties of
the abstraction, while our algorithm has no such requirements.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a new algorithm LB-CEGAR that is used
for verification of programs with library functions, for which
a number of equations, some of which are instrumental for
verification of these programs, exist in external sources (the
mathematical library, Coq proof assistant, etc.). The main idea
of the algorithm is to organize the equations in subset lattices,
and to replace the traditional CEGAR refinement loop with
lattice traversal. The algorithm is general in the sense that it
allows several occurrence of the same library function and/or
several different library functions, some of which depend on
each other, in the same program. While the theoretical worst-
case complexity of LB-CEGAR is high due to an exponential
number of combinations of elements of different lattices, our
experimental results show that the algorithm is very efficient in
practice and outperforms state-of-the-art model-checking tools
on benchmarks with trigonometric functions.

We view the programs with trigonometric functions as the
primary domain of application of LB-CEGAR. In the future,
we plan to explore the domain of verification of programs
describing robots’ movements and kinematics in general.
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