
Craig Interpolation and Proof Manipulation

Theory and Applications to Model Checking

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Simone Fulvio Rollini

under the supervision of

Prof. Natasha Sharygina

February 2014

Dissertation Committee

Prof. Rolf Krause Università della Svizzera Italiana, Switzerland
Prof. Evanthia Papadopoulou Università della Svizzera Italiana, Switzerland
Prof. Roberto Sebastiani Università di Trento, Italy
Prof. Ofer Strichman Technion, Israel

Dissertation accepted on 06 February 2014

Prof. Natasha Sharygina Prof. Igor Pivkin Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the
content of the thesis is the result of work which has been carried out since the offi-
cial commencement date of the approved research program.

ii

Abstract

Model checking is one of the most appreciated methods for automated formal veri-
fication of software and hardware systems. The main challenge in model checking,
i.e. scalability to complex systems of extremely large size, has been successfully ad-
dressed by means of symbolic techniques, which rely on an efficient representation
and manipulation of the systems based on first order logic.

Symbolic model checking has been considerably enhanced with the introduction
in the last years of Craig interpolation as a means of overapproximation. Interpolants
can be efficiently computed from proofs of unsatisfiability based on their structure.
A number of algorithms are available to generate different interpolants from the
same proof; additional interpolants can be obtained by turning a proof into another
proof of unsatisfiability of the same formula using transformation techniques.

Interpolants are thus not unique, and it is fundamental to understand which inter-
polants have the highest quality, resulting in an optimal verification performance; it
is an open problem to determine what features determine the quality of interpolants,
and how they are connected with the effectiveness in verification.

The goal of this thesis is to identify aspects that make interpolants good, and to
develop new techniques that guide the generation of interpolants in order to improve
the performance of model checking approaches.

We contribute to the state-of-the-art by providing a characterization of quality
in terms of semantic and syntactic features, such as logical strength, size, presence
of quantifiers. We present a family of algorithms that generalize existing techniques
and are able to produce interpolants of different structure and strength, with and
without quantifiers, from the same proof. These algorithms are examined in the
context of various model checking applications, where collections of interdependent
interpolants satisfying particular properties are needed; we formally analyze the re-
lationships among the properties and derive necessary and sufficient conditions on
the applicability of the algorithms.

We introduce a framework for proof manipulation; it includes a method to over-
come limitations in existing interpolation algorithms for first order theories, as well
as a set of compression algorithms, which, reducing the size of proofs, consequently

iii

iv

reduce the size of interpolants generated from them.
Finally, we provide experimental evidence that size and logical strength have a

significant impact on verification: small interpolants improve the verification per-
formance, while stronger or weaker interpolants are beneficial in different model
checking applications.

Interpolants are generated from proofs, as produced by logic solvers. As a sec-
ondary line of research, we developed and successfully tested a hybrid propositional
satisfiability solver built on a model-based stochastic technique known as cross-
entropy method.

Contents

Contents iv

1 Introduction 1
1.1 Symbolic Model Checking . 3
1.2 SAT and SMT Solving . 4

1.2.1 Stochastic Techniques for Satisfiability 5
1.3 Interpolation-Based Model Checking 6

1.3.1 Interpolants Quality: Strength and Structure 7
1.3.2 Interpolation Properties in Model Checking 8

1.4 Resolution Proof Manipulation . 10
1.4.1 Proof Compression . 10
1.4.2 Enabling Interpolation in SMT 11

1.5 Thesis Outline . 12

2 Hybrid Propositional Satisfiability 15
2.1 Satisfiability and SAT Solving . 16

2.1.1 DPLL and SLS . 16
2.2 A Cross-Entropy Based Approach to Satisfiability 21

2.2.1 Cross-Entropy for Optimization 22
2.2.2 The CROiSSANT Approach 23
2.2.3 Experimental Results . 30
2.2.4 Related Work . 32
2.2.5 Summary and Future Developments 33

3 Craig Interpolation in Model Checking 35
3.1 Interpolation in Symbolic Model Checking 36

3.1.1 Interpolation, BMC and IC3 37
3.2 Interpolants Quality . 40
3.3 Generation of Interpolants . 41

v

vi Contents

3.3.1 Craig Interpolation . 41
3.3.2 Interpolation Systems . 44
3.3.3 Interpolation in Arbitrary First Order Theories 48
3.3.4 Interpolation in SAT . 51
3.3.5 Interpolation in SMT . 56

3.4 Theory Labeled Interpolation Systems 58
3.4.1 Interpolant Strength in SMT 61
3.4.2 Interpolation in Difference Logic 63
3.4.3 Summary and Future Developments 65

3.5 A Parametric Interpolation Framework for First Order Theories . . . 66
3.5.1 A Parametric Interpolation Framework 67
3.5.2 Interpolation in First Order Systems 71
3.5.3 Interpolation in the Hyper-Resolution System 76
3.5.4 Related Work . 83
3.5.5 Summary and Future Developments 83

3.6 Impact of Interpolant Strength and Structure 85
3.6.1 PeRIPLO . 86
3.6.2 Function Summaries in Bounded Model Checking 87
3.6.3 Experimental Evaluation . 89
3.6.4 Summary and Future Developments 92

4 Interpolation Properties in Model Checking 95
4.1 Interpolation Systems . 97

4.1.1 Collectives . 97
4.2 Collectives of Interpolation Systems 99

4.2.1 Collectives of Single Systems 99
4.2.2 Collectives of Families of Systems 101

4.3 Collectives of Labeled Interpolation Systems 107
4.3.1 Collectives of Families of LISs 108
4.3.2 Collectives of Single LISs . 124

4.4 Collectives of Theory Labeled Interpolation Systems 126
4.4.1 Collectives of Families and of Single T -LISs 127

4.5 Summary and Future Developments . 130

5 Proof Manipulation 133
5.1 Resolution Proofs . 134
5.2 The Local Transformation Framework 136

5.2.1 Extension to Resolution Proof DAGs 137
5.2.2 Soundness of the Local Transformation Framework 139

vii Contents

5.2.3 A Transformation Meta-Algorithm 143
5.3 Proof Compression . 144

5.3.1 Proof Redundancies . 146
5.3.2 Proof Regularity . 146
5.3.3 Proof Compactness . 154
5.3.4 Experiments on SMT Benchmarks 160
5.3.5 Experiments on SAT Benchmarks 163

5.4 Proof Transformation for Interpolation 166
5.4.1 Pivot Reordering Algorithms 167
5.4.2 SMT Solving and AB-Mixed Predicates 169
5.4.3 Experiments on SMT Benchmarks 173
5.4.4 Pivot Reordering for Propositional Interpolation 174

5.5 Heuristics for the Proof Transformation Algorithms 176
5.6 Related Work . 178
5.7 Summary and Future Developments . 180

6 Conclusions 183

Bibliography 187

viii Contents

Chapter 1

Introduction

In the last three decades there has been a considerable investment in the develop-
ment of techniques and tools aimed at making the formal verification of hardware
and software fully automated. Among various approaches, model checking is highly
appreciated for its exhaustiveness and degree of automation: once a model (of hard-
ware or software) and a specification of a property (desired behavior) are given, a
tool can be run to explore all possible behaviors of the model, determining whether
the property holds.

The main difficulty in model checking is that for complex systems the size of
the model often becomes too large to be handled in a reasonable amount of time.
A remarkable improvement can be obtained by means of symbolic techniques: the
model is encoded together with the negation of the property in a logic formula,
satisfiable if and only if the specification is not met by the model. If this is the case, a
logic solver can produce a satisfying assignment, representing a violating behavior;
otherwise, a proof of unsatisfiability can be built as a witness of the validity of the
property in the model.

Symbolic model checking has been considerably enhanced with the introduction
of Craig interpolation, as a means to perform a guided overapproximation of sets
of states of the model. Interpolants can be efficiently computed from proofs of
unsatisfiability; various algorithms are available to generate different interpolants
from the same proof. Moreover, a given proof can be transformed into another proof
of unsatisfiability of the same formula by means of proof manipulation techniques,
consequently allowing additional interpolants.

Interpolants are thus not unique, and it is fundamental to understand which in-
terpolants result in an optimal verification performance: it is an open problem to
determine what features determine the quality of interpolants, and how they are
connected with the effectiveness in the verification.

1

2

This thesis focuses on the notion of quality of interpolants: the goal is to identify
aspects that make interpolants good, and to develop new techniques that guide the
generation of interpolants in order to improve the performance of model checking
approaches.

We contribute to the state-of-the-art in a number of ways. First, we provide
a characterization of quality from both a semantic and a syntactic point of view,
taking into account features as logical strength, size of formulae, and presence of
quantifiers.

Second, we present a family of algorithms that generalize existing techniques
and are able to produce interpolants of different structure and strength, with and
without quantifiers, from the same proof; they apply to arbitrary inference systems,
in the context of both propositional logic and first order theories.

Besides dealing with the generation of individual interpolants, we also con-
sider multiple interdependent interpolants; several well-known model checking ap-
proaches rely in fact on collections of interpolants, which have to satisfy particular
properties. We formally analyze the relationships among the properties and outline
a hierarchy; we derive necessary and sufficient conditions on the applicability of
interpolation algorithms for propositional logic and first order theories, so that the
properties are satisfied, making verification possible.

We introduce a framework for proof manipulation; it includes a method to over-
come limitations in existing interpolation algorithms for first order theories, as well
as a set of compression algorithms, which, reducing the size of proofs, consequently
reduce the size of interpolants generated from them.

Our theoretical contributions are matched by experimental evidence that size and
logical strength have a significant impact on verification: small interpolants improve
the verification performance, while stronger or weaker interpolants are beneficial in
different model checking applications. This experimentation could be carried out
thanks to the development of a new tool, PeRIPLO, that offers routines for interpo-
lation and proof manipulation with applications to model checking.

Interpolants are generated from proofs, which in turn are produced by logic
solvers. As a secondary line of research, we have investigated deterministic and
stochastic algorithms for propositional satisfiability, creating and successfully putting
to the test a hybrid solver built on a model-based stochastic technique known as
cross-entropy method.

In the rest of the chapter we discuss in detail each of the contributions men-
tioned above, accompanying them with the relevant background while outlining the
structure of the thesis.

3 1.1 Symbolic Model Checking

1.1 Symbolic Model Checking

Model checking [CE81, QS82] is one of the most successful techniques1 effectively
used at an industrial scale for the formal verification of hardware designs and soft-
ware components. The fundamental idea is to analyze a system by means of its
description in terms of states, a snapshot of the system at a particular instant during
its execution, transitions, describing how the system states evolve over time, and a
property to be verified.

A system can be explicitly represented by means of a directed graph, where
nodes correspond to states and two nodes are connected if there is a transition from
the state represented by the first node to that represented by the second node. In
this case, verification of a property with respect to some initial configuration of the
system reduces (in simple cases) to reachability analysis, i.e. checking whether
there exists a path in the graph connecting an initial state with a state where the
property does not hold.

Given the complexity of systems nowadays in use, the number of states to be
traversed (or even represented) during a model checking run may easily go beyond
the resources of the available computers; this problem is known as state space ex-
plosion. An important turning point in this direction was set with the introduction
of symbolic methods [BCM+92, McM92] which enabled verification of models of
previously unmanageable sizes.

In symbolic model checking states and transitions are encoded into some decid-
able fragment of first order logic; the effort of exploring the state space eventually
depends on the efficiency of the encoding and of the solving procedures for formu-
lae in that fragment. State formulae F are defined over a first order signature Σ,
and represent the set of states corresponding to their models; transition formulae are
defined over Σ∪Σ′, where Σ and Σ′ are associated with current and next state: their
models represent pairs of states such that the first can reach the second via a transi-
tion. The union of all the transitions defines the transition relation T . A transition
system (S, T) is made by a state formula S, characterizing the initial states of the
system, and a transition relation T . The image F ′ of a state formula F w.r.t. T is
a state formula representing the set of states reachable from the states of F in one
step (i.e., applying T once). A state formula F2 is said to be reachable from a state
formula F1 if it is possible to reach some of the states of F2 starting from the states
of F1, computing the image a finite number of times.

A property to be verified is usually encoded as a state formula P: if ¬P is not
reachable from S, then no state in the system actually violates the property. A simple

1The inventors of model checking E.M.Clarke, E.A.Emerson and J.Sifakis have been the recipi-
ents of the ACM Turing Award in 2007.

4 1.2 SAT and SMT Solving

way of verifying a property of this kind is to perform symbolic reachability analysis:
starting from S, T is iteratively applied until either a state formula is found incon-
sistent with P, or all the system states have been explored. The original approach
of [BCM+92, McM92] is based on binary decision diagrams [Bry86] (BDDs) to
store states as propositional formulae and to compute the image of sets of states; the
main drawback is that exact image computation is computationally expensive, since
it involves the use of quantifier elimination procedures.

Bounded model checking [BCC+99, BCC+03] (BMC) introduces a method which
relies on algorithms for the propositional satisfiability decision problem (known as
SAT solvers) to check properties. The idea is to fix a bound k and to construct a
propositional formula of the form S ∧ T 0 ∧ · · · ∧ T k−1 ∧ (¬P0 ∨ · · · ∨ ¬Pk) , that
is satisfiable if and only if the property P is violated within k steps. k is itera-
tively increased until either a bug is found or an upper bound on the diameter of
(the graph representation of) the system is reached. BMC is a well established tech-
nique, successfully employed in several contexts (e.g. [ACKS02, AMP09, JD08]),
and it depends on efficient and robust tools (see next section), whose performance
has been continuously improving along the years.

The use of abstraction [CC77] is another important paradigm used for miti-
gating the state explosion problem. The idea is to group several states into one
abstract state, and then to model check the set of abstract states and the result-
ing abstract transition relation, which is less expensive than checking the original
system. A successful technique in this direction is predicate abstraction [GS97],
where states are partitioned with respect to a set of predicates. The use of abstrac-
tion may introduce spurious behaviors in the system, which have to be removed
by means of a refinement phase, where new predicates are synthesized. The in-
formation provided by the spurious behavior can actually be used to perform the
refinement, following an iterative abstract-check-refine approach; this idea is at the
base of the well-known counterexample-guided abstraction refinement framework
(CEGAR [CGJ+00]). The lazy abstraction approach, introduced in [HJMS02], im-
proves on [CGJ+00] by allowing abstraction of the model on demand, so that differ-
ent parts may show different degrees of precision, depending on the property to be
verified.

1.2 SAT and SMT Solving

Satisfiability (or SAT), one of the central decision problems of informatics, consists
in determining whether for a given propositional formula there exists an assignment
of truth values to its variables such that the formula evaluates to true. Solving pro-

5 1.2 SAT and SMT Solving

cedures for the satisfiability problem are known as SAT solvers.
SAT solvers have undergone a constant improvement in the last decade, and

have become established tools across a variety of fields, software and hardware ver-
ification, planning, and scheduling [BCC+99, BCCZ99, BLM01, RN10, GSMT98].
However, reasoning using pure propositional logic is often not enough; in fact, ap-
plications in the aforementioned areas may require checking satisfiability in more
expressive logics such as first order theories, where the semantics of some functions
and predicates symbols is fixed a priori. This is needed, for example, when dealing
with linear arithmetic, arrays, bit-vectors, pointers.

A successful solution consists in adopting reasoning methods which are spe-
cific to the theory under account, which give rise to decision procedures for the
satisfiability of quantifier-free formulae in that theory. The work of Nelson and
Oppen [NO79, NO80, Opp80] and Shostak [Sho84] in this direction has had a fun-
damental impact on verification, contributing to the realization of efficient theory
solvers to check consistency of formulae in first order theories and combinations of
them [KS08].

In the last decade new techniques for integrating the propositional reasoning of
SAT solvers with theory-specific decision procedures have been applied in differ-
ent communities and domains, from resource planning and temporal reasoning to
formal verification of several kinds of designs, including real time and hybrid sys-
tems [PICW04, RD03, BFG+05, ACKS02].

The problem of deciding the satisfiability of a first order formula with respect
to some decidable first order theory has become known as satisfiability modulo
theories (SMT), whereas the various solving procedures are called SMT solvers in
analogy with SAT solvers. Most of these procedures are built on top of SAT tech-
niques based on variants of DPLL (Davis-Putnam-Loveland-Logemann), a deter-
ministic backtracking algorithm for deciding the satisfiability of propositional for-
mulae [DLL62, DP60]. In particular, the lazy approach to SMT [Seb07], adopted
by the majority of the state-of-the-art tools, is based on the integration of a SAT
solver and one or more theory solvers, respectively handling the propositional and
the theory-specific components of reasoning.

1.2.1 Stochastic Techniques for Satisfiability

In the SAT framework several algorithms for satisfiability have been proposed, both
incomplete (unable to prove unsatisfiability of a formula) and complete. Most of the
state-of-the-art algorithms fall into two main classes: the ones (complete) which im-
plement the deterministic DPLL algorithm [DP60, DLL62]; the others (incomplete)
based on stochastic local search (SLS) [HS05]. The two classes demonstrate bet-

6 1.3 Interpolation-Based Model Checking

ter performance on different kinds of problems, and can be considered in this sense
complementary. There have been several works in the last years aimed at combining
DPLL and SLS in an effective manner, trying to exploit the benefits of both to obtain
a competitive complete hybrid solver [SKM97].

These kinds of approaches have proved quite successful, but open problems still
exist in terms of developing effective combinations of the particular deterministic
and stochastic techniques, integrating global and local strategies of exploration.

Research Contribution: A DPLL-Stochastic Algorithm for Satisfiability. We ad-
dress these challenges by contributing to the development of a new complete DPLL-
stochastic algorithm. We provide a solution to the satisfiability problem built on a
model-based stochastic technique known as cross-entropy method, an approach to
rare event simulation and to combinatorial optimization [RK04].

In our solution, for a given SAT instance, a cross-entropy based algorithm is
used to search for a satisfying assignment by applying an iterative procedure that
optimizes an objective function correlated with the likelihood of satisfaction. The
algorithm is intended as a preprocessing step to SAT solving, where cross-entropy
identifies the areas of the space of all possible assignments that are more likely to
contain a satisfying assignment; this information is in turn given to a DPLL SAT
solver to suggest variables assignments during the search. We implemented the
new algorithm in a tool named CROiSSANT and tested it on different sets of bench-
marks; experimental results show that the approach is effective in guiding the search
at solving time.

The results of our work have been published in [CIM+13] and are discussed in
§2.2.

1.3 Interpolation-Based Model Checking

Craig’s interpolation theorem [Cra57a, Cra57b] is a classical result in first order
logic, and it has had a strong impact on the computer science community thanks
to its application to areas such as hardware/software specification [DGS93], knowl-
edge bases [AM05] and combination of theory solvers [NO79, GNZ05].

Formally, given an unsatisfiable conjunction of formulae A∧ B, a Craig inter-
polant I is a formula that is implied by A, is unsatisfiable in conjunction with B, and
is defined on the common language of A and B. An interpolant can be seen as an
overapproximation of A that is still unsatisfiable with B.

In the ambit of model checking, interpolation has been gaining considerable at-
tention since the work carried out by McMillan in [McM03, McM04a], where he

7 1.3 Interpolation-Based Model Checking

showed that it can be applied as an effective overapproximation technique. Inter-
polants are, for example, used with bounded model checking in [McM03]. In [JM05]
interpolants are a means to approximate the transition relation of a system. Craig
interpolation is employed for synthesizing predicates in [HJMM04] and [JM06].
In [McM06], interpolation is applied within the lazy abstraction framework of
[HJMS02]. Interpolants can also be employed as summaries that abstract the be-
havior of function calls, as shown in [SFS11] and [SFS12b].

1.3.1 Interpolants Quality: Strength and Structure

Several state-of-the art approaches exist to obtain interpolants in an automated man-
ner. The most common techniques generate an interpolant for A∧ B from a proof of
unsatisfiability of the conjunction; benefits are that the generation has a complexity
linear in the proof size, and interpolants contain only information relevant to the
unsatisfiability of A∧ B.

The concrete algorithms (or interpolation systems) for obtaining an interpolant
depend on the language on which A and B are defined. Interpolation in propo-
sitional logic is addressed in [McM03, Pud97, Kra97, Hua95], later generalized
by [DKPW10] and in turn by [Wei12]. A number of works discuss interpolation
in first order theories, proposing systems able to generate interpolants for conjunc-
tions of constraints [FGG+09, CGS08, BCF+07, GD07, BCF+09, Pug91, BKRW11,
JCG08, KMZ06] or for formulae with arbitrary propositional structure [McM04a,
YM05, CGS10], both in individual theories and combinations. The interpolation
systems of [KV09, HKV12] can be used with arbitrary first order inference sys-
tems, but are restricted to a class of proofs with specific structural properties [KV09,
JM06].

Interpolation has become a well-established technique in the area of model check-
ing, and multiple interpolants can be generated from the same proofs; yet, it is not
clear what characteristics make some interpolants better than others in the particular
applications. One promising feature which has been examined in the literature is
logical strength [JM05, DKPW10] (a formula F1 is stronger than F2 if F1 |= F2):
since interpolants are inherently overapproximations, a stronger or weaker inter-
polant is expected to influence the speed of convergence of model checking algo-
rithms, driving the verification process as a finer or coarser approximation. Besides
semantic features, structural characteristics are also likely to affect the verification
performance. Interpolants can be for example quantified or quantifier-free, the latter
preferred for their applicability to model checking; interpolants can have a more or
less rich content in terms of predicates; interpolants can correspond to smaller or
larger formulae. Evidence in favor of generating and using small interpolants is in

8 1.3 Interpolation-Based Model Checking

particular provided by [CLV13] in the context of hardware model checking.

Research Contribution: Systematic Generation of Interpolants of Different Strength
and Structure. We contribute to a theoretical formalization of a generic interpola-
tion approach, by characterizing the notion of interpolants quality in terms of struc-
ture and logical strength. We identify a class of recursive interpolation procedures,
and, based on that, we introduce a new parametric interpolation framework for ar-
bitrary theories and inference systems, which is able to compute interpolants of dif-
ferent structure and strength, with or without quantifiers, from the same proof. The
framework subsumes as special cases the interpolation systems of [KV09, Wei12],
and consequently those of [McM03, Pud97, Kra97, Hua95, DKPW10].

The results of our work have been published in [KRS13] and are discussed in
§3.5.

Research Contribution: Impact of Interpolants Size and Strength in Model Check-
ing. We put into practice our theoretical framework to address the key problem of
generating effective interpolants in verification, by examining the impact of size and
logical strength in the context of software SAT-based bounded model checking. Two
case studies are taken into account, namely two bounded model checking applica-
tions which use interpolation to generate function summaries: (i) verification of a C
program incrementally with respect to a number of different properties [SFS11], and
(ii) incremental verification of different versions of a C program with respect to a
fixed set of properties [SFS12b]. The PeRIPLO framework (one of the contributions
of this thesis, see §1.4) is integrated with the model checkers FunFrog [SFS12a] and
eVolCheck [FSS13], which respectively implement (i) and (ii), to drive interpola-
tion by manipulating the the proofs from which the interpolants are computed and
by generating interpolants of different strength.

We provide solid experimental evidence that compact interpolants improve the
verification performance in the two applications. We also carry out a first systematic
evaluation of the impact of strength in a specific verification domain, showing that
different applications can benefit from interpolants of different strength: specifically,
stronger and weaker interpolants are respectively desirable in (i) and (ii).

The results of our work have been published in [RAF+13] and are discussed in
§3.6.

1.3.2 Interpolation Properties in Model Checking

In many verification tasks, a single interpolant, i.e., a single subdivision of con-
straints into two groups A and B, is not sufficient. For example, in the context of

9 1.3 Interpolation-Based Model Checking

counterexample-guided abstraction refinement [CGJ+00], a spurious behavior gives
rise to a sequence of interpolants, which is then used to refine the abstraction. Prop-
erties such as path interpolation, simultaneous abstraction, tree interpolation are
needed in common model checking approaches, among which predicate abstrac-
tion [JM06], lazy abstraction with interpolants [McM06], interpolation-based func-
tion summarization [SFS11, SFS12b].

These properties are not satisfied by arbitrary collections of interpolants and
must be established for each verification technique. On one side, it is important to
understand whether and how the properties are related to each other; on the other
side, in order to make verification possible, it is necessary to identify the constraints
that the satisfaction of a certain property puts on the applicability of the interpolation
systems.

Research Contribution: Formal Analysis of Interpolation Properties. We iden-
tify and uniformly present the most common properties imposed on interpolation by
existing verification approaches; we systematically analyze the relationships among
the properties and show that they form a hierarchy. In doing so, we generalize the
traditional setting consisting of a single interpolation system to allow for families
of interpolation systems, thus giving the flexibility to choose different systems for
computing different interpolants in a collection. The generality of these results stems
from the fact that they are independent of the particular system adopted to generate
the interpolants.

The results of our work have been published in [GRS13] and are discussed in
Chapter 4.

Research Contribution: Interpolation Properties and Interpolant Strength. Be-
sides studying interpolation properties from a higher perspective, we examine the
relationships among them in concrete interpolation systems, building on the work
of [DKPW10]. The propositional labeled interpolation systems of [DKPW10] are
a suitable choice for an investigation of interpolant strength, since they consist of a
parametric framework which allows to systematically generate interpolants of dif-
ferent strength from the same proof.

We formally prove both sufficient and necessary conditions for a family of la-
beled interpolation systems and for a single system to enjoy each interpolation prop-
erty. These results allow for the systematic study of how interpolants strength affects
state-of-the-art model checking techniques, while preserving their soundness.

The results of our work have been published in [RSS12, GRS13] and are dis-
cussed in Chapter 4.

10 1.4 Resolution Proof Manipulation

Research Contribution: Extension of the Labeled Interpolation Systems to SMT.
In order to extend the applicability of our results from SAT- to SMT-based verifica-
tion, we investigate interpolation properties and interpolant strength in the context
of satisfiability modulo theories; we present the theory labeled interpolation sys-
tems, an extension of the labeled interpolation systems of [DKPW10] to SMT that
generalizes the interpolation frameworks of [YM05, CGS10], and examine how the
constraints for some of the interpolation properties change in presence of a first
order theory.

The results of our work are discussed in §3.4 and §4.4.

1.4 Resolution Proof Manipulation

In many verification environments it is not enough to find a positive or negative
answer to the satisfiability problem, on the contrary it is important to obtain a cer-
tificate either as a satisfying model or as a proof of unsatisfiability that shows the
nonexistence of such a model.

Resolution proofs of unsatisfiability, in particular, find application in very di-
verse contexts: proof-carrying code [Nec97], industrial product configuration or
declarative modeling [SKK03, SSJ+03], theorem proving [Amj08, WA09, FMM+06],
interpolation-based model checking [McM03, McM04b, McM04a, HJMM04]. It is
thus essential to develop techniques that allow to handle proofs efficiently, so as
to positively impact on the performance of the frameworks that rely on them. To
this end, we focus on two main aspects: proof compression, and proof rewriting to
enable the computation of interpolants.

1.4.1 Proof Compression

The size of the proofs typically affects the efficiency of the methods in which they
are used. It is known that the size of resolution proofs can grow exponentially with
respect to the input formula; even when they have in practice a manageable size, it
might be crucial for efficiency to compress them as much as possible. Several com-
pression technique can be found in the literature, ranging from memoization of com-
mon subproofs to partial regularization [Amj07, Amj08, Sin07, Cot10, BIFH+08,
DKPW10, FMP11]; however, since the problem of finding a minimum proof is NP-
hard, it is still an open challenge to design heuristics capable of obtaining good
reduction in concrete situations.

11 1.4 Resolution Proof Manipulation

Research Contribution: Proof Compression Framework. We give our contribu-
tion to the area of proof compression by developing an approach based on local
transformation rules. It is a purely post-processing technique, with the benefit of
being independent from the way the resolution proof is produced. It consists in
identifying a particular kind of syntactical redundancies and in applying the rules
in order to remove them, thus reducing the size of the proofs. The algorithm has
the advantage of being easily customizable, since it is parametric in the way rules
are locally applied and in the amount of transformation to be performed. The com-
pression framework has been implemented in the tools OpenSMT and PeRIPLO (see
below); experimental results on SAT and SMT benchmarks show that the framework
is effective in reducing proofs, especially in combination with existing compression
strategies.

The results of our work have been published in [RBS10, RBST] and are dis-
cussed in §5.3.

1.4.2 Enabling Interpolation in SMT

Whenever an unsatisfiable conjunction A∧ B is defined on a more expressive lan-
guage than propositional logic, for a number of first order theories a standard ap-
proach is to resort to an SMT solver to compute interpolants. In this case the reso-
lution proof of unsatisfiability contains original information from A∧ B plus theory
lemmata, produced by the theory solver of the SMT solver, representing tautologies
in the theory. Given this proof, an interpolant can be extracted using the methods
described in [YM05, CGS10] (as well as our own generalization, presented in §3.4),
provided that the theory solver is able to compute an interpolant from a conjunction
of constraints in the theory.

The frameworks of [YM05, CGS10] have a significant limitation, since they
need to assume the absence of mixed predicates (predicates defined over symbols
local to A and B) in the proof; there is in fact a number of state-of-the-art tech-
niques extensively used in SMT solvers (e.g., theory combination) that might re-
quire the addition of mixed predicates to the input formula before or during solving
time [Ack54, BNOT06, BBC+05b, dMR02].

Research Contribution: Proof Manipulation to Enable Interpolation in SMT. The
solution we provide is to rewrite the proof of unsatisfiability in such a way that
mixed predicates are “absorbed” within existing theory lemmata. The benefit is
the possibility of applying off-the-shelf techniques for solving A∧ B, and, conse-
quently, after the proof is transformed, the methods of [YM05, CGS10] for com-
puting interpolants: in this way, interpolation becomes flexible and modular, being

12 1.5 Thesis Outline

decoupled into (i) generation of partial interpolants for theory lemmata by means
of ad-hoc techniques and (ii) computation of the overall interpolant by means of a
standard algorithm for propositional resolution proofs (e.g., [Pud97]). The approach
is demonstrated to be theoretically sound and the experiments carried out within the
OpenSMT framework show that it is also practically efficient.

The results of our work have been published in [BRST10, RBST] and are dis-
cussed in §5.4.

Research Contribution: Tools for Proof Manipulation And Interpolation. In the
last years, the Formal Verification Group at USI has been actively developing the
open-source tool OpenSMT [BPST10]; it is an SMT solver which supports reason-
ing in several theories and, given an input formula, is able to return either a model
or a proof of unsatisfiability. As a first tool contribution we have realized within
OpenSMT a framework for proof compression and interpolation, which implements
the labeled interpolation systems of [DKPW10] for propositional logic and a partial
extension to satisfiability modulo theories.

Then, while investigating the impact of size and strength of interpolants in con-
crete applications, we have recognized the need for a new tool tailored to SAT-based
verification, to be employed by the model checkers FunFrog and eVolCheck, devel-
oped by our group. This has led to the creation of PeRIPLO [Rol], Proof tRans-
former and Interpolator for Propositional LOgic, built on the state-of-the-art SAT
solver MiniSAT 2.2.0 [ES04]. PeRIPLO contains a more efficient implementation of
the labeled interpolation systems and of the compression techniques of OpenSMT,
as well as new algorithms for proof compression and manipulation, both from the
literature and novel. PeRIPLO is also able to produce individual interpolants and
collections of interpolants, with reference to various interpolation properties and in
accordance with the constraints imposed by the properties on the labeled interpola-
tion systems [RSS12, GRS13].

The tool and its features are illustrated in [GRS13, RBST, RAF+13] and dis-
cussed in §3.6.1 and in Chapter 5.

1.5 Thesis Outline

The thesis is structured in the following manner.
Chapter 2 talks about hybrid propositional satisfiability; in §2.2 we introduce a

complete DPLL-stochastic solver, based on the cross-entropy method.
Chapter 3 is dedicated to the generation of Craig interpolants and their use in

model checking. In §3.2 we raise the problem of interpolants quality, and charac-

13 1.5 Thesis Outline

terize interpolants in terms of structure and logical strength. In §3.4 we introduce
the theory labeled interpolation systems, an extension of the propositional labeled
interpolation systems to first order theories that generalizes standard approaches
to interpolation in SMT. In §3.5 we present a parametric interpolation framework
for arbitrary theories and inference systems, that computes interpolants of different
structure and strength, with or without quantifiers, from the same proof. In §3.6 we
provide experimental evidence of the impact of structure and strength in bounded
model checking applications that make use of interpolants as function summaries.
We also describe a new tool, PeRIPLO, that offers routines for interpolation and
proof manipulation, with applications to SAT-based model checking.

Chapter 4 discusses the need in model checking for collections of interdependent
interpolants, that satisfy particular properties; we uniformly present the most com-
mon among these properties, analyzing the relationships among them and outlining
a hierarchy. In §4.3 we address the properties in the context of labeled interpolation
systems, proving sufficient and necessary conditions for families of LISs and single
LISs to enjoy each property; in §4.4 we extend the investigation of interpolation
properties to the theory labeled interpolation systems.

Chapter 5 is dedicated to the topic of resolution proofs manipulation. In §5.3 we
describe a post-processing proof compression framework based on local transforma-
tion rules, that reduces proofs by removing redundancies of different kinds. In §5.4
we present a proof transformation technique to allow interpolation in satisfiability
modulo theories, by eliminating mixed predicates from proofs.

14 1.5 Thesis Outline

Chapter 2

Hybrid Propositional Satisfiability

Symbolic model checking ultimately relies on efficient reasoning engines to deter-
mine the satisfiability of formulae defined on a decidable fragment of first order
logic. As part of our contribution to the field of formal verification, we addressed
the development of new algorithms for the propositional satisfiability problem (or
SAT), one of the central decision problems of informatics. Most of the success-
ful approaches to SAT belong to either of two main classes: deterministic solvers
which implement the Davis-Putnam-Loveland-Logemann (DPLL) algorithm, and
probabilistic techniques based on stochastic local search (SLS). The two classes
demonstrate better performance on different kinds of problems, and can be consid-
ered in this sense complementary.

There have been several attempts in the last years to integrate DPLL and SLS
in an effective manner to obtain a competitive hybrid solver. Such attempts have
often given good results; still, open problems remain in terms of choosing the par-
ticular deterministic and stochastic algorithms and in combining them successfully,
exploiting the strong points of both.

In this chapter we present a new complete DPLL-stochastic algorithm. We
introduce an extension of the propositional satisfiability setting to a multi-valued
framework, where a probability space is induced over the set of all possible truth
assignments. For a given formula, a cross-entropy based algorithm (which we im-
plemented in a tool named CROiSSANT) is used to find a satisfying assignment by
applying an iterative procedure that optimizes an objective function correlated with
the likelihood of satisfaction.

Our hybrid approach employs cross-entropy as a preprocessing step to SAT solv-
ing. First CROiSSANT is run to identify the areas of the search space that are more
likely to contain a satisfying assignment; this information is then given to a DPLL
SAT solver to suggest variables assignments in the search. Experimental results on

15

16 2.1 Satisfiability and SAT Solving

different sets of benchmarks show that our approach represents a valid foundation
for further research on cross-entropy based SAT solvers.

The chapter is structured as follows. §2.1 and §2.1.1 provide the background,
introducing the satisfiability problem, as well as DPLL and SLS in detail. §2.2
presents our contribution in terms of a new hybrid approach to SAT: the extended
satisfiability framework, as well as the CROiSSANT algorithm, are illustrated in
§2.2.2, while experimental results are described in §2.2.3.

2.1 Satisfiability and SAT Solving

The propositional satisfiability problem (or SAT) is one of the central decision prob-
lems of informatics, the first to be shown N P-complete [Coo71]. Assuming a set of
propositional variables V = {p, q, r, u, v, . . .}, input of the problem is a propositional
formula F built over V and the set of standard connectives {¬,∨,∧, . . .}. A truth
assignment is a function σ : V → {>,⊥} that assigns a value true (>) or false (⊥)
to the variables in V ; if σ covers all variables in V , then it is a total assignment,
otherwise it is partial. σ is a satisfying assignment (or a model) if F evaluates to >
under F ; if F evaluates to ⊥, then it is a falsifying assignment. If, for a given F , a
satisfying assignment exists, then F is said satisfiable otherwise F is unsatisfiable.
SAT can thus be stated as:“Given F , does a satisfying assignment exist?”.

State-of-the-art procedures to check the satisfiability of a given F rely on an en-
coding called conjunctive normal form (CNF). F is represented as a conjunction of
clauses C1∧· · ·∧Cm, each being a disjunction of literals l1∨ . . .∨ l|C |. A literal l is a
propositional variable, either with positive (v) or negative (¬v) polarity (we will use
the notations ¬v and v equivalently). With respect to satisfiability, the restriction
to CNF does not involve any loss: in fact, any F can be translated into an equisat-
isfiable F ′ in CNF in linear time, at the cost of introducing auxiliary propositional
variables corresponding to its subformulae [Tse68]. In terms of CNF, a formula
is then satisfiable if a truth assignment exists that satisfies every clause, whereas a
clause is satisfied if at least one of its literals evaluates to >. We use the symbol ⊥
also to denote an empty clause, that is a clause with no literals, which is unsatisfi-
able. We assume clauses do not contain both a literal and its negation. A unit clause
is a clause having exactly one literal.

2.1.1 DPLL and SLS

Several algorithms have been developed in the satisfiability framework, both com-
plete and incomplete; complete techniques, given an input formula, either prove that

17 2.1 Satisfiability and SAT Solving

it is unsatisfiable or return a satisfying assignment; incomplete techniques are not
guaranteed to always prove satisfiability or unsatisfiability. We refer to the algo-
rithms and to the tools which implement them as SAT solvers.

Most of the successful algorithms belong to two main classes: (i) the ones
(complete) which implement the Davis-Putnam-Loveland-Logemann (DPLL) pro-
cedure [DP60, DLL62], where the tools systematically traverse and backtrack a bi-
nary tree whose nodes represent partial assignments, and (ii) the others (incom-
plete) based on stochastic local search (SLS), where solvers guess a full assignment
and, if it is not a satisfying one, use different heuristics to reassign values to vari-
ables [MS99, HS05]. Various heuristics are employed by the stochastic methods to
escape local minima and to ensure that the previously tried combinations of values
are not assigned in the subsequent tries.

SAT solvers have undergone a constant improvement in the last decade, and
have become established tools across a variety of fields such as software and hard-
ware verification, planning, and scheduling [BCC+99, BCCZ99, BLM01, RN10,
GSMT98]. The existence of international competitions [SATb] between solvers
has contributed to the development of sophisticated algorithms and implementations
[GKSS08, BHMW09]; among the DPLL SAT solvers we recall MiniSAT [ES04],
Lingeling [Bie13], Glucose [AS09], while known SLS solvers are GSAT [SLM92]
and WalkSAT [SKC94].

Based on the annual competitions, the DPLL-based tools demonstrate better per-
formance when applied to real-life problems as they take advantage of, and learn
from the structure of the solved instances [MMZ+01, ES04]. On the other hand,
stochastic approaches tend to exhibit better performance on instances characterized
by a degree of randomness, especially in conjunction with other techniques [MZ06];
the development of a hybrid solver, which would encompass the benefits of both ap-
proaches, is thus a goal of theoretical interest and practical usefulness.

In the following we discuss the main features of stochastic local search (in its
WalkSAT implementation) and of conflict-driven clause-learning DPLL, as well as
the relationship between DPLL and the resolution inference system, after which we
move on to introducing our cross-entropy based approach.

2.1.1.1 DPLL-Based Solving

Algorithm 1 illustrates a typical conflict-driven clause-learning (CDCL) DPLL al-
gorithm [GKSS08, MSS96, JS97]. The Davis-Putnam-Logemann-Loveland algo-
rithm, in its CDCL extension, is an iterative decision procedure for satisfiability that
combines search, deduction and learning techniques to help prune the space of pos-
sible assignments. DPLL starts by choosing a variable (decision variable) which

18 2.1 Satisfiability and SAT Solving

has not been given a truth value yet, and assigns to it either true or false (line 3).
It then looks for clauses where all the literals besides one have been assigned to
false; since each clause must be satisfied, the remaining literal must be assigned
to true. This phase is known as unit propagation (line 5). At this point, there are
three possibilities. All clauses are satisfied (lines 10-12), in which case a satisfying
assignment is returned together with the answer SAT. At least one clause (conflict
clause) is falsified (lines 6-9): the algorithm performs conflict analysis (line 7) and
determines a consistent state to which to backtrack (backtrack level), while learning
new information in the form of a learnt clause; if the level is zero (the level where
no decisions have been taken yet), it means that the formula is unsatisfiable, and
the answer UNSAT is returned. If no further propagations can be done, and neither
satisfiability or unsatisfiability of the formula have been determined, a new decision
variable is chosen.

Input: CNF formula
Output: SAT and a satisfying assignment or UNSAT

1 begin
2 while true do
3 ChooseDecisionVariable()
4 while true do
5 DoUnitPropagation()
6 if conflict found then
7 btlevel← AnalyzeConflict()
8 if btlevel = 0 then return UNSAT
9 Backtrack(btlevel)

10 else if all clauses satisfied then
11 output satisfying assignment
12 return SAT
13 else break
14 end
15 end
16 end

Algorithm 1: CDCL DPLL solver.

An important aspect of the DPLL algorithm is the decision strategy adopted, i.e.
the criterion used to choose a decision variable and to assign a polarity to it, which
can have a major impact on the SAT solver performance. Several heuristics can be
found in the literature, among which MOMS (maximum occurrence in clauses of

19 2.1 Satisfiability and SAT Solving

minimum size) BOHM, DLIS (dynamic largest individual sum), VSIDS (variable
state independent decaying sum) [JW90, BS96, MSS96, MMZ+01, MS99]; in par-
ticular VSIDS, which favours variables often involved in deriving conflicts, is at the
base of MiniSAT.

The essential feature of the CDCL approach is the clause learning process. Each
time a sequence of decisions and deductions leads to a conflict, a new clause is
learned as a summary of the conflict; this information is used to prune the search
space and to drive the search process. Clause learning is usually combined with
conflict-driven backtracking [SS77], which realizes a more efficient solution than
chronological backtracking based on information provided by the learnt clause.

2.1.1.2 DPLL and the Resolution System

The DPLL algorithm has a close relationship with the resolution system, an infer-
ence system based on a single rule, called resolution rule:

p ∨ D p ∨ E p
D ∨ E

Clauses p ∨ D and p ∨ E are the antecedents (D and E being clauses themselves),
D ∨ E is the resolvent and p is the pivot variable.

The system is sound and complete; a proof of a clause C from a set of clauses
(corresponding to the clauses in a CNF formula F) can be represented as a tree or
a directed acyclic graph, where (i) each node is a clause, (ii) a leaf is a clause of F
(iii) an inner node is the resolvent of a resolution step and its two parents are the
antecedents in the step, and (iv) the only root is C . In particular, if F is unsatisfiable,
a certificate of unsatisfiability is given by a proof of ⊥ from F ; this is called proof
of unsatisfiability or refutation. An example of refutation is shown in Figure 2.1.

r r ∨ p
rp

q p ∨ q q
p p

⊥

Figure 2.1. An example of resolution refutation.

SAT solvers can be instrumented to generate resolution refutations, by logging
the inference steps performed during conflict analysis [ZM03b]. Each conflict yields
a proof chain, a proof of the newly learnt clause from the conflict clause and of (some
of) the clauses involved in the sequence of decisions and propagations that led to the
conflict [BKS04]. The whole proof of ⊥ from the clauses of the input formula can
be built by joining the proof chains together.

20 2.1 Satisfiability and SAT Solving

2.1.1.3 SLS-Based Solving

Algorithm 2 contains the main features of common stochastic local search based
approaches, taking inspiration from the well-known WalkSAT [SKC95, GKSS08].
It describes an incomplete method, unable to prove unsatisfiability or to guarantee
the discovery of a satisfiable assignment; as such, it is run with a limit on the number
of search attempts (tries limit). If a satisfying assignment is not found within the
limit, then the answer FAIL is returned.

Input: CNF formula F , number of search attempts tries limit, number of flips
per attempt flips limit, noise parameter n ∈ [0, 1]

Output: SAT and a satisfiable assignment or FAIL
1 begin
2 for i← 1 to tries limit do
3 σ← random assignment to F variables
4 for j← 1 to flips limit do
5 if σ satisfies all clauses then
6 output satisfying assignment
7 return SAT
8 C ← random falsified clause
9 if exists v′ s.t. bc(v′)=0 then

10 v← v′

11 else
12 with probability n : v← random v′ in C
13 with probability 1− n : v← v′ s.t. bc(v′) is the smallest in C
14 end
15 end
16 return FAIL
17 end

Algorithm 2: WalkSAT-style solver.

Each attempt begins with assigning random values to the variables of the input
formula F (line 3). This assignment is then locally adjusted, by modifying (flipping)
the value of individual variables until either all clauses are satisfied (lines 5-7), or
a limit on a number of flips (flips limit) is reached. To perform a flip, first a clause
C is randomly chosen among the falsified clauses (line 8); then, a variable is picked
from C and its value is set from true to false or vice versa according to the follow-
ing criteria. If C contains a variable v′ s.t. flipping v′ does not make any currently
satisfied clause falsified (i.e., its break count is equal to zero, line 9), then v′ is cho-

21 2.2 A Cross-Entropy Based Approach to Satisfiability

sen. Otherwise, depending on the noise parameter n, the algorithm probabilistically
performs either a greedy walk step (line 13), finding a v′ that minimizes the number
of clauses falsified by the flip, or a random walk step (line 12), picking a random v′

in C .
The presence of noise is helpful in addressing the problem of local minima. The

greedy walk takes the local optimal choice each time, but, as many other greedy
strategies, is not guaranteed to find a global optimum, which in this context rep-
resents a satisfying assignment (assuming at least one exists); a purely greedy ap-
proach can in fact converge to local minima, assignments from which no move can
decrease the amount of falsified clauses. To escape from such situations, some kind
of noise is introduced in the search, for example by making a random choice with a
certain probability.

2.2 A Cross-Entropy Based Approach to Satisfiability

In the last years, considerable research has been dedicated to combining DPLL- and
SLS-based algorithms in an effective manner, trying to exploit the benefits of both
worlds to obtain a competitive complete hybrid solver [SKM97]. We present here a
novel approach to satisfiability built on a model-based stochastic technique known
as cross-entropy method and on its adaptation to combinatorial optimization.

The cross-entropy method is a generic approach to rare event simulation and
to combinatorial optimization [RK04]. It derives its name from the cross-entropy
or Kullback-Leibler divergence, which is a fundamental concept of modern infor-
mation theory [KL51], and consists in an iterative approach based on minimizing
the cross-entropy between probability distributions. The cross-entropy method was
motivated by an adaptive algorithm for estimating probabilities of rare events in
complex stochastic networks [Rub97]; then, it was realized that a simple modifica-
tion allows the use of this method also for solving hard optimization problems, in
which there is a performance function associated with the inputs. The cross-entropy
method in optimization problems is used to find a set of inputs on which the perfor-
mance function reaches its global maximum (or minimum), where the input space
is assumed to be too large to allow exhaustive exploration. The method is based on
an iterative sampling of the input space according to a given probability distribution
over this space. Each iteration consists of the following phases:

1. Generate a set of random samples according to a specified mechanism.

2. Update the parameters of the random mechanism based on the data to produce
“better” samples in the next iteration, where “better” depends on the chosen

22 2.2 A Cross-Entropy Based Approach to Satisfiability

performance function.

The initial probability distribution is assumed to be a part of the input. Samples are
evaluated according to the performance function. The procedure terminates when
a sample with the maximal (or the minimal) value of the performance function is
generated, or when an extremum is detected.

We present an algorithm based on the cross-entropy method and on an exten-
sion of the propositional satisfiability problem to a multi-valued setting. Given a
propositional formula in CNF over a set V of propositional variables, we turn the
range {0,1} into a discrete set D such that every element of D is between 0 and
1. Intuitively, these values provide a measure of the “level of truth” of a variable.
A probability space is derived from all possible assignments to V over D; a prob-
ability distribution P assigns a probability to each variable and value. We define
the semantics of the connectives over D and examine some performance functions
S that correlate with the evaluation of ϕ, in such a way that, if ϕ is satisfiable, then
a global minimum of S is reached under a satisfying assignment. Starting with a
uniform distribution, we execute an algorithm based on the cross-entropy method
with SAT-specific optimizations to minimize the value of the chosen performance
function.

We devise a new hybrid DPLL-stochastic technique by letting the cross-entropy
algorithm perform an initial fast exploration of the probability space. Assuming a
satisfying assignment has not been found, from the values of the best-performing
sample (following the intuition about “level of truth”) a partial assignment is de-
rived, which in turn is used by the SAT solver to decide the polarities to be given to
variables during the search.

We implemented our variant of the cross-entropy method in a tool named CROiS-
SANT and tested it in combination with state-of-the art SAT solvers on different sets
of benchmarks of academic and industrial origin; as the experimental results show,
the approach shows effectiveness in driving the search at solving time.

2.2.1 Cross-Entropy for Optimization

The cross-entropy method was originally developed in order to efficiently estimate
probabilities of rare events and was later shown to be effective in solving combi-
natorial optimization problems. In this section, we present a brief overview of the
cross-entropy method for combinatorial optimization; more details can be found
in [RK04].

In this setting, we are given a very large probability space X , a probability
distribution f defined on X , and a function S from this space to R+, and we are

23 2.2 A Cross-Entropy Based Approach to Satisfiability

searching for an element X of X on which S reaches its global maximum. The
function S is called the performance function, and intuitively, it measures “fitness”
of the elements ofX . The space is assumed to be very large and infeasible to search
exhaustively, and the global maximum is rare, so that the probability of finding it
by random sampling according to the given probability distribution f is very low.
In addition, in many problems we do not know the value of the global maximum
in advance. The problem would be solved if we had another distribution g that
increases the probability of finding the global maximum. The ideal distribution
here would be gS, which gives probability 1 to inputs on which S reaches its global
maximum and 0 to all other inputs. The cross-entropy method attempts to iteratively
approximate gS by changing the probability distribution on X so that the distance
between the current distribution and the ideal distribution decreases in each iteration.
The notion of distance used in this approximation is the Kullback-Leibler divergence
or distance (also called cross-entropy). The Kullback-Leibler divergence between g
and h is defined as:

D(g, h) = Eg ln
g(X)
h(X)

=

∫

g(x) ln g(x)d x −
∫

g(x) ln h(x)d x

Note that this is not a distance in the formal sense, since in general it is not sym-
metric. Since gS is unknown, the approximation is done iteratively from the input
distribution f = f0, where in iteration t we draw a random sample according to the
current distribution ft and compute the (approximate) cross-entropy between the ft

and gS based on this sample. The probability distribution ft+1 for iteration t + 1
is computed from ft and the sample in iteration t so that D(gS, ft+1) < D(gS, ft).
The exact update formula depends on the formulation of the problem, but, roughly
speaking, the probability distribution is modified based on the best quantile of the
current sample, so that the elements close to the best quantile get a higher probability
in the next iteration.

The process can be halted once the global maximum is reached, if it is known in
advance. When this is not the case, a common criterion, which we adopt, is to stop
when the best quantile does not significantly change for a number of subsequent
iterations. The convergence of our cross-entropy algorithm is discussed in §2.2.2.2.

2.2.2 The CROiSSANT Approach

In this section, we present an extension of the propositional model to the multi-
valued one, together with the semantics of the propositional connectives; we also
describe a probability space induced over the multi-valued space and discuss the
choice of an appropriate performance function (§2.2.2.1). We define the variant of

24 2.2 A Cross-Entropy Based Approach to Satisfiability

the cross-entropy setting adopted and illustrate the core algorithm of CROiSSANT
in detail (§2.2.2.2, §2.2.2.3). Then, we set out in §2.2.2.4 the mechanics of the
interaction between CROiSSANT and a DPLL SAT solver and the intuitions behind
that. Finally, we discuss in §2.2.2.5 the relationships between the parameters of the
CROiSSANT algorithm and their tuning in our experiments.

2.2.2.1 The Multi-Valued Model

Intuitively, in order to guarantee convergence to a satisfying assignment of a given
CNF formulaϕ, one needs a probability space and a performance function that allow
an “evolution” of the assignments towards the satisfying assignment. In particular,
this means that the performance function reaches its global maximum on a satis-
fying assignment, and that the value of the performance function increases when
the sample is getting closer to a satisfying assignment. Moreover, the sample space
should be dense enough to allow gradual changes of the probability distribution. In
the standard propositional logic every variable can have only two values, and thus its
value cannot change gradually. Our approach introduces a multi-valued framework,
inspired by fuzzy logic [Zad88] and its use of t-norms.

Assuming a domain D ⊆ [0,1], an assignment function e : V → D extends a
standard propositional assignment by associating each variable of V with a value in
D. The function e∗ evaluates an arbitrary propositional formula ϕ to a number in
[0, 1], given an assignment e of values to its variables:

• e∗(v) = d if e(v) = d

• e∗(¬ψ) = 1− e∗(ψ).

• e∗(ψ∨η) = e∗(ψ)× e∗(η).

• e∗(ψ∧η) =max(e∗(ψ), e∗(η)).

In our framework, 0 stands for true and 1 stands for false, contrary to the traditional
way of defining their meaning – this allows a more efficient computation of the value
of propositional formulae.

Remark. While the above definition of e∗ does not correspond to standard algebraic
operations (in particular, there is no distributivity), it is easy to see that e∗ applied
to ∧ is a t-norm, that is, generalizes conjunction, and that e∗ applied to ∨ is a t-
conorm, that is, generalizes disjunction. In particular, when D = {0, 1}, e∗ matches
the standard definitions of ∧ and ∨ in De Morgan algebra. Indeed, we have for
d ∈ D:

25 2.2 A Cross-Entropy Based Approach to Satisfiability

• e∗(0∨ d) = 0, that is, true∨ d = true;

• e∗(1∨ d) = d, that is, false∨ d = d;

• e∗(1∧ d) = 1, that is, false∧ d = false;

• e∗(0∧ d) = d, that is, true∧ d = d.

The domain D could in theory be the interval [0, 1]. Practically, working in a
continuous environment is unfeasible from a computational point of view for a com-
binatorial problem like satisfiability; thus we adopt a framework that approximates
the continuous domain by a discrete one, allowing a more efficient computation of
the performance function and a simpler mechanism to update probabilities in the
cross-entropy algorithm. For K ∈ N, K ≥ 2, the range DK of all variables in V is the
set of values {0, 1/(K − 1), 2/(K − 1), . . . , 1}. A larger K provides finer granularity
and thus a denser space, while a smaller K leads to more efficient computations.

In what follows, we assume an input formula ϕ in CNF over a set of variables
V , with |V | = n. A probability space is defined over the set E of all possible com-
plete assignments e over V , where e(v) ∈ DK for each v ∈ V . A probability dis-
tribution P : E → [0,1] gives to each assignment its probability in the following
way. Probabilities for individual variables v and values d are directly specified as
P(v = d). In the cross-entropy framework, variables are treated independently;
thus, the probability of an assignment e(v1) = d1, . . . , e(vn) = dn is computed as
P((v1 = d1), . . . , (vn = dn)) =

∏

i P(vi = di). Due to this independence condition,
the probability distribution is completely represented by means of a matrix p of size
n× K , whose generic element pi, j is exactly P(vi = d j).

A performance function Sϕ : E → [0, 1] assigns to each e ∈ E a value that
denotes the “truth level” of ϕ, that is how close ϕ is to being satisfied under the
assignment e. Dealing with formulae in CNF, the most straightforward choice for S
is the max function based on e∗ as defined above: the value of a clause c is e∗(c),
the product of its literals values, and the value of a formula is given by the maxi-
mum value among its clauses. This way, a single clause having value 1 (falsified)
results in the whole formula having value 1, and assignments that satisfy all but one
clause (a common situation in structured SAT instances) are very far from the global
minimum. However, based on our experiments, the max function appears to not be
smooth enough for our purposes, and it does not allow for a sufficiently accurate
discrimination among assignments: indeed, all assignments which falsify at least
one clause have the same value 1 and are thus indistinguishable. A better choice is
the function S which we define as follows.

26 2.2 A Cross-Entropy Based Approach to Satisfiability

Definition 2.2.1 (Performance Function S). Given a formula in CNF ϕ = C1∧ · · ·∧
Cm and an assignment e, the performance function S is defined for a clause Ci as
SCi
(e) =
∏

l∈Ci
e(l), and for ϕ as Sϕ(e) = (

∑m
i=1 SCi

(e)/m).

Note that if ϕ is satisfiable, then the global minimum of S is 0 and it is reached
on a satisfying assignment to ϕ. In other words, we replace the max function by
the arithmetic average of the clauses values; as we demonstrate in §2.2.3, this defi-
nition allows us to achieve satisfactory convergence towards a global minimum in a
reasonable time for satisfiable instances.

2.2.2.2 The Parameter Setting

A generic cross-entropy algorithm for optimization involves two main steps:

• Generate a number R of independent and identically distributed samples in the
search space according to a specified probability distribution pt .

• Update the parameters of pt , based on a certain amount Rb of best performing
samples (the elite samples set), by means of cross-entropy minimization.

The cross-entropy method creates a sequence of levels γ0, . . . and parameter ma-
trices p0, . . . such that the first sequence converges to an optimal performance, while
the second one converges to the corresponding optimal parameter matrix. Usually a
smoothed updating rule is used, in which the parameter matrix is taken as a linear
combination (with smoothing parameter α) of the previous matrix and the new one
obtained from the elite samples set.

Several variants of the cross-entropy method ([RK04, Mar05, KTB11, CJK07])
are described in the literature: with or without smoothing, with or without memory
(the elite samples set is entirely computed from the current iteration rather than
accounting for the previous generations), with fixed or adaptive α, R and Rb. We
adopt a memoryless approach, since it is more efficient in this framework. For
the same reason, we keep both R and Rb fixed during the algorithm execution. As
commonly done for combinatorial optimization problems, we choose a smoothed
updating procedure to avoid the degeneration of the sequence of parameter matrices
to a {0, 1}-matrix.

Different proofs can be found certifying the theoretical convergence of the al-
gorithms both in the continuous and in the combinatorial setting; given the ap-
proach chosen and dealing with a discrete problem, we mainly refer to [KTB11]
and [CJK07]. In particular, [CJK07] compares the effects of adopting a constant or
adaptive smoothing parameter: an appropriately decreasing sequence of α is guar-
anteed to reach an optimal solution; using a constant but sufficiently small α, the

27 2.2 A Cross-Entropy Based Approach to Satisfiability

algorithm converges to an optimal solution with probability arbitrarily close to 1.
The price is in terms of speed of convergence; this is why, following the considera-
tions in the literature [RK04] and our own experience, we use a constant smoothing
parameter, even though it might lead to non global optima.

2.2.2.3 The CROiSSANT Algorithm

Algorithm 3 illustrates our application of the cross-entropy method to the satisfia-
bility problem. The algorithm takes as input a CNF formula ϕ, a coarseness K of
the discretization DK , a number of samples to be generated in each iteration R, the
performance function S introduced in §2.2.2.1, a size of the elite samples set Rb, a
smoothing parameter α, a time limit.

Input: CNF formula, discretization DK , number of samples per iteration R,
number of elite samples Rb, performance function S, smoothing
parameter α, time limit

1 begin
2 repeat
3 Initialize p0

4 t ← 1
5 repeat
6 Generate R assignments e1, . . . , eR according to pt−1

7 Evaluate S(ei), sort from smallest to largest S(1) ≤ . . .≤ S(R)
8 Extract the elite samples set e(R−Rb+1), . . . , e(R)
9 Set γt ← S(R−Rb+1)

10 Calculate qt from the elite set using (∗)
11 Update pt ← αqt + (1−α)pt−1

12 t ← t + 1
13 until a minimum is detected or the time limit is reached
14 until the time limit is reached
15 Return information (see §2.2.2.4)
16 end

Algorithm 3: The CROiSSANT algorithm.

The algorithm follows these steps. It starts by initializing the probability matrix
p0 to the uniform distribution over the variables V and the values DK , moving then
to the main loop. In each iteration t, a number R of i.i.d. sample assignments from
Dn

K is drawn according to the probability matrix pt−1 of the previous iteration. The
performance function S (which gives a measure of the “truth level” of the formula

28 2.2 A Cross-Entropy Based Approach to Satisfiability

ϕ) is evaluated on the samples, and the results are sorted in ascending order; the Rb

best samples are taken to form the new elite set and the new level γt (corresponding
to the performance of the worst sample in the elite set) is determined. From this
set, for each variable v and value d a probability qt,v,d is derived according to the
following equation:

qt,v,d =

∑R
z=1 I{S(ez)≥γt}I{ez(v)=d}
∑R

z=1 I{S(ez)≥γt}

(∗)

where the function I is an indicator function (or a characteristic function): for a
propositional expression b the value of I{b} is 1 if b is true, 0 otherwise. In other
words, the probability qt,v,d is the proportion of samples in the elite set for which v
has value d (recall definitions from §2.2.2.1). Finally, the probability matrix pt−1

is updated by “shifting” it (based on the smoothing parameter α) towards the ma-
trix qt generated from the elite set, thus making it biased towards the current most
successful samples.

We use a simple criterion in order to detect whether a minimum has been found:
the sequence of γt steadily decreases (while the probability matrix converges to an
optimal one) although it exhibits oscillations due to the stochastic nature of the al-
gorithm. To account for this phenomenon, we keep track of the current lowest value
among the γt : if after a certain number of iterations such value has not improved,
we determine that a minimum has been reached.

Since, as discussed, the algorithm is not guaranteed to converge to a global min-
imum, the whole process is repeated for a series of runs until the time limit is met.

In the end, the algorithm returns some information, for example the overall best
sample obtained throughout the various runs (see §2.2.2.4).

2.2.2.4 Interaction with SAT Solving

As a first investigation of a new hybrid framework that exploits the features of DPLL
and stochastic optimization, we have employed our cross-entropy algorithm as a
preprocessing step before SAT solving. CROiSSANT performs a preliminary explo-
ration of the search space, storing the best assignment found; this is used to generate
a partial propositional assignment which is given as input to the DPLL solver. Then,
at solving time, when branching on a variable v, the search is driven by choosing its
polarity according to that partial propositional assignment (of course if the variable
is affected by the assignment).

The reason behind this approach lies in the relationship between the granular-
ity of the search space and the way the propositional assignments are produced. In

29 2.2 A Cross-Entropy Based Approach to Satisfiability

§2.2.2.1 we introduced the multi-valued model and discussed the extension of the
propositional domain to an arbitrary discrete domain DK with K values between 0
and 1. Intuitively, the association of a value with a variable measures how that vari-
able is close to being either true or false: 2 values can distinguish between true and
false, 3 values allow “unknown” variables, and so on. An initial exploration of the
search space by CROiSSANT can provide the SAT solver with useful information
on the likelihood of variables to be either true or false. By analyzing the best sam-
ple found, we extract the subset of variables which have value 0 or 1 and use these
values to guide the decision phase at solving time.

2.2.2.5 Tuning of the CROiSSANT Algorithm

The input of the algorithm consists of a CNF formula ϕ, a coarseness K of the
discretization DK , a number R of samples to generate in each iteration, a performance
function S, a size Rb of the elite samples set, a smoothing parameter α and a time
limit.

Since our goal is to use cross-entropy as a fast preprocessing technique, we give
CROiSSANT a short timeout compared to the total time dedicated to preprocess-
ing plus solving. The reasons for the choice of a specific S have been presented in
§2.2.2.1; in order to set a framework for experimentation we performed some pre-
liminary benchmarking, analyzing the relationships among R, Rb, α, with respect to
the timeout and to the size of the search space, dependent on ϕ and DK .

Larger values of R allow for deeper exploration at each iteration; on the other
hand, the generation of more samples comes at the price of a smaller amount of
iterations that can be carried out within a given time limit. For our experimentation
we chose a fixed R, but we plan to investigate how to make the parameter adaptive
to the complexity of the instance at hand. A similar tradeoff exists for the size of the
elite set: values of Rb close to R increase the preciseness of the estimates (almost
all samples are considered to update the distribution), while smaller values allow for
faster convergence; we use a fixed Rb of 10% of R.

The adoption of a constant α entails an additional tradeoff between accuracy and
speed of convergence: a smaller α increases the probability of finding an optimal
solution, but at the expense of a greater amount of iterations.

Another parameter was added, to account for the possibility of running into non
global minima, as discussed in §2.2.2.1. Stopping condition for the inner loop of
the algorithm is the detection of a minimum, in terms of a lack of improvement of
the current lowest value in the sequence of γt for a certain number of iterations;
this amount, to which we will refer as “no improvement threshold” (N I T), is also
given as input. Notice that a good choice for the threshold depends both on R and

30 2.2 A Cross-Entropy Based Approach to Satisfiability

Rb (more exploration increases the chances of improvement), and on the size and
the characteristics of the search space.

With regard to the coarseness of the discretization, a greater K entails a more
dense space, with advantages in terms of gradualness of convergence of the cross-
entropy technique (§2.2.2.2) and accuracy of the information supplied to the SAT
solver (§2.2.2.4); nevertheless, a larger space might make convergence slower and
contain more non global minima. We tested this tradeoff using different values of
K .

An interesting question that arose, while developing our approach, was how
likely it would be to come across the same minimum in different runs, and, in that
case, how to avoid the issue. We experimented with manipulating the probability
matrix in order to direct the search away from the minima already found. Unfortu-
nately, one of the major points of the cross-entropy algorithm, that is being able to
treat variables individually, turned out to be a hindrance to our idea: in fact, by mod-
ifying the probabilities of the variables, we would end up reducing the probability
of generating not only the minima themselves, but also many other unrelated sam-
ple assignments. In practice, we achieved the best performance by simply restarting
from the uniform distribution: for a given timeout, taking as input formulae of suffi-
ciently high complexity (so as to have a sufficiently large search space), we noticed
that the algorithm tended to visit different areas of the space in each run, leading to
different minima.

2.2.3 Experimental Results

We implemented our variant of the cross-entropy based optimization algorithm in
a tool named CROiSSANT written in C++. In this section we present the results
of executing CROiSSANT as a preprocessor on a collection of benchmarks with
different settings of tunable parameters, following the considerations of §2.2.2.5.

Since our approach employs the cross-entropy method with the aim of identi-
fying the areas of the search space that are more likely to contain a satisfying as-
signment, we considered it natural to focus on satisfiable benchmarks. We collected
satisfiable instances from the SAT Competition 2011 and the SAT Race 2010 [SATb]
(which contain benchmarks of both academic and industrial origin) and compared
the running time of the state-of-the-art CDCL SAT solver MiniSAT 2.2.0 alone
with the running time of MiniSAT after preprocessing by CROiSSANT. Given the
stochastic nature of our technique, we took into account not only the default de-
terministic strategy of MiniSAT (to always assign negative polarity), but also the
randomized strategy that assigns polarity positive or negative at each branching step

31 2.2 A Cross-Entropy Based Approach to Satisfiability

with equal probability1.

Table 2.1. MiniSAT on SAT Competition 2011 and SAT Race 2010 benchmarks.

(1) MiniSAT only (2) MiniSAT random pol.

#Bench #Solved Time(s) #Solved Time(s)

SAT Comp.2011 305 140.0 2126.56 145.7 2074.63
application 47 41.0 638.70 37.7 778.08
crafted 58 45.0 971.98 41.7 1226.05
random 200 54.0 2811.05 66.3 2625.40
SAT Race 2010 22 20.0 627.17 19.3 756.42
cryptography 11 11.0 556.39 10.3 704.38
hardware-verif. 1 1.0 106.45 1.0 12.71
mixed 7 5.0 1070.14 5.0 1144.97
software-verif. 3 3.0 26.72 3.0 288.56

(3) 2 mins, K = 2 (4) 2 mins, K = 3 (5) 2 mins, K = 10

#Bench #Solved Time(s) #Solved Time(s) #Solved Time(s)

SAT Comp.2011 305 143.7 2017.71 139.7 2039.56 143.3 2026.79
application 47 42.0 619.41 39.7 654.00 40.0 687.45
crafted 58 47.7 798.19 48.3 794.50 50.7 769.28
random 200 54.0 2699.97 51.7 2726.23 52.7 2725.45
SAT Race 2010 22 19.3 736.80 20.3 624.69 19.3 668.95
cryptography 11 10.3 791.53 10.7 623.13 10.0 687.31
hardware-verif. 1 1.0 107.62 1.0 172.85 1.0 40.50
mixed 7 5.0 1035.19 5.7 942.05 5.3 1000.07
software-verif. 3 3.0 49.57 3.0 40.50 3.0 38.52

Experimental Data. A set of 305 + 22 satisfiable benchmarks was initially ex-
tracted by running MiniSAT on the 900 new instances of SAT Competition 2011 and
on the 100 instances of SAT Race 2010, setting a time limit of 3h. The benchmarks
were run with a total (preprocessing plus solving) time limit of 1h on machines
equipped with a Quad-Core AMD Opteron(tm) processor 2344 HE 1000 MHz and
3Gb of RAM memory.

Table 2.1 presents the results of executing CROiSSANT as a preprocessor to
MiniSAT in different configurations compared to the results of MiniSAT alone; we

1The full experimental data is available at http://verify.inf.usi.ch/sites/
default/files/Rollini-phddissertationmaterial.tar.gz

http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz
http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz

32 2.2 A Cross-Entropy Based Approach to Satisfiability

show the average values obtained over three runs using different seeds. The first and
the second configurations in the table consist in running just MiniSAT respectively
with default and random polarities. The other configurations include preprocessing
using 50 as number of samples per iteration R, 0.1 as smoothing factor α and 50 as
no improvement threshold N I T , whereas preprocessing time and coarseness of the
discretization K (as number of values) are shown; the best overall (partial) assign-
ment, not taking into account variables with values different from 0 and 1, was given
to MiniSAT to suggest variable polarities during branching. In the #Solved column,
the numbers represent the amount of instances for which MiniSAT could find a sat-
isfiable assignment. The Time(s) column shows the average time in seconds spent
(after the preprocessing phase) by MiniSAT on the different families of instances,
both solved and non solved; preprocessing time is not included, apart from the few
cases when CROiSSANT was able to find a satisfiable assignment itself, and clearly
MiniSAT was not run.

Analysis. The experiments give some interesting results. Table 2.1 shows that in
the first configuration (2 minutes preprocessing, K = 2) the use of CROiSSANT
indeed improves MiniSAT performance on all the three classes of the SAT Compe-
tition instances. CRoiSSANT is also noticeably superior (both in number of solved
benchmarks and average running times) on the crafted class: this mainly contains
problems of combinatorial origin, such as graph isomorphism, Green Tao and Van
der Waerden numbers, automata synchronization. Instances of this kind tend to
show regularities in the solution space: global and non global minima might be
close, so that the information provided by CROiSSANT in terms of the assignment
with the best performance (that is, closest to a satisfying assignment) would be par-
ticularly useful. The adoption of a random in opposition to a non-random approach
in assigning polarities has a major effect on the results over structured and random
instances; in particular, the random strategy performs better than all the other tech-
niques on random problems, but systematically worse on structured problems.

2.2.4 Related Work

It is natural to view satisfiability as an optimization problem on the space of com-
plete variables assignments, with the performance function evaluating, for example,
the number of satisfied clauses. As such, there is considerable ongoing research on
applying optimization techniques to satisfiability. A number of powerful stochastic
solvers is based on various extensions of the random walk model, see for exam-
ple GSAT [SLM92], WalkSAT [SKC94], HSAT [GW93], SDF [SS01], Novelty and
R-Novelty [MSK97], Novelty+ and R-Novelty+ [Hoo99], UnitWalk [HK05].

33 2.2 A Cross-Entropy Based Approach to Satisfiability

In contrast to these techniques, our approach is to iteratively adjust the probabil-
ity distribution, according to which assignments are generated. Also, while nearly
all known stochastic approaches for propositional satisfiability use a binary range for
the variables, we use smoother ranges, which allows a more gradual improvement.
Surprisingly there is no prior work on the application of the cross-entropy method
to satisfiability, to the best of our knowledge, apart from a brief mention in [RK04].
At the same time, the cross-entropy method is used in many other areas, including
buffer allocation [AKRR05], neural computation [Dub02], DNA sequence align-
ment [KK02], scheduling [Mar02], graph problems [Rub02], and, more recently,
testing [CFGN07] and replay [CFGN09] of concurrent programs. It was shown to
be very effective in discovering or approximating solutions to very hard problems
for which it is possible to define a “good” (smooth and gradually improving) perfor-
mance function.

In the last years there has been extensive research on combining SLS and DPLL.
Three main research branches have been followed: using DPLL as an aid for SLS
or vice versa SLS as a helper for DPLL, either before or at solving time [Cra93,
MSG98, FF04, JO02, FR04, HLDV06]; letting the two techniques interact in a syn-
ergistic way [FH07, LMS08, BHG09, ALMS09a, ALMS09b].

In [MSG98] it is suggested, for an unsatisfiable formula, to use a stochastic
solver to try to identify its minimal unsatisfiable cores, and then to use a com-
plete solver on the smaller resulting subformula. Moreover, the scores delivered by
the stochastic solver could be used to guide the branching strategy of the complete
solver.

Using a stochastic solver to determine polarities for branching variables is prob-
ably even more natural, however to our knowledge it has not been explicitly men-
tioned in the literature. There is also a strong connection between setting the initial
branching polarities and the progress saving heuristic, suggested in [PD07] and used
in all state-of-the-art CDCL solvers.

2.2.5 Summary and Future Developments

We presented a novel approach to the satisfiability problem based on the cross-
entropy method. Our framework extends the binary propositional model to a multi-
valued setting, where variables can be assigned values in a discrete set; we induce a
probability space over the enlarged search space and define a performance function
that correlates with the likelihood of the input formula to be satisfiable. We im-
plemented our variant of the cross-entropy algorithm in a tool named CROiSSANT,
written in C++. We employ CROiSSANT as a preprocessor to a DPLL-based solver;
CROiSSANT is executed with a time limit and the best assignment found is ex-

34 2.2 A Cross-Entropy Based Approach to Satisfiability

ploited to suggest variables polarities at solving time. We conducted experiments on
different sets of benchmarks, using CROiSSANT in combination with the state-of-
the-art solver MiniSAT; the results show an improvement both in running times and
number of solved instances, providing evidence that our framework is a sound basis
for further research on cross-entropy based SAT solvers.

Future work can move in a number of directions. We tested one among several
ways of interaction between CROiSSANT and a SAT solver. Other approaches, still
having cross-entropy minimization as a preprocessing step, might include: employ-
ing a partial propositional assignment also taking into account how many and which
variables are involved; deriving from the best sample a vector of probabilities based
on which to assign polarities; storing and using the probability matrix from which
the best sample was generated; exploiting structural dependencies among clauses.

More complex approaches could be based on an integrated framework, where
a cross-entropy algorithm and a SAT solver are run alternately while exchanging
information; learning techniques could be tested based on resolution, in line with
[FR04], where new clauses are added to reshape the space to remove current local
minima.

Cross-entropy can be combined with other stochastic optimization methods,
such as simulated annealing, swarm and evolutionary algorithms. A promising di-
rection is also to enhance CROiSSANT with local techniques, for example stochas-
tic local search: intuitively, a cross-entropy-based algorithm can perform an initial
wide-scale narrowing of the search space, while local search will be applied in a
second phase for finding a global minimum in a much smaller area. It would be
also useful to characterize the classes of instances (as well as the structure of the
corresponding search spaces) and the areas, such as combinatorics, where the cross-
entropy method is most effective.

Chapter 3

Craig Interpolation in Model Checking

Craig’s interpolation theorem is a classical result in first order logic, which has
found wide and successful application as an overapproximation technique in sym-
bolic model checking.

Interpolation is defined with respect to an unsatisfiable conjunction A∧ B, and
interpolants are typically generated from a proof of unsatisfiability of the conjunc-
tion. Interpolants are not unique, since various algorithms exist to generate different
interpolants from the same proof, and, in turn, proofs can be transformed by means
of manipulation techniques, consequently allowing additional interpolants. An im-
portant goal in model checking – and the one addressed in this research – is thus to
assess which interpolants have the highest “quality” and which features character-
ize good interpolants in the individual verification frameworks. In this chapter we
address interpolation from both a theoretical and a practical point of view, focusing
on syntactic and semantic features and on their impact on verification.

§3.3 formally defines Craig interpolation and introduces the relevant notation;
it discusses the state-of-the art of interpolants generation in first order theories, fo-
cusing on proof-based interpolation techniques. In particular, §3.3.3 illustrates the
local proofs framework [KV09, HKV12], able to compute interpolants from a class
of proofs in arbitrary first order theories and inference systems; §3.3.4 addresses the
labeled interpolation systems (LISs) [DKPW10, Wei12], that perform interpolation
in the propositional resolution and hyper-resolution inference systems; §3.3.5 de-
scribes interpolation in satisfiability modulo theories, as realized by [YM05, CGS10].
We reformulate the aforementioned frameworks, providing a uniform notation that
makes it easier to compare them with our contribution in the following sections.

The LISs are an appropriate choice for investigating interpolant strength in model
checking, since they consist of a parametric algorithm that allows to systematically
generate interpolants of different strength from the same proof; however, they are

35

36 3.1 Interpolation in Symbolic Model Checking

limited to propositional logic. We address this limitation in §3.4 by extending LISs
to the context of SMT, at the same time subsuming [YM05, CGS10] as special cases;
we also provide a concrete application of our extension to a first order theory.

The approach of [KV09, HKV12] is appreciated for its generality, since it ap-
plies to any theory and inference system in first order logic. In §3.5 we show how
the methods of [DKPW10, Wei12, KV09, HKV12] belong to a same class of inter-
polation algorithms, based on recursive procedures that generate interpolants from
refutations. We analyze this type of algorithms and develop a new parametric inter-
polation framework for arbitrary first order theories and inference systems; it is able
to derive interpolants of different structure and strength, with or without quantifiers,
from the same proof. Moreover, we demonstrate that [DKPW10, Wei12, KV09,
HKV12] can be considered instantiations of our framework.

After providing the theoretical infrastructure, we move on to experimental eval-
uation. In §3.6 we address the problem of generating effective interpolants in the
context of software SAT-based bounded model checking, and examine the impact of
size and logical strength on verification. We take into account two bounded model
checking applications: verification of a given source code incrementally with re-
spect to various properties, and verification of software upgrades with respect to a
fixed set of properties. Both applications use interpolation for generating function
summaries. We provide evidence that size and logical strength of interpolants signif-
icantly affect the performance of verification, and that these characteristics depend
on the role interpolants play in the verification process.

3.1 Interpolation in Symbolic Model Checking

Craig’s interpolation theorem [Cra57a, Cra57b] is a classical result in first order
logic, and has had a strong impact on the formal verification community since the
work carried out in [McM03, McM04b, McM04a], where it was shown that inter-
polation can be applied as an effective overapproximation technique. Interpolation
has stimulated a considerable amount of research in the area; in the following we
introduce some of the most successful applications to model checking, which are
relevant to the topics discussed in this thesis.

A Craig interpolant I is formally defined with respect to an unsatisfiable con-
junction of formulae A ∧ B. I is a formula that is implied by A (i.e., A |= I), is
unsatisfiable in conjunction with B (i.e., I ∧ B |= ⊥) and is defined on the common
symbols of A and B. In other words an interpolant is an overapproximation of A that
is still unsatisfiable with B.

Interpolants have been exploited in conjunction with bounded model checking

37 3.1 Interpolation in Symbolic Model Checking

in [McM03] to realize unbounded symbolic model checking; [McM03] presents an
algorithm that iteratively increases the bound and at the same time tries to overap-
proximate the set of reachable states. Also, the method is guaranteed to terminate,
in the worst case when the bound reaches the diameter of the system.

In the context of predicate abstraction, interpolation can be used to approximate
the transition relation of a system, yielding a complete technique (assuming an ade-
quate set of predicates) which does not require exact image computation [JM05].

Craig interpolation is employed in [HJMM04] for counterexample-guided ab-
straction refinement: new predicates are synthesized from a spurious abstract be-
havior, which is then removed by means of a local refinement of the abstraction.

Synthesis is also the goal of [JM06], which presents an approach to guide the
derivation of predicates from interpolants, by restricting the language of the inter-
polants. The procedure is guaranteed to terminate if the property is provable.

In [McM06], an application of interpolation is proposed within the lazy abstrac-
tion framework of [HJMS02]. Following the abstraction-refinement paradigm, an
abstract model is built and iteratively refined; refinement is carried out locally, based
on interpolants generated from the refutation of program behaviors.

[VG09] presents an extension of bounded model checking, which combines it
with the use of interpolants as done in [McM06] and [JM05].

Interpolants are integrated with the theory of nested words in [HHP10], devel-
oping a software model checking approach for recursive programs.

A recent application of interpolation to verification involves the use of inter-
polants to abstract of the behavior of function calls (the approach is known as
function summarization); the goal of summarization is to store and reuse informa-
tion about already analyzed portions of a program, to make subsequent verification
checks more efficient. Function summarization is combined with bounded model
checking in [SFS11] and in [SFS12b] to perform incremental verification of soft-
ware programs. Function summarization is also employed in the Whale framework
of [AGC12] to achieve inter-procedural verification; interpolants play a twofold role,
since they can represent either overapproximations of set of reachable states, or sum-
maries of function bodies.

3.1.1 Interpolation, BMC and IC3

In the context of symbolic model checking (see §1.1) a system is usually represented
as a pair of formulae (S, T), where S denotes the set of initial states and the transition
relation T describes the system behaviour. A property to be verified is encoded as
a formula P, so that the system is safe if the error states where ¬P holds are not
reachable from S.

38 3.1 Interpolation in Symbolic Model Checking

Verifying that the system satisfies P reduces to prove that P is an inductive in-
variant property:

S |= P P ∧ T |= P ′ (3.1)

If (i) the initial states satisfy P and, (ii) assuming P holds, it also holds after
applying the transition relation, then P holds in all reachable states. When the in-
ductiveness of P cannot be directly proved, it might be possible to show that another
formula P̂, stronger than P (P̂ |= P), is an inductive invariant, from which P would
follow as a consequence; the approach of [McM03], which combines interpolation
and bounded model checking (BMC), is based on iteratively building such a P̂, as
illustrated below.

Input: Transition system (S, T), property P
Output: SAFE or UNSAFE and a counterexample
Data: k: bound, R(i): overapproximation of states at distance at most i from

S, I(i): interpolant
1 begin
2 if S ∧¬P is satisfiable then return UNSAFE, counterexample
3 k← 1, i← 0
4 R(i)← S
5 while true do
6 A← R(i)∧ T 0

7 B←
∧k−1

j=1 T j ∧
∨k

l=0¬P l

8 if A∧ B is satisfiable then
9 if R(i) = S then return UNSAFE, counterexample

10 else
11 k← k+ 1, i← 0
12 R(i)← S
13 else
14 I(i)← I t p(A, B)
15 if I(i) |= R(i) then return SAFE
16 else
17 R(i+ 1)← R(i)∨ I(i)
18 i← i+ 1
19 end
20 end

Algorithm 4: Interpolation and BMC.

39 3.1 Interpolation in Symbolic Model Checking

BMC performs verification w.r.t. a fixed bound k; P is considered within dis-
tance k from S, by checking the satisfiability of a propositional formula of the kind
S∧T 0∧· · ·∧T k−1∧(¬P0∨· · ·∨¬Pk). [McM03] uses interpolation to effectively real-
ize unbounded model checking, as shown in Algorithm 4. Standard BMC examines
states at distance at most k from the initial states S, while increasing k; the approach
of [McM03] instead computes overapproximations of the states reachable from S,
step by step, and checks whether from these overapproximations the property P can
be violated within distance k, while trying to keep k fixed.

The algorithm first makes sure P is not violated by S (line 2), otherwise it halts
and immediately returns a counterexample. After that, the bound k is set to 1, and
the initial overapproximation R(0) to S. In the main loop, for a bound k and a current
overapproximation R(i) of the states at distance at most i from S, the algorithm
checks if P is violated by the states reachable from R(i) in at most k steps.

If the formula R(i) ∧
∧k−1

j=0 T j ∧
∨k

l=0¬P l is unsatisfiable (lines 13-18), then
the formula is partitioned into A ∧ B and an interpolant I(i) is computed, which
represents an approximation of the image of R(i) (i.e., of the states reachable from
R(i) in one step). Next, a fixpoint check is carried out: if I(i) |= R(i), it means that
all states have been covered, and the system is safe; otherwise, R(i + 1) is set to
R(i)∨ I(i) and the procedure continues.

Suppose instead that the formula is satisfiable (lines 8-12): the error might be
real or spurious, caused by an insufficient value of k. In the former case, the system
is unsafe (line 9); in the latter, k is increased to allow finer overapproximations, and
the algorithm restarts from S.

When Algorithm 4 returns SAFE, the current R(i) corresponds to an inductive
invariant P̂ stronger than P: on one side, S |= R(i), moreover R(i) ∧ T |= I ′(i)
and I(i) |= R(i) imply R(i) ∧ T |= R′(i); on the other side, the fact that at each
iteration 0≤ h≤ i, R(h)∧

∧k−1
j=0 T j |=
∧k

l=0 P l , together with R(i) being an inductive
invariant, yield R(i) |= P.

A different approach to strengthening is adopted by the IC3 (also called prop-
erty directed reachability) verification framework, introduced in [Bra11] and further
discussed in [SB11, Bra12], which in the last years has established itself as a note-
worthy alternative to interpolation-based model checking as performed in [McM03].
The algorithms of [McM03] and [Bra11] have some aspects in common: they both
compute a sequence R(0), . . . , R(h), . . . of overapproximations of the states within
distance 1, . . . , h, . . . from S, until an inductive invariant that implies P is found;
also, for any h, R(h) |= R(h+ 1) and R(h)∧ T |= R′(h+ 1).

The main feature that distinguishes [Bra11] from [McM03] is the absence of
unrolling: reasoning is in fact localized to one application of the transition relation
(e.g. R(h) ∧ T → P ′), which helps reducing the solving effort. Another important

40 3.2 Interpolants Quality

difference is in the way the two methods behave when an error is detected: when-
ever [McM03] generates an R(h) from which a state violating P can be reached, it
discards the whole sequence of overapproximations and restarts from S, after in-
creasing the bound k; on the contrary, [Bra11] exploits a counterexample to the
validity of R(h) ∧ T → P ′ in order to learn new information which allows to re-
fine the sequence itself. IC3 has undergone developments in several directions
[CG12, HB12, BR13, HBS13], and interesting results are expected from its inte-
gration with interpolation-based techniques.

3.2 Interpolants Quality

Interpolation is by now well-established in the area of model checking and several
algorithms are available to construct interpolants for an unsatisfiable conjunction of
formulae. While interpolation-based techniques crucially depend on to which extent
“good” interpolants can be generated, there is no general criterion for defining the
notion of “good” with respect to a particular verification framework. Finding a good
interpolant is a hard problem, whose solution justifies spurious behaviors or helps
proving correctness of system properties. Given a system to be verified, a natural
question to ask is therefore “what makes some interpolants better than others?”, or
“what are the essential properties for which a good interpolant can be derived”?

In this thesis we address the problem and characterize quality by means of two
features which are intuitively relevant to model checking, and for which preliminary
evidence has been provided in the literature: logical strength and syntactic structure.

Strength. A formula F1 is said to be stronger than F2 if F1 |= F2 (resp. F2 is weaker
than F1). Since interpolants are inherently overapproximations, a stronger or weaker
interpolant is expected to drive the verification process in terms of a finer or coarser
approximation.

The works of [DKPW10, JM05] remark that interpolants of different strength
can be beneficial in different verification frameworks. On one side, [JM05] empha-
sizes the usefulness of logically strong interpolants when approximating a transition
relation by means of interpolation and bounded model checking, with direct ap-
plication to predicate abstraction. On the other side, [DKPW10] provides examples
where weak interpolants lead to a faster convergence of model checking. [DKPW10]
and [Wei12] in particular offer an adequate framework to conduct an investigation of
interpolant strength: they present in fact the labeled interpolation systems, a para-
metric algorithm which allows to systematically generate interpolants of different
strength from the same proof.

41 3.3 Generation of Interpolants

Structure. Besides semantic features like logical strength, syntactic features are
also relevant to verification.

A first one is the presence of quantifiers: most of the approaches presented in
§3.1 rely on quantifier-free interpolants, to guarantee that the satisfiability checks
involving interpolants are complete. Whenever quantifier-free interpolants cannot
be generated, it might help to minimize the amount of quantifiers, as discussed
in [HKV12].

[AM13] also remarks the importance of structure, by showing the effectiveness
of interpolants built as conjunctions of linear inequalities over program properties,
for programs implementing linear arithmetic operations.

Size (measured by the number of propositional connectives) is another reason-
able candidate, since generating, storing and using smaller and less redundant for-
mulae naturally require fewer computational resources. Supporting evidence is
given in this sense by [CLV13]: the authors show that compact interpolants are help-
ful in the context of hardware unbounded model checking, realized by means of the
method of [McM03]. The usefulness of small interpolants is also intuitively clear
for the function summarization based approaches considered in [AGC12, SFS12b,
SFS11], where interpolants correspond to summaries that are used multiple times in
subsequent verification attempts.

3.3 Generation of Interpolants

In this section we introduce Craig interpolation and discuss the generation of in-
terpolants. We begin by providing notation and some basic definitions, then move
to illustrate a number of state-of-the-art approaches to interpolation in first order
theories, focusing on algorithms that generate interpolants from proofs of unsatisfi-
ability.

3.3.1 Craig Interpolation

Interpolation is considered in the context of standard first order logic. We assume
countable sets of individual variables (x , y, z), function (f , g) and predicate (P,Q)
symbols. A function symbol of 0-arity is called a constant (a, b, c), while a predi-
cate symbol of 0-arity corresponds to a propositional variable (o, p, q, r, including
for convenience the logical constants >,⊥). A term is a constant or is built from
function symbols and individual variables (f (c, g(x))); an atom is a propositional
variable or is built from predicate symbols and terms (P(x , f (c))). A formula is built
from atoms, propositional connectives, and quantifiers; in the rest of the chapter we

42 3.3 Generation of Interpolants

will denote formulae by C , D, E, F, A formula is called closed, or a sentence, if
it has no free individual variables; terms and formulae are ground if they have no
occurrences of individual variables.

Given a formula F whose free variables are x1, . . . , xm, ∀F is the universal clo-
sure of F , that is ∀x1 . . .∀xm F ; similarly, ∃F is the existential closure of F , that is
∃x1 . . .∃xm F .

We call a signature Σ a set of function and predicate symbols. A first order the-
ory consists of a signature together with a set of sentences (theory axioms) which fix
the semantics of the symbols in the signature; in the following we consider theories
with the equality predicate =. Theories which are relevant to formal verification in-
clude equality with uninterpreted functions, linear arithmetic, bit-vectors, lists and
other data structures (more details are given in §3.3.5). For example, the theory
of equality and uninterpreted functions has as signature all the function symbols
and the equality predicate =; the axioms that define the semantics of equality are
reflexivity, symmetry, transitivity and congruence.

When focusing on some particular formula F , we use ΣF to denote the set of
function and predicate symbols occurring in F , and LF (the language of F), to
denote the set of all formulae built on ΣF . We equivalently represent the negation of
a formula F as F or ¬F .

Inference Systems and Proofs. An inference system is a set of inference rules;
an inference rule is an n+ 1-ary relation on formulae (n ≥ 0), usually written as
C1 ··· Cn

C
, where C1, . . . , Cn are the premises and C the conclusion. An axiom C is

the conclusion of an inference with 0 premises; it will be represented without the bar
line as C . An example of inference system, introduced in §2.1.1.2, is the resolution
system, which has the resolution rule as unique inference rule.

A formula F is provable (` F) in an inference system if there exists a proof Π
of F : Π is a finite tree obtained by applications of the inference rules, such that
the root is F and the leaves are axioms; an inner node C with parents C1, . . . , Cn

represents the conclusion C of an inference with premises C1, . . . , Cn. F is provable
from assumptions F1, . . . , Fn (F1 ∧ · · · ∧ Fn ` F) if there exists a proof where every
leaf is an axiom or one the formulae F1, . . . , Fn. A refutation is a proof of ⊥. We
refer to a subproof as subtree of a proof, containing subleaves and a subroot.

A formula F is a logical consequence of F1, . . . , Fn (F1 ∧ · · · ∧ Fn |= F) if every
model of F1, . . . , Fn is also a model of F ; in particular, F is valid (|= F) if every
interpretation is a model. When dealing with a first order theory T , we will use |=T
to denote logical consequence w.r.t. the models of the axioms of T . In some cases
it will be convenient to use F1 ⇒ F2 in place of F1 |= F2, and F1 ⇔ F2 in place of

43 3.3 Generation of Interpolants

F1 |= F2 and F2 |= F1.
An inference system is sound if, for any F, F1, . . . , Fn, F1 ∧ · · · ∧ Fn ` F entails

F1 ∧ · · · ∧ Fn |= F .

Craig Interpolation. Craig’s interpolation theorem was first presented in [Cra57a,
Cra57b]:

Theorem 3.3.1 (Craig’s Interpolation Theorem). Let A and C be first order formulae
such that A→ C is valid. Then, there exists an “intermediate” formula I s.t.:

A |= I I |= C LI ⊆LA∩LC

I is an interpolant for A→ C .

A slightly different definition of interpolant, which we adopt, has been later
introduced by [McM03] in the context of model checking:

Definition 3.3.1 (Craig Interpolant). Let A and B be first order formulae such that
A∧ B is unsatisfiable. An interpolant for A∧ B is a formula I s.t.:

A |= I I ∧ B |=⊥ LI ⊆LA∩LB

We will alternatively use the notation A |= I and B |= I . With respect to the
original formulation, I is an interpolant for A→¬B; I is implied by A, unsatisfiable
with B and defined on the common symbols of A and B. Craig interpolation can also
be defined in presence of a first order theory T , so that inconsistency and implication
must hold modulo the axioms of the theory:

Definition 3.3.2 (Craig Interpolant Modulo Theory). Let A and B be first order for-
mulae such that A ∧ B is unsatisfiable in T . A theory interpolant for A ∧ B is a
formula I s.t.:

A |=T I I ∧ B |=T ⊥ LI ⊆LA∩LB

[YM05] relaxes the constraint on LI in presence of a theory T , allowing the
interpreted symbols of T (that is, the symbols whose semantics is specified by the
axioms of T) to appear in the interpolants, even if they do not appear either in A or
in B; an interpolant I must then satisfy:

LI ⊆ (LA∩LB)∪LT

where LT is the language of the axioms of T . The choice is justified by showing
that there are theories (e.g. the theory of lists) where the existence of an interpolant
for any unsatisfiable A∧ B is not guaranteed if interpreted symbols are not always
allowed in LI .

44 3.3 Generation of Interpolants

Symbols and Formulae. Symbols in the context of interpolation are distinguished
depending on where they appear in a given A∧ B.

We defineΣAB = ΣA∩ΣB as the set of symbols occurring both in A and B and take
LAB = LA ∩LB. The signature symbols of ΣAB are called AB-common. Signature
symbols occurring only in ΣA \ ΣAB are A-local, and symbols occurring only in
ΣB \ΣAB are B-local. A symbol that is not common is called local.

Terms, atoms, formulae are called clean if they contain only common symbols
(clean formulae are thus in LAB), otherwise they are dirty: A-dirty if they contain
only A-local and common symbols, but at least one A-local symbol; B-dirty if they
only contain B-local and common symbols, but at least one B-local symbol. Terms,
atoms and formulae, which are clean, A-dirty, or B-dirty, are also called AB-pure; if
they are dirty but they contain at least one A-local and one B-local symbol, they are
called AB-mixed: for example, if c is an A-local symbol and d is B-local, then the
atom c = d is AB-mixed.

When dealing with formulae in the form of clauses, we will make use of a re-
striction operator |Σ, for a certain signature Σ. The application of |Σ to a clause C
yields a clause C |Σ, corresponding to the disjunction of the literals of C that are in
Σ. We set C |A = C |ΣA\ΣAB

and say that C |A is restricted to the A-local symbols of C .
Similarly, we write C |B = C |ΣB\ΣAB

and C |AB = C |ΣAB
, where C |B and C |AB are re-

stricted to the B-local and AB-common symbols of C , respectively. Hence, a clause
C can be written as C = C |B ∨ C |A∨ C |AB.

3.3.2 Interpolation Systems

Several techniques might exist to obtain interpolants from an unsatisfiable conjunc-
tion A∧ B, depending on the language on which the two formulae are defined; we
refer in general to these techniques as interpolation systems.

Definition 3.3.3 (Interpolation System). An interpolation system I t pS is a function
that, given an unsatisfiable A∧ B, returns a Craig interpolant for A∧ B.

Various interpolation systems are known in the literature. The work of [RSS07]
allows to compute interpolants using linear programming procedures for constraint
solving; [SNA12] adopts a machine learning perspective, where interpolants are
viewed as classifiers and can be generated by means of standard classification tech-
niques; [CIM12] proposes a technique that incrementally generates a interpolant
in disjunctive normal form in propositional logic; even verification methods like
IC3 [Bra11] can be viewed as computing interpolants.

45 3.3 Generation of Interpolants

3.3.2.1 Proof-Based Interpolation Systems

A class of interpolation systems, which is particularly interesting for its applica-
tions to model checking, is characterized by the extraction of interpolants for A∧ B
from a proof of unsatisfiability of A∧ B. This approach grants two important bene-
fits: the generation can be achieved in linear time with respect to the proof size and
interpolants themselves only contain information relevant to determine the unsatis-
fiability of A∧ B.

Proof-based systems recursively generate an interpolant for an unsatisfiable A∧B
from a refutation of A∧ B. These procedures initially compute partial interpolants
for (some of) the leaves in the refutation of A∧ B, then, following the refutation
structure, generate partial interpolants for (some of) the inner nodes, relying on the
partial interpolants computed for the inference premises. The partial interpolant of
⊥ corresponds to the overall interpolant for A∧ B.

The precise method for obtaining an interpolant depends on the first order theory
in which A and B are defined. Most of the proof-based interpolation systems pro-
duce a quantifier-free formula whenever A and B are themselves quantifier-free. The
absence of quantifiers is an important requirement to make sure that satisfiability
checks involving interpolants are complete and efficient. Note that Craig’s theorem
does not guarantee the existence of quantifier-free interpolants for every theory; for
example the theory of array does not admit quantifier-free interpolation [KMZ06].

[McM03] introduces an interpolation algorithm for propositional logic, and
[McM04a] extends it to generate interpolants in the combined theory of uninter-
preted functions and linear arithmetic. [McM04a] builds over the previous work
by [Pud97], which shows how to compute interpolants from resolution refutations in
propositional logic and for systems of inequalities in linear arithmetic. The frame-
works of [Kra97, Hua95] independently present the same system as [Pud97] for
propositional logic. More recently, [DKPW10] has introduced a method that gener-
alizes [Pud97, McM03], by analyzing the logical strength of interpolants. The work
of [DKPW10] has been extended by [Wei12] to interpolation in the propositional
hyper-resolution system. [McM03, Pud97, Kra97, Hua95, DKPW10, Wei12] are
discussed in §3.3.4.

Promising results have been achieved also in the context of SMT, where several
ad-hoc interpolation systems have been proposed for conjunctions of atoms in indi-
vidual theories and combinations of them. We recall the work of [CGS08], which
addresses linear arithmetic, difference logic and combinations of convex theories;
another technique for theory combination is presented in [GKT09]. [CGS09] dis-
cusses UTVPI, [LT08] covers linear arithmetic, [FGG+09] deals with equality and
uninterpreted functions. Presburger arithmetic (in its original formulation) instead

46 3.3 Generation of Interpolants

does not admit quantifier-free interpolants; however the addition of stride predicates
to the language makes the theory quantifier-free interpolating [Pug91, BKRW11,
JCG08]. [KLR10] provides an efficient alternative to [BKRW11], but at the cost of
preventing the use of standard SMT solving techniques; an extension of the signature
of linear integer arithmetic allows [GLS12] to improve on [KLR10] and [BKRW11].
Interpolation for the theory of bit-vectors is discussed in [Gri11], which builds on
the works of [KW07] and [KW09]. Interpolation is also possible for several other
data structures, as shown in [KMZ06]. [CGS10] covers linear arithmetic, difference
logic, UTVPI, and proposes an algorithm to deal with combination of theories in
presence of the delayed theory combination framework of [BCF+09, BBC+05b];
combination of theories is also addressed in [YM05], which presents a technique
based on the Nelson-Oppen framework [NO79] that computes interpolants for the
combination by employing interpolation procedures for the individual theories.

[YM05] and [CGS10] are of particular interest for SMT since they also show
how to compute interpolants for formulae with an arbitrary boolean structure by
combining an interpolation system for conjunctions of atoms in a theory with an in-
terpolation system for propositional logic; in particular [YM05] builds on [Pud97],
while [CGS10] on [McM04a]. This approach has the advantage of being modular
and flexible: it reduces in fact the extension of interpolant generation to an addi-
tional theory to providing a procedure that is able to generate theory interpolants for
conjunctions of ground literals in that theory. More details are given in §3.3.5.

Compared to the interpolation systems mentioned above, the methods described
in [KV09] and [HKV12] give a more general algorithm that can be used with ar-
bitrary first order calculi and inference systems. This algorithm is, however, re-
stricted to proofs with a particular structure, called local proofs [KV09] or split
proofs [JM06]. [KV09, HKV12] are discussed in §3.3.3.

3.3.2.2 Interpolation and Quantifier Elimination

A first order theory T is said to admit quantifier elimination (QE) if there exists
an algorithm able to transform a quantified formula F , defined on T , to a logi-
cally equivalent F ′ without quantifiers. Quantifier elimination procedures, applied
for the purpose of exact image computation in model checking [BCM+92, McM92,
WBCG00, ABE00], have been gradually replaced by interpolation as a more effi-
cient alternative, since its introduction by [McM03] in the area of verification.

Although computationally more expensive, the generation of quantifier-free in-
terpolants could in principle be achieved by means of QE, rather than by means of
proof-based systems as described in §3.3.2.1, if the formulae under account are
propositional or defined on a theory that admits QE. Whenever an unsatisfiable

47 3.3 Generation of Interpolants

A∧ B contains individual (resp. propositional) variables as the only local symbols,
the strongest and the weakest interpolant can in fact be expressed by the formulae
∃x x∈ΣA\ΣAB

A (resp. ∃pp∈ΣA\ΣAB
A) and ∀x x∈ΣB\ΣAB

¬B (resp. ∀pp∈ΣB\ΣAB
¬B), that is

by quantifying away the local variables themselves (see, for example, [KLR10] and
[EKS08]); it is possible at this point to resort to a QE algorithm in order to obtain a
quantifier-free interpolant.

Quantified Propositional Logic. A simple procedure, that applies to formulae
with arbitrary propositional structure, relies on the expansions ∃p F ⇔ F[>/p] ∨
F[⊥/p] and ∀p F ⇔ F[>/p] ∧ F[⊥/p], where F[>/p] denotes the formula ob-
tained by replacing the occurrences of p in F by >; in case of a formula with n
quantifiers, they are eliminated iteratively from the innermost to the outermost. Data
structures such as BDDs (see §1.1), introduced for representation and manipulation
of propositional functions, can be used to perform this kind of computation, although
their application suffers from heavy memory requirements.

A different approach is available when F is in CNF. A universal quantifier ∀p F
can be eliminated by simply removing the occurrences of p from F . In case of an
existential quantifier ∃p F , the resolution rule can be exploited in order to get rid of
p: all pairs of clauses where p has opposite polarity are resolved on p, the resolvents
are added to F , and finally all the clauses containing p are discarded.

Other more sophisticated algorithms realize QE by eliminating quantified vari-
ables iteratively in a certain order. [WBCG00] discusses QE as a means to perform
image computation in the context of a symbolic model checking algorithm based
on an extension of BDDs; similarly, [ABE00] combines SAT solving and the use
of ad-hoc data structures in order to perform reachability analysis. The main lim-
itation of such iterative techniques is that their performance critically depends on
the order in which variables are eliminated, possibily leading to formulae that grow
exponentially in the number of the quantified variables.

Another possibility is to rely on SAT solving for an enumeration and collec-
tion of the satisfying assignments, incrementally adding blocking constraints that
exclude the solutions previously found; building on these assignments, a quantifier-
free formula equivalent to the original one can be obtained. [McM02] shows how
the standard CDCL approach can be extended to generate, from a universally quan-
tified formula, an equivalent formula in CNF from which the universal quantifiers
are easily removed. [GGA04] adopts a circuit-based approach in order to cover a
larger part of the solution space compared to a simple enumeration of assignments,
thus reducing the overall amount of required enumeration steps; the same goal is
aimed at by [JS05], which proposes an optimization based on lifting propositional

48 3.3 Generation of Interpolants

variables, as a means to generate minimal satisfying assignments. [BKK11] im-
proves over [McM02] with an algorithm that produces a quantifier-free formula in
CNF, by joining enumeration of assignments and computation of shortest implicants
(i.e., minimum satisfying assignments). [GM12] introduces a compositional tech-
nique for the elimination of existential quantifiers from formulae in CNF. Based on
the resolution system, it adds resolvents to the original formula until the quantified
variables become redundant, so that the clauses containing them can be discarded
leading to an equivalent quantifier-free formula.

First Order Theories. Most algorithms that perform QE in the context of first
order theories have been developed for arithmetic. Fourier-Motzkin elimination
[KS08] addresses systems of inequalities in LRA, and is extended by the Omega
Test [Pug91] to linear integer arithmetic; both these techniques are applicable to
conjunctions of theory literals, so that formulae with aribitrary structure must first
be appropriately transformed. A different kind of methods relies on replacing ex-
istential quantification ∃x F , which corresponds to an infinite disjunction, with a
finite disjunction

∨

i F[x i/x], where the x i depend on the free variables of F : we
recall Ferrante and Rackoff’s [FR75] and Loos and Weispfenning’s algorithms for
LRA [LW93], and Cooper’s algorithm for LIA [Coo72]. Moving from linear to non-
linear arithmetic, a well-known approach to the theory of real closed fields builds
on cylindrical algebraic decomposition [Col75], while QE on algebrically closed
fields can be realized by means of Gröbner bases [CLO07]. [Nip08] presents QE
procedures for dense linear orders, LRA and LIA, while [LNO06], [Mon10] and
[Bjø10] adopt an SMT-oriented approach to perform QE for LRA: [LNO06] uses
enumeration of assignments by an SMT solver to perform predicate abstraction and
incremental refinement of approximations, [Mon10] combines “lazy” enumeration
with QE over conjunctions of literals, [Bjø10] proposes QE procedures for LRA and
LIA as theory solvers.

QE over bit-vectors can be reduced to QE over the constituent propositional
variables, as well as to QE over LIA [KS08]. [JC11] directly targets bit-vector
arithmetic as modular arithmetic on integers, and presents a QE procedure for linear
modular equalities and disequalities, later extended to also deal with inequalities
[JC13].

3.3.3 Interpolation in Arbitrary First Order Theories

[KV09] introduces an interpolation system to generate interpolants from a class of
proofs, called local proofs, characterized by syntactic requirements at the level of
individual inferences; for a given local proof Π, an interpolant can be obtained as

49 3.3 Generation of Interpolants

a propositional combination of some of the formulae in Π. The algorithm has the
advantage of being independent from the particular theory under account, allowing
to deal with arbitrary first order theories and inference systems, although it is not
applicable to arbitrary proofs. A local proof does not necessarily exist for any for-
mula provable from a set of axioms and assumptions. However, when the presence
of non-local inferences only depends on uninterpreted constants, as it is usually the
case in bounded model checking, non-local proofs can be turned into local ones, by
existentially quantifying the constants [HKV12]. This kind of transformation comes
thus at the price of allowing quantifiers in the interpolants. [KV09] proves instead
that an extension of the quantifier-free superposition calculus with quantifier-free
linear rational arithmetic guarantees local proofs.

[KV09, HKV12] address interpolation in presence of a first order theory T and
a sound inference system. Fixed A and B, an AB-proof of a formula F is so defined:

Definition 3.3.4 (AB-Proof). An AB-proof is a proof such that:

(AB1) For every leaf C : A |=T ∀C and C ∈ LA or B |=T ∀C and C ∈ LB

(AB2) For every inference
C1 · · · Cn

C
: ∀C1, . . . ,∀Cn |=T ∀C .

An AB-proof of ⊥ is called an AB-refutation.

The authors consider, within AB-proofs, the class of local refutations, where
every inference is a local inference:

Definition 3.3.5 (Local Inference). An inference
C1 · · · Cn

C
is called local if it

satisfies the following conditions:

(L1) Either {C1, . . . , Cn, C} ⊆ LA or {C1, . . . , Cn, C} ⊆ LB

(L2) If C1, . . . , Cn are clean, then C is clean as well.

Condition (L1) says that no inference contains both A-local and B-local symbols,
(L2) that inferences do not introduce superfluous symbols.

The interpolation system generates an interpolant for A∧ B as a propositional
combination of clean formulae, conclusions of inferences called symbol eliminating:

Definition 3.3.6 (Symbol Elimination). An inference
C1 · · · Cn

C
is called symbol

eliminating if:

(J1) C is a clean leaf (i.e. n= 0), or

50 3.3 Generation of Interpolants

(J2) C is a clean conclusion and, for some i, Ci is dirty.

The idea is that the conclusion C eliminates dirty symbols present in the premises;

if C is a leaf, either
A

C
or

B

C
, so C is considered as eliminating a dirty symbol in A or

B.

The framework of [KV09, HKV12] identifies in a proof Π an A-subproof Π′

(resp. B-subproof) as follows:

• The last inference of Π′ satisfies (J2) and, for some i, Ci is A-dirty (resp. B-
dirty)

• Π′ is a maximal subproof s.t. every formula belongs to LA (resp. LB)

Inferences where all formulae are clean can equivalently belong to an A-subproof
or to a B-subproof; A-dirty formulae must belong to A-subproofs, while B-dirty to
B-subproofs.

As a consequence of this characterization, the proof Π can be partitioned, start-
ing from the root up to the leaves, into an alternation of A- and B- subproofs: in fact,
given an A- (resp. B-)subproof, its leaves are either leaves of Π or conclusions of
symbol eliminating inferences, representing the roots of B- (resp. A-)subproofs.

The interpolation system recursively constructs an interpolant I for a formula A∧
B from a local refutation of A∧ B, according to the partitioning. I is a propositional
combination of partial interpolants, each associated with a clean leaf or with the
clean root of a maximal subproof, as illustrated in Table 3.1.

Table 3.1. Local Proofs Interpolation System.

Leaf: C [I]

I =

¨

C if A |=T C
C if B |=T C

Inner node:
C1 [IC1

] · · · Cm [ICm
] D

C [I]

I =

¨
∧

(Ci ∨ ICi
)∧
∨

Ci for an A-subproof
∧

(Ci ∨ ICi
) for a B-subproof

In the table, C[I] denotes that the formula C has a partial interpolant I . The
partial interpolant of a clean leaf C is the leaf itself, positive if A |=T C , negated if
B |=T C . The partial interpolant of a clean inference conclusion C , root of a maximal
subproof, is either

∧

(Ci ∨ ICi
) ∧
∨

Ci, in case of an A-subproof,
∧

(Ci ∨ ICi
), in

51 3.3 Generation of Interpolants

case of a B-subproof. Note that the partial interpolant I for an inference conclusion
is computed from the interpolants associated with the clean premises C1, . . . , Cm,
whereas the dirty premises D are not taken into account.

3.3.4 Interpolation in SAT

Among the most commonly used interpolation systems for propositional logic are
the system independently developed by Pudlák [Pud97], Huang [Hua95] and Kra-
jíček [Kra97], and the one by McMillan [McM03], all of them generalized by the
labeled interpolation systems (LISs) of [DKPW10]; the LISs additionally allow to
systematically generate interpolants of different strength from the same proof, mak-
ing them a suitable instrument in our research on logical strength.

These methods generate interpolants from refutations obtained in the resolution
system (introduced in §2.1.1.2), a sound and complete inference system for propo-
sitional logic based on the resolution rule:

C+ ∨ p C− ∨ p

C+ ∨ C−

C+, C− are clauses, C+ ∨ p and C− ∨ p are the antecedents, C+ ∨ C− the resolvent
and p is the pivot of the resolution step. For brevity, to denote that a propositional
variable p is A-local, B-local or AB-common we will write p ∈ A, p ∈ B, p ∈ AB.

3.3.4.1 McMillan and Pudlák’s Interpolation Systems

Tables 3.2 and 3.3 respectively illustrate the interpolation systems of McMillan
[McM03] and Pudlák [Pud97, Hua95, Kra97]; Table 3.4 shows a system “dual” to
that of McMillan, first discussed in [DKPW10]. We refer to them as I t pM , I t pP , I t pM ′ .
In the tables, C |AB denotes the restriction of clause C to AB-common variables; C ∈ A
(resp. C ∈ B) means that C is one of the clauses of the CNF formula A (resp. B). By
C[I] we represent that clause C has a partial interpolant I . I+, I− and I are the par-
tial interpolants respectively associated with the two antecedents and the resolvent
of a resolution step.

3.3.4.2 The Labeled Interpolation Systems

[DKPW10] generalizes the abovementioned interpolation systems by introducing
the notion of labeled interpolation system (LIS), focusing on the concept of logical
strength. If F1 and F2 are two formulae, and F1 |= F2, then we say that F1 is stronger
than F2 (F2 is weaker than F1).

52 3.3 Generation of Interpolants

Table 3.2. McMillan’s interpolation system I t pM .

Leaf: C [I]

I =

¨

C |AB if C ∈ A
> if C ∈ B

Inner node:
C+ ∨ p [I+] C− ∨ p [I−]

C+ ∨ C− [I]

I =

¨

I+ ∨ I− if p ∈ A
I+ ∧ I− if p ∈ B or p ∈ AB

Table 3.3. Pudlák’s interpolation system I t pP .

Leaf: C [I]

I =

¨

⊥ if C ∈ A
> if C ∈ B

Inner node:
C+ ∨ p [I+] C− ∨ p [I−]

C+ ∨ C− [I]

I =

I+ ∨ I− if p ∈ A
I+ ∧ I− if p ∈ B
(I+ ∨ p)∧ (I− ∨ p) if p ∈ AB

Table 3.4. McMillan′’s interpolation system I t pM ′ .

Leaf: C [I]

I =

¨

⊥ if C ∈ A
¬C |AB if C ∈ B

Inner node:
C+ ∨ p [I+] C− ∨ p [I−]

C+ ∨ C− [I]

I =

¨

I+ ∨ I− if p ∈ A or p ∈ AB
I+ ∧ I− if p ∈ B

The system of [DKPW10] relies on a so-called labeling L. Given a refutation
of A∧ B, L assigns a label L(p, C) among {⊥, a, b, ab} to each variable p in each
clause C in the refutation; we assume that no clause is tautological (i.e., it has both a
literal and its negation), so assigning a label to variables or literals is equivalent. The
set of possible labelings is restricted by ensuring that A-local variables have label a
and B-local variables label b; freedom is left for AB-common variables to be labeled

53 3.3 Generation of Interpolants

either a, b or ab. A label ⊥ means that p does not appear in a clause. Labels are
independently set for all variables occurrences in the leaves of the refutation, and
recursively computed for the inner nodes. The label of a variable p in the resolvent
of a resolution step is computed from the labels of p in the antecedents as L(p, C+∨
C−) = L(p, C+ ∨ p) t L(p, C− ∨ p). If a total order b � ab � a �⊥ is set on the
labels, then t represents the join operator of the lattice determined by the total order,
shown in Figure 3.1. For example, a t b = ab and b t⊥ = b. The labels of pivots
are also computed in this way.

ab

a b

⊥

Figure 3.1. The Hasse Diagram of t.

A LIS is defined as a procedure I t pL (shown in Table 3.5) that, given A∧ B, a
refutation Π and a labeling L, outputs a partial interpolant IL(C) for any clause C
in Π; this depends on the clause being in A or B (if leaf) and on the label of the
pivot associated with the resolution step (if inner node). IL = IL(⊥) represents the
interpolant for A∧ B. In Table 3.5, p : α indicates that variable p has label α.

Table 3.5. Labeled interpolation system I t pL.

Leaf: C [I]

I =

¨

C |b if C ∈ A
¬C |a if C ∈ B

Inner node:
C+ ∨ p : α [I+] C− ∨ p : β [I−]

C+ ∨ C− [I]

I =

I+ ∨ I− if αt β = a
I+ ∧ I− if αt β = b
(I+ ∨ p)∧ (I− ∨ p) if αt β = ab

I tpL generalizes I t pM , I t pP and I t pM ′; it can be seen, by comparing Table 3.5
with Tables 3.2, 3.3, 3.4, that the three systems are obtained as special cases by
labeling all the occurrences of AB-common variables with b, ab and a, respectively.
Consider for example I t pM . Given a leaf C ∈ A, C can only contain A-local and
AB-common variables; the first ones must be labeled a, while we choose to label
the second ones b. Similarly happens if C ∈ B. Thus, C |b corresponds to C |AB

54 3.3 Generation of Interpolants

I t pM ′

I t pM

I t pP

� �

� �

I t pL′
I t pL

I t pL⇓L′

I t pL⇑L′

Figure 3.2. Lattice of labeled interpolation systems.

when C ∈ A, and ¬C |a to > when C ∈ B. Given a resolution step with pivot p in
the refutation, the only possible cases are α t β = a and α t β = b; the first case
corresponds to p ∈ A, the second to p ∈ B or p ∈ AB.

The total order over labels can be extended to a partial order over labelings:
L � L′ if, for every clause C and variable p in C , L(p, C)� L′(p, C). This allows to
directly compare the logical strength of the interpolants produced by two systems.
In fact, for any refutation Π of a formula A∧ B and labelings L, L′ such that L � L′,
we have IL |= IL′ and we say that the system I t pL is stronger than I t pL′ .

Two interpolation systems I t pL and I t pL′ can generate new systems I t pL⇑L′

and I t pL⇓L′ by combining the labelings L and L′ in accordance with the relation
�: (L ⇑ L′)(p, C) =max�{L(p, C), L′(p, C)} and, vice versa, (L ⇓ L′)(p, C) =
min�{L(p, C), L′(p, C)}. The collection of LISs over a refutation, together with
the order � and the operators ⇑,⇓, represent a complete lattice, where I t pM is the
greatest element and I t pM ′ is the least, with I t pP being in between (see Figure 3.2).

Figure 3.3 shows the computation of interpolants by means of I t pM and I t pM ′

on an unsatisfiable formula A ∧ B, where A = (p ∨ q) ∧ r and B = (p ∨ r) ∧ q.
The three propositional variables p, q, r are AB-common: M assigns label b to all of
them, while M ′ assigns a. Since M � M ′, we have IM |= IM ′ , where IM = (p∨q)∧ r
and IM ′ = (p ∧ r)∨ q.

pq [p ∨ q] pr [>]
qr [p ∨ q] r [r]

q [(p ∨ q)∧ r] q [>]
⊥ [(p ∨ q)∧ r]

pq [⊥] pr [p ∧ r]
qr [p ∧ r] r [⊥]

q [p ∧ r] q [q]
⊥ [(p ∧ r)∨ q]

Figure 3.3. Computation of interpolants with I t pM , I t pM ′ .

55 3.3 Generation of Interpolants

The Labeled Interpolation Systems for Hyper-Resolution. The framework of
LISs is generalized by [Wei12] from the resolution system to the hyper-resolution
system. The hyper-resolution (HR) system is an inference system that uses a single
inference rule, called the hyper-resolution rule:

p1 ∨ · · · ∨ pn−1 ∨ E D1 ∨ p1 . . . Dn−1 ∨ pn−1
∨

Di ∨ E

where p1, . . . , pn are the pivots, D1, . . . , Dn−1, E are clauses and n ≥ 2. In the fol-
lowing we will refer for brevity to the resolvent as C and to the n antecedents as
C0, . . . , Cn−1, setting C0 = p1 ∨ · · · ∨ pn−1 ∨ E and Ci = Di ∨ pi.

The labeling mechanism is naturally extended to deal with the presence of more
than two antecedents: given an HR step, the label L(p, C) of a variable in the resol-
vent is computed from the labels in the antecedents as L(p, C) = L(p, C0) t · · · t
L(p, Cn−1), according to the diagram of Figure 3.1. Labels for the pivots are com-
puted in a similar way.

The notion of LIS is generalized to that of HR-LIS, and the procedure to compute
interpolants is illustrated in Table 3.6:

Table 3.6. HR labeled interpolation system HR-I t pL.

Leaf: C [I]

I =

¨

C |b if C ∈ A
¬C |a if C ∈ B

Inner node:
p1 ∨ · · · ∨ pn−1 ∨ E [IC0

] D1 ∨ p1 [IC1
] . . . Dn−1 ∨ pn−1 [ICn−1

]
∨

Di ∨ E [I]

I =

IC0
∨
∨n−1

i=1 ICi
if ∀i L(pi, C0)t L(pi, Ci) = a

IC0
∧
∧n−1

i=1 ICi
if ∀i L(pi, C0)t L(pi, Ci) = b

¨

(IC0
∨
∨

pi)∧
∧n−1

i=1 (ICi
∨ pi)

(IC0
∧
∧

pi)∨
∨n−1

i=1 (ICi
∧ pi)

if ∀i L(pi, C0)t L(pi, Ci) = ab

A necessary condition for the generation of interpolants by means of the HR-
LISs is that in each HR step of a refutation all the pivots must be labeled uniformly,
that is ∀i L(pi, C0)t L(pi, Ci) = α, for a certain label α. However, this is not a heavy
restriction, since, as shown in [Wei12], it is always possible to split an HR step into
two or more steps, until a uniform labeling is achieved; in the worst case, an HR
step can be split into a sequence of resolution steps.

Note from Table 3.6 that, whenever n= 2, HR-I t pL reduces to I t pL; if the pivot
label is ab, the additional interpolant (I− ∧ p)∨ (I+ ∧ p) can be generated, which is
logically equivalent to (I− ∨ p)∧ (I+ ∨ p).

56 3.3 Generation of Interpolants

3.3.5 Interpolation in SMT

After covering in §3.3.4 the topic of interpolation in propositional logic (for the
resolution and hyper-resolution systems), in this section we address interpolation in
satisfiability modulo theories.

We introduce in §3.3.5.1 background notions on SMT, and discuss interpola-
tion in the context of lazy SMT solving in §3.3.5.2. We focus on the approaches
of [YM05] and [CGS10], which extend the propositional systems of [Pud97] and
[McM03] to first order theories, by integrating them with procedures that compute
interpolants for conjunctions of atoms in a theory; we reformulate the interpolation
systems of [YM05, CGS10] to provide a uniform notation with §3.3.5.1, §3.3.3, and
to ease the comparison with a more general method which we will present in §3.4.

3.3.5.1 Lazy SMT Solving

SMT extends the expressiveness of purely propositional logic by allowing reasoning
in first order theories, where the semantics of some function and predicate symbols
is fixed a priori; SMT(T) denotes the problem of deciding the satisfiability, w.r.t.
an underlying theory T , of formulae containing propositional variables and atomic
expressions in T .

One of the most successful approaches to SMT(T) relies on efficiently com-
bining engines that respectively deal with the propositional and the theory-specific
aspects of reasoning. Lazy SMT solving [Seb07] consists of integrating a CDCL
SAT solver with one or more theory solvers, algorithms that decide whether a con-
junction of literals is satisfiable in a theory T : the SAT solver treats theory atoms as
if they were propositional variables, and enumerates the truth assignments satisfy-
ing the propositional abstraction of the input formula, while the theory solver checks
the consistency, within the theory, of the sets of atoms corresponding to the assign-
ments. If a conjunction of literals is unsatisfiable in T , then its negation is valid and
is called a T -lemma: intuitively, T -lemmata are formulae that encode facts valid in
the theory T .

Theories of interest in formal verification include equality and uninterpreted
functions (EU F), dealing with atoms of the kind f (d) = g(b, c); linear arithmetic
over the rationals (LRA) or the integers (LIA), with atoms like 5c + 7d − 3e =
2; difference logic logic (DL) and unit-two-variable-per-inequality (U T V PI), sub-
theories of linear arithmetic where atoms are of the kind c − d ≤ 5; bit-vectors
(BV , c[32] +32 d[32]); arrays (AX , read(a, i) = read(write(b, j, e), i)); lists (LI ,
car(d) = car(cdr(e))). Noteworthy SMT solvers include Z3 [dMB08], CVC4 [CVC]
MathSAT [BBC+05a], OpenSMT [BPST10].

57 3.3 Generation of Interpolants

c 6= d ∨ d 6= e ∨ c = e c = d
d 6= e ∨ c = e d = e

c = e c 6= e
⊥

Figure 3.4. An example of resolution refutation in SMT.

An SMT solver can be instrumented to generate, as a SAT solver, a resolu-
tion refutation of an unsatisfiable formula. Refutations in SMT are different from
their propositional counterparts in that they contain both propositional variables and
theory atoms, and the leaves are original clauses as well as T -lemmata made of
original predicates, generated by the prover during the solving process. Figure 3.4
shows a small refutation in the theory of EU F ; note the presence of the lemma
c 6= d ∨ d 6= e ∨ c = e, which is an instance of the transitivity axiom for equality.

3.3.5.2 Interpolation in Lazy SMT Solving

A natural approach to interpolation in lazy SMT is the one proposed in [YM05]. The
authors present a generalization of Pudlák’s method that can compute a theory inter-
polant (as for Definition 3.3.2) for a formula defined on a theory T . Their recursive
algorithm is still based on the notion of partial interpolant, with the difference that,
in SMT refutations, partial interpolants are associated both with the original clauses
of the problem and with the theory lemmata. In this context, we refer to partial
interpolants also as theory partial interpolants.

The algorithm makes use of an external procedure that computes theory partial
interpolants for the leaves in the refutation which correspond to theory lemmata;
after that, Pudlák’s method can be run as if the refutation was purely propositional,
yielding the global theory interpolant for the input formula A∧ B.

The approach of [YM05] provides a method to generate interpolants for a class
of first order theories and combinations of them, by using as black boxes interpola-
tion procedures for the component theories.

The interpolation system T -I t pP is illustrated in Table 3.7, where T PIP(C)
denotes the theory partial interpolant for the theory lemma C , as returned by a
dedicated procedure T PIP . Note that in an SMT refutation a pivot p can be a
propositional variable or stand for a theory atom; in analogy with LISs notation,
p ∈ A, p ∈ B, p ∈ AB respectively mean p is A-dirty, p is B-dirty, p is clean.

An approach similar to that of [YM05] is proposed in [CGS10], with the differ-
ence that [CGS10] builds on the interpolation system developed by McMillan [McM03]
rather than that of Pudlák. The T -I t pM interpolation system is shown in Table 3.8.

58 3.4 Theory Labeled Interpolation Systems

Table 3.7. Pudlák’s interpolation system T -I t pP .

Leaf: C [I]

I =

⊥ if C ∈ A
> if C ∈ B
T PIP(C) if C is a T -lemma

Inner node:
C+ ∨ p [I+] C− ∨ p [I−]

C+ ∨ C− [I]

I =

I+ ∨ I− if p ∈ A
I+ ∧ I− if p ∈ B
(I+ ∨ p)∧ (I− ∨ p) if p ∈ AB

Table 3.8. McMillan’s interpolation system T -I t pM .

Leaf: C [I]

I =

C |AB if C ∈ A
> if C ∈ B
T PIM(C) if C is a T -lemma

Inner node:
C+ ∨ p [I+] C− ∨ p [I−]

C+ ∨ C− [I]

I =

¨

I+ ∨ I− if p ∈ A
I+ ∧ I− if p ∈ B or p ∈ AB

Both [YM05] and [CGS10] assume that refutations do not contain AB-mixed
predicates, characterized by the presence of both A-local and B-local symbols. The
problem of AB-mixed predicates, as well as a proof manipulation approach to re-
move such predicates from refutations, will be discussed in §5.4.

3.4 Theory Labeled Interpolation Systems

The labeled interpolation systems, introduced in §3.3.4.2, are an effective instru-
ment for the investigation of logical strength in model checking, since they allow
to systematically generate interpolants of different strength from the same resolu-
tion refutation; however, their applicability is restricted to the ambit of propositional
logic.

In this section we address such limitation by presenting in §3.4.1 a new frame-

59 3.4 Theory Labeled Interpolation Systems

work, the theory labeled interpolation systems (T -LISs), that extends LISs to satis-
fiability modulo theories, and show in §3.4.2 its instantiation in the theory of differ-
ence logic.

Soundness of SMT Interpolation. In §3.3.5.2 we discussed two interpolation sys-
tems that generate theory interpolants in the context of lazy SMT, [YM05] and
[CGS10]; they respectively build upon Pudlák’s [Pud97] and McMillan’s [McM03]
propositional systems by combining them with dedicated procedures to compute
theory partial interpolants for theory lemmata.

An important feature, common to the two approaches, is that the soundness of
the interpolation systems is proved by inductive reasoning: it is shown in fact that
the partial interpolant I(C) of each clause C in a refutation satisfies an invariant
property, and that this property, at the level of the refutation root, reduces to the
conditions that define Craig interpolants. Assuming an unsatisfiable A ∧ B and a
reference theory T , in [YM05] a partial interpolant must satisfy:

A∧¬(C |A∨ C |AB) |=T I(C)

B ∧¬(C |B ∨ C |AB)∧ I(C) |=T ⊥ (3.2)

LI(C) ⊆LAB ∪LT

while in [CGS10]:

A∧¬(C |A) |=T I(C)

B ∧¬(C |B ∨ C |AB)∧ I(C) |=T ⊥ (3.3)

LI(C) ⊆LAB ∪LT

It is easy to see that both sets of requirements reduce to the definition of interpolant
for C =⊥.

These invariants also influence how theory partial interpolants for theory lem-
mata are computed by means of an ad-hoc procedure T PI . Consider a theory lemma
C : C is a valid formula in T , while ¬C is unsatisfiable. Moreover, ¬C can be repre-
sented as ¬(C |A∨C |AB∨C |B), depending on where the symbols of A, B appear in the
literals of C . Note that a theory atom in C does not necessarily appear in A or in B,
since it might have been introduced e.g. at solving time (see §5.4); still, it contains
symbols originally present in A, B.

T PI receives as input the unsatisfiable conjunction of literals ¬C , splits it into an
A part D1 (including ¬C |A) and a B part D2 (including ¬C |B), assigning the literals
in ¬C |AB to either part, and computes a formula I(C) for D1 ∧ D2 that satisfies:

60 3.4 Theory Labeled Interpolation Systems

D1 |=T I(C)

D2 ∧ I(C) |=T ⊥ (3.4)

LI(C) ⊆ (LD1
∩LD2

)∪LT

For an appropriate assignment of the literals in ¬C |AB to D1 and D2, (3.4) corre-
sponds to:

¬C |A∧¬C |AB |=T I(C)

¬C |B ∧¬C |AB ∧ I(C) |=T ⊥
LI(C) ⊆LAB ∪LT

and to:

¬(C |A) |=T I(C)

¬C |B ∧¬C |AB ∧ I(C) |=T ⊥
LI(C) ⊆LAB ∪LT

I(C) thus satisfies the requirements of partial interpolant defined in (3.2) and
(3.3).

Soundness of LISs. Consider now the labeled interpolation systems. In [DKPW10]
the soundness of a system I t pL is proved by showing that, for each clause C and cor-
responding partial interpolant I(C) in the refutation of an unsatisfiable conjunction
A∧ B, the following invariant holds:

A∧¬(C |a ∨ C |ab) |= IL(C)

B ∧¬(C |b ∨ C |ab)∧ IL(C) |=⊥ (3.5)

LIL(C) ⊆LAB

We discussed how Pudlák’s and McMillan’s interpolation systems I t pP , I t pM

can be regarded as instances of the LISs, obtained by labeling all AB-common
propositional variables respectively as ab and as b. We will apply the same kind
of reasoning to prove that (3.5), when generalized to the level of first order theories,
subsumes both (3.2) and (3.3).

61 3.4 Theory Labeled Interpolation Systems

An invariant is also the basis on which the relationship between labelings and
interpolant strength is established in [DKPW10]; given two labelings such that L �
L′, the interpolants IL and IL′ , generated for a each clause C in a refutation, satisfy:

IL(C) |= IL′(C)∨ C |AB (3.6)

3.4.1 Interpolant Strength in SMT

Our goal is to make use of (3.5) and (3.6) to develop an extension of LISs to SMT.
To this end, we first need to lift the notion of labeling to that of T -labeling:

Definition 3.4.1 (T -Labeling). A T -labeling is a function L that assigns a label
L(p, C) among {⊥, a, b, ab} to each atom p in each clause C in a refutation of A∧B.
A-dirty atoms have label a, B-dirty atoms have label b; clean atoms in the clauses of
A∧ B can have label a, b, ab, clean atoms in theory lemmata can have label a, b.

Note that the above definition does not correspond to labeling atoms appearing
only in A as a, atoms appearing only in B as b and common atoms as b, a, ab, as in
the propositional case. In fact, A-dirty atoms must appear in A or in theory lemmata,
B-dirty in B or in theory lemmata, clean atoms can belong to A, to B, to both or to
theory lemmata. Remember that refutations are assumed not to contain AB-mixed
predicates.

As in the LISs, labels are independently set for all atoms occurrences in the
leaves of the refutation, and recursively computed for the inner nodes, according to
the join operator t introduced in §3.3.4.2.

We can now proceed to the generalization of a LIS to a theory LIS:

Definition 3.4.2 (Theory Labeled Interpolation System (T -LIS)). A theory labeled
interpolation system (T -LIS) is a procedure T -I t pL that, given A, B defined on a
theory T , a refutation, a labeling L, and a procedure T PIL, outputs a theory partial
interpolant IL(C) for each clause C in the refutation. If C is an original clause, IL(C)
satisfies the following constraints:

A∧¬(C |a ∨ C |ab) |=T IL(C)

B ∧¬(C |b ∨ C |ab)∧ IL(C) |=T ⊥ (3.7)

LIL(C) ⊆LAB ∪LT

62 3.4 Theory Labeled Interpolation Systems

If C is a theory lemma, we require:

C |a |=T IL(C)

C |b ∧ IL(C) |=T ⊥ (3.8)

LIL(C) ⊆LAB ∪LT

Note that the conditions of (3.8) imply those of (3.7).

Due to the given definition, the invariant that in LISs guarantees the relationship
between labelings and interpolant strength can be naturally extended to T -LISs as:

IL(C) |=T IL′(C)∨ C |AB (3.9)

Table 3.9. Theory Labeled Interpolation System T -I t pL.

Leaf: C [I]

I =

C |b if C ∈ A
¬C |a if C ∈ B
T PIL(C) if C is a T -lemma

Inner node:
C+ ∨ p : α [I+] C− ∨ p : β [I−]

C+ ∨ C− [I]

I =

I+ ∨ I− if αt β = a
I+ ∧ I− if αt β = b
(I+ ∨ p)∧ (I− ∨ p) if αt β = ab

Based on [CGS10, YM05], a T -LIS (shown in Table. 3.9) generalizes a LIS by
explicitly considering the presence of theory lemmata as leaves. It is parametric in
a procedure T PIL able to compute a theory partial interpolant for any T -lemma C ;
T PIL must be compliant with (3.7), (3.8), (3.9).

The approaches of [YM05] and [CGS10], respectively characterized by the in-
variants of (3.2) and (3.3), are special cases of (3.7). Suppose in fact that all clean
atoms are labeled ab; then C |a = C |A, C |b = C |B, C |ab = C |AB, so that C |a ∨ C |ab =
C |A ∨ C |AB and C |b ∨ C |ab = C |B ∨ C |AB. Suppose now that clean atoms are given
label b; then C |a = C |A, C |b = C |B ∨ C |AB, C |ab = ⊥, so that C |a ∨ C |ab = CA and
C |b ∨ C |ab = C |B ∨ C |AB.

63 3.4 Theory Labeled Interpolation Systems

The definition we give here has the advantage of explicitly relying on the invari-
ant of (3.5) extended to a theory T ; the consequence is that, to show that a T -LIS
T -I t pL is sound for a particular T PIL, it is necessary and sufficient to prove that
T PIL indeed generates formulae satisfying (3.8) and (3.9).

We put our approach to the test by applying it to interpolation in the theory of
difference logic (DL).

3.4.2 Interpolation in Difference Logic

In DL theory atoms are of the form d − e ≤ c where d, e are uninterpreted con-
stants and c is a numeric constant, integer (I DL) or rational (RDL). Checking the
consistency of a conjunction of atoms in DL relies on building a directed graph,
where nodes are uninterpreted constants and there is an edge d

c→ e for each atom
d ≤ e + c. The conjunction of atoms is unsatisfiable if and only if the graph has a
cycle of negative weight [Seb07] (as in Figure 3.5); moreover, a theory interpolant
can be computed based on the structure of the cycle, as shown in [CGS10].

Consider a theory lemma C in a refutation of A∧B; C is unsatisfiable and a cycle
can be built as a witness of unsatisfiability. The edges in the cycle are partitioned
into A-edges, B-edges and AB-edges, depending on whether the corresponding atoms
are A-dirty, B-dirty or clean; note that the methods of [Seb07] do not introduce AB-
mixed atoms in a refutation. The AB-edges are assigned, according to some criterion,
to the A-edges and the B-edges.

We can compute a summary of a set of A-edges if some consecutive edges, as-
sociated with DL atoms, are replaced by new edges associated with the sums of
these atoms, so that in the end all atoms are clean (i.e., all A-local variables have
been removed). A maximum and a minimum summary are summaries of maxi-
mum and minimum size; they respectively correspond to summing atoms exactly
as needed to remove A-local symbols, and to summing atoms as much as possible.
Consider in Figure 3.5 the sequence of edges d1

0→ d2 · · · d5: a maximum summary
is d1

−1→ d3
0→ d5 (associated with d1 ≤ d3−1∧d3 ≤ d5), while a minimum summary

is d1
−1→ d5 (associated with d1 ≤ d5− 1).

A summary of all the A-edges in the cycle yields a theory interpolant; the result-
ing formula is in fact clean, implied by the A-edges and unsatisfiable in conjunction
with the B-edges. Note that a sum of atoms is implied by the conjunction of the
atoms; for this reason the maximum summary of the A-edges is a theory interpolant
stronger than the minimum summary.

Different interpolants can be obtained from the cycle of Figure 3.5, depending
on (i) the summary of A-edges and (ii) the assignment of the AB-edges to A-edges or

64 3.4 Theory Labeled Interpolation Systems

d9 d1

d2

d3

d4

d5d6

d7

d8

0

-1

0

0

0

0

0

0

0

Figure 3.5. Example of a cycle of negative weight. Arrows denote A-edges, dotted
arrows B-edges, dashed arrows AB-edges. Red symbols are A-local, blue B-local,
purple AB-common.

to B-edges. The four interpolants are:

(1) d1 ≤ d5− 1 : minimum summary, d7
0→ d8 assigned to B-edges

(2) d1 ≤ d5− 1∧ d7 ≤ d8 : minimum summary, d7
0→ d8 assigned to A-edges

(3) d1 ≤ d3− 1∧ d3 ≤ d5 : maximum summary, d7
0→ d8 assigned to B-edges

(4) d1 ≤ d3 − 1 ∧ d3 ≤ d5 ∧ d7 ≤ d8 : maximum summary, d7
0→ d8 assigned to

A-edges

The interpolants produced by means of the syntactic manipulations of (i) and (ii)
are of different strength, and related by logical implication in the following manner:
(2)⇒(1), (4)⇒(3), (4)⇒(2), (3)⇒(1) in DL, (3) and (2) are incomparable.

(i) and (ii) are the basis on which to define a DL-LIS. A DL-labeling gives label
a to a clean atom if it is assigned to the A-edges, b if it is assigned to the B-edges.
Any theory interpolant I obtained for a conjunction of DL atoms by computing a
summary of the edges with label a could be in principle used as a theory partial
interpolant in the DL-LISs, as proved by the following result:

Theorem 3.4.1. Let T PIL be a procedure that computes a theory interpolant IL(C)
for a DL-lemma C , as a summary of the atoms labeled a in the cycle of negative
weight built over C . Then IL(C) satisfies (3.8).

Proof. A DL-labeling assigns label a or b to all atoms in C , so C = C |a ∨ C |b.
Since C is a DL-lemma, then C |a ∧ C |b |=DL ⊥. Let IL(C) be any clean summary of

65 3.4 Theory Labeled Interpolation Systems

C |a; by the above considerations, C |a |=DL IL(C) and IL(C)∧ C |b |=DL ⊥, moreover
LIL(C) ⊆LAB ∪LDL. So IL(C) is a theory partial interpolant according to (3.8).

However, the use of arbitrary summaries does not guarantee that the theory par-
tial interpolants obtained with different labelings can be related in terms of logical
strength; for example, the interpolants (2) and (3) are not comparable. Thus, in
order to satisfy (3.9), we restrict ourselves to the strongest theory interpolants, i.e.
maximum summaries:

Theorem 3.4.2. Let T PIL be a procedure that computes a theory interpolant IL(C)
for a DL-lemma C , as a maximum summary of the atoms labeled a in the cycle of
negative weight built over C . Then, given two labeling functions L, L′ s.t. L � L′,
IL(C) |=DL IL′(C)∨ C |AB.

Proof. L � L′ implies that some of the AB-edges labeled by b in L are instead
labeled by a in L′; this in turn yields that IL′(C) corresponds to IL(C) plus some
additional conjuncts D which are a subset of the conjuncts of C |AB, that is IL′(C) =
IL(C)∧ D. So we have:

IL(C)⇒

(IL(C)∧ D)∨ D⇒

(IL(C)∧ D)∨ C |AB =

IL′(C)∨ C |AB

and (3.9) is satisfied, since F1 |= F2 implies F1 |=T F2 for any F1, F2,T .

3.4.3 Summary and Future Developments

We introduced the new framework of T -LISs that extends the labeled interpolation
systems from propositional logic to first order theories. The T -LISs generalize the
approaches to SMT interpolation of [YM05] and [CGS10], allowing to obtain inter-
polants of different logical strength from the same proof, provided that a procedure
T PI is available to generate theory partial interpolants according to (3.8) and (3.9).
We then discussed interpolation in difference logic and showed an instantiation of
the T -LISs to this theory.

Future work can address the development of procedures T PI tailored to other
theories, where methods exist to compute theory interpolants for a given conjunction
of atoms: these include linear rational arithmetic, unit-two-variables-per-inequality,
equality and uninterpreted functions, lists. Besides individual theories, combina-
tions of them can also be taken into account, in the Nelson-Oppen setting or in the
delayed theory combination framework, as discussed in [YM05, CGS10].

66 3.5 A Parametric Interpolation Framework for First Order Theories

3.5 A Parametric Interpolation Framework for First Or-
der Theories

We discussed in §3.2 the challenge of determining what features of interpolants are
most relevant to verification, and justified the adoption of logical strength and struc-
ture as parameters with respect to which the quality of interpolants can be evaluated.

In this section we provide the theoretical formalization of a parametric interpo-
lation framework for arbitrary theories and inference systems, which supports the
generation of multiple interpolants of different strength and structure from the same
proof (§3.5.1). It can generate quantifier-free interpolants on examples where cur-
rent methods are only able to compute quantified interpolants and provides flexibil-
ity in adjusting logical expressiveness, yielding interpolants that are stronger/weaker
than the ones generated by current methods.

The development of the new framework is based on the characterization of a
class of interpolation algorithms, relying on recursive procedures that generate in-
terpolants from refutations; we show how the local proofs framework of [KV09,
HKV12] (§3.5.2) and the LISs of [DKPW10, Wei12] for the resolution and hyper-
resolution systems (§3.5.3) belong to this class, and how they can be considered
instantiations of our method.

Interpolation Example. We start with an example showing the interpolant gener-
ation capabilities of the new framework.

Example 3.5.1. Let us take ∀z(z = c) ∧ a = c ∧ g(b) = g(h) as A, and f (a) 6=
f (h)∧ h= b as B. Then, c, g are A-local symbols, a, b, h are AB-common, and f is
B-local. Clearly, A∧B is unsatisfiable. A refutation Π of A∧B is given in Figure 3.6.
A possible interpolant of A and B is the quantified formula ∀z(z = a), which would
be obtained, for example, by the interpolation system of [KV09].

∀z(z = c) a = c
∀z(z = a)

a = b
f (a) = f (b)

f (a) 6= f (h)
h= b

f (h) = f (b)
f (a) 6= f (b)

⊥

Figure 3.6. Local refutation Π of A∧ B.

However, our method is able to compute a = b and h 6= b ∨ (a = b ∧ h= b) as
interpolants of A∧ B from the refutation of Figure 3.6, besides ∀z(z = a). Note

67 3.5 A Parametric Interpolation Framework for First Order Theories

that these two additional formulae are quantifier-free, and of different strength:
our method thus allows to compute quantifier-free interpolants for problems on
which [KV09] could only derive quantified interpolants. When addressing quantifier-
free inference systems, for example the propositional hyper-resolution system, our
approach also generates a range of quantifier-free interpolants, including those com-
ing from [Wei12]. The main advantage provided by our framework comes with the
flexibility of choosing between multiple interpolants and generating interpolants of
different structure and strength, with or without quantifiers, from the same proof.

3.5.1 A Parametric Interpolation Framework

In this section we present a new interpolation framework that describes a class
of recursive interpolation systems computing partial interpolants from refutations.
These procedures start by deriving partial interpolants for the leaves; then, they de-
rive partial interpolants for (some of) the inner nodes, by relying on the previously
computed partial interpolants.

We begin by defining the notion of partial interpolant, then we illustrate a para-
metric interpolation system in Algorithm 5, and discuss the soundness of our ap-
proach. The parametric system will be later instantiated into two specific interpola-
tion algorithms, in §3.5.2 and §3.5.3.

In the following we assume an underlying first order theory T on which formu-
lae are defined; for brevity |= can stand for |=T and LAB for LAB ∪LT . Let Π be
an AB-refutation of A∧ B. Similarly to [KV09], we generate an interpolant I of A
and B such that I is a propositional combination of formulae of Π. Our framework
is parametric in a chosen partition of Π, i.e. a set of proofs P = {Π′i} such that (i)
each Π′i is a subproof of Π, (ii) a leaf of a subproof Π′i represents the root of another
subproof Π′j or a leaf of Π, (iii) each inference of Π belongs to some Π′i ∈ P . We
call the leaves of a subproof Π′i ∈ P subleaves of Π′i; note that a subleaf might also
be a leaf of Π. Similarly, the root of a subproof Π′i is called a subroot of Π′i. The
aim of our algorithm is to build an interpolant from Π, by using the partition P of
Π. To this end, we first define the notion of a partial interpolant of a formula C .
We are then interested in computing the partial interpolants of the subroots C of the
subproofs in P .

Definition 3.5.1. [Partial Interpolant] Let C be a formula, and let f and g denote
functions over formulae such that f (⊥) = g(⊥) = ⊥. A formula IC is called a
partial interpolant of C with respect to A and B if it satisfies:

A |= IC ∨ f (C) B |= IC ∨ g(C) IC ∈ LAB (3.10)

68 3.5 A Parametric Interpolation Framework for First Order Theories

Note that when C is ⊥, a partial interpolant IC is an interpolant of A and B, since
we have A |= IC and B |= IC . We also note that Definition 3.5.1 generalizes the
notion of C-interpolants from [KV09]. Namely, by taking f (C) = C and g(C) = C
a partial interpolant IC is just a C-interpolant in the sense of [KV09], when C is
clean.

Let us emphasize that in Definition 3.5.1 we are not restricted to a particular
choice of f and g, which can be arbitrary functions over formulae. For example,
the value of f (C) and g(C) might not even depend on C , or f and g can be defined
using P ; the only restriction we impose is that (3.10) holds. Such a generality
allows to build various (partial) interpolants, as presented later in §3.5.2 and §3.5.3.

Given a partition P of Π, we first compute partial interpolants of the leaves of
Π. Next, for each subproof Π′i ∈ P with root C and leaves C1, . . . , Cn, we build a
partial interpolant IC of C , proceeding inductively. We use the subleaves C1, . . . , Cn,
and respectively compute their partial interpolants IC1

, . . . , ICn
. IC is then obtained

as a propositional combination of (some of) C , C1, . . . , Cn, and IC1
, . . . , ICn

As a con-
sequence, a partial interpolant of the root ⊥ of Π is an interpolant I of A and B.

When computing partial interpolants of a formula C , we make a case distinction
whether C is a leaf (base case) or a subroot of Π (induction step). We now ad-
dress each case separately and formulate requirements over a formula to be a partial
interpolant of C (see (3.11) and (3.14)).

Partial Interpolants of Leaves. Let C be a leaf of Π. Then, by the property (AB1)
of AB-proofs (see §3.3.3), we need to distinguish between A |= C and B |= C . The
following conditions over a partial interpolant IC of C are therefore imposed in order
to satisfy (3.10):

A |= C ∧ f (C)→ IC B |= IC → g(C) IC ∈ LAB if A |= C

A |= f (C)→ IC B |= IC → C ∨ g(C) IC ∈ LAB if B |= C (3.11)

Partial Interpolants of Subroots. Let C be the root of a subproof Π′ of Π. We
assume that Π′ consists of more than one formula (otherwise, we are in the base
case) and that the leaves of Π′ are C1, . . . , Cn. By the property (AB2), we conclude
∧

Ci |= C . By the induction hypothesis over C1, . . . , Cn, we assume that the partial
interpolants IC1

, . . . , ICn
of the subleaves Ci are already computed. Using (3.10), we

have:
A |= ICi

∨ f (Ci) B |= ICi
∨ g(Ci) ICi

∈ LAB (3.12)

69 3.5 A Parametric Interpolation Framework for First Order Theories

From a simple combination of
∧

Ci |= C and (3.12), we have:

A |=
∧

(ICi
∨ f (Ci))∧ (
∨

Ci ∨ C) B |=
∧

(ICi
∨ g(Ci))∧ (
∨

Ci ∨ C) (3.13)

Using (3.10) in conjunction with (3.13), we derive the following constraints over a
partial interpolant IC of C :

A |=
∧

(ICi
∨ f (Ci))∧ (
∨

Ci ∨ C)∧ f (C)→ IC IC ∈ LAB

B |= IC →
∨

(ICi
∧ g(Ci))∨ (
∧

Ci ∧ C)∨ g(C) (3.14)

Parametric Interpolation Framework. Our interpolation system is given in Algo-
rithm 5. It takes as input an AB-proof Π, a partitionP of Π, and the functions f and
g. In addition, Algorithm 5 depends on a construct function which builds partial
interpolants of leaves and subroots of Π, by using f and g. That is, for a formula
C , construct returns a set Φ of partial interpolants IC by making a case distinction
whether C is a leaf or a subroot of Π. Hence, setting fC = f (C), gC = g(C), fi =
f (Ci), gi = g(Ci), Ii = I(Ci), construct is defined as:

const ruct(C , Ci, Ii, fC , gC , fi, gi) =

¨

Φ1 if C is a leaf
Φ2 if C is a subroot

(3.15)

where each IC ∈ Φ1 satisfies (3.11) and each IC ∈ Φ2 satisfies (3.14). Note that
the arguments Ci, ICi

, f (Ci), g(Ci) of construct become trivially empty whenever C
is a leaf. For simplicity of notation, we therefore write const ruct(C , f (C), g(C))
whenever C is a leaf. The behavior of construct, in particular the choice of Φ1 and
Φ2, is specific to the inference system in which Π was produced. We will address
choices of Φ1 and Φ2 in §3.5.2 and §3.5.3.

Assuming construct, f , g are fixed, Algorithm 5 returns an interpolant I of A and
B as follows. First, the leaves of Π are identified (line 2); for each leaf C of Π, a set
Φ1 of partial interpolants satisfying (3.11) is constructed, then, the partial interpolant
of C is selected from Φ1 (line 5). Next, partial interpolants of the subroots C of Π
are recursively computed (lines 11-19); to this end, each subproof Π′ ∈ P with root
C and leaves C1, . . . , Cn is analyzed. A set Φ2 of partial interpolants of C is built by
using the partial interpolants of C1, . . . , Cn (line 14), and the partial interpolant of C
is selected from Φ2 (line 15). Finally, the partial interpolant of ⊥ is returned as the
interpolant of A and B (line 21).

70 3.5 A Parametric Interpolation Framework for First Order Theories

Input: A, B s.t. A∧ B |=⊥, AB-refutation Π of A∧ B, partition P of Π,
functions f , g, construct; f and g satisfy (3.10), construct produces
clean formulae

Output: Interpolant I for A∧ B
1 // Compute partial interpolants of leaves
2 L←leaves(Π)
3 for each formula C ∈ L do
4 Φ1←construct(C , f (C), g(C))
5 IC ←select(Φ1)
6 end
7 // Compute partial interpolants of subroots
8 I ←
⋃

C∈L IC , where I [C]← IC

9 P∗ = {}
10 repeat
11 for each Π′ in P such that leaves(Π′)⊆ L do
12 C ←root(Π′)
13 for each Ci ∈ leaves(Π′) do ICi

←I [Ci]
14 Φ2←construct(C , Ci, ICi

, f (C), g(C), f (Ci), g(Ci))
15 IC ←select(Φ2)
16 I ←I ∪ {IC}
17 L← L ∪ {C}
18 end
19 P∗←P∗ ∪ {Π′}
20 until P∗ =P
21 return I [⊥]

Algorithm 5: Parametric Interpolation System.

Algorithm 5 depends on the choice of f , g, and construct, as well as of the
partition P ; selec t denotes a function that picks and returns a formula from a set of
formulae. A parametric interpolation framework is thus implicitly defined by f , g,
construct, and P , yielding different interpolation algorithms based on Algorithm 5.

In the sequel we present two concrete choices of f , g and construct, together
with P . The first one, illustrated in §3.5.2, gives rise to an interpolation procedure
for arbitrary first order inference systems. The second one, discussed in §3.5.3,
addresses the propositional hyper-resolution system.

71 3.5 A Parametric Interpolation Framework for First Order Theories

3.5.2 Interpolation in First Order Systems

In this section we present an interpolation procedure for arbitrary first order infer-
ence systems, by fixing the definition of f , g, construct and P in Algorithm 5.

Definition of f and g. We take f and g such that f (C) = g(C) = C , for ev-
ery formula C . Clearly, the condition f (⊥) = g(⊥) = ⊥ from Definition 3.5.1 is
satisfied.

Definition of P . We are interested in a special kind of partition, which we call
AB-partition and define below.

Definition 3.5.2. [AB-partition] Let Π be an AB-proof and consider a partition P =
{Π′j} of Π into a set of subproofs Π′j. P is called an AB-partition if the following
conditions hold:

• the subroot C of each Π′j is clean;

• the subleaves Ci of each Π′j satisfy one of the following conditions: (a) every Ci is
clean, or (b) if some of the Ci are dirty, then the dirty subleaves C j are also leaves
of Π and C j are either all A-dirty or all B-dirty. Then, a dirty subleaf C j cannot
contain both A-local and B-local symbols.

In this section we fix P to be an AB-partition. We are now left with defining the
input function construct of Algorithm 5. We make a case distinction on the subroots
of the proof, and define the sets Φ1 and Φ2 of partial interpolants.

Definition of construct for Partial Interpolants of Leaves. Let C be a leaf of Π.
Since f (C) = g(C) = C , (3.11) yields the following constraints over IC :

A |=⊥→ IC B |= IC → C IC ∈ LAB if A |= C

A |= C → IC B |= IC →> IC ∈ LAB if B |= C

In principle, any formula IC ∈ LAB such that |= C → IC if A |= C , and |= C → IC

if B |= C can be chosen as partial interpolant. Depending on whether C is clean or
not, we define the set Φ1 of partial interpolants as follows:

• If C is clean, we take: Φ1 =

¨

{C ,⊥} if A |= C
{C ,>} if B |= C

• If C is dirty, we take: Φ1 =

¨

{⊥} if A |= C
{>} if B |= C

72 3.5 A Parametric Interpolation Framework for First Order Theories

Definition of construct for Partial Interpolants of Subroots. Let C be the root
of a subproof Π′ ∈ P , and let C1, . . . , Cn denote the subleaves of Π′. As f (C) =
g(C) = C and f (Ci) = g(Ci) = Ci, (3.14) yields the following constraints over
IC ∈ LAB:

A |=
∧

(ICi
∨ Ci)∧ (
∨

Ci ∨ C)∧ C → IC

B |= IC →
∨

(ICi
∧ Ci)∨ (
∧

Ci ∧ C)∨ C (3.16)

Any formula IC ∈ Φ2 needs to satisfy (3.16). A potential set Φ2 of partial inter-
polants consists of the following ten formulae (annotated from (a) to (j)):

(a)
∧

(ICi
∨ Ci)∧ (
∨

Ci ∨ C)∧ C (f)
∨

(ICi
∧ Ci)

(b)
∧

(ICi
∨ Ci)∧ (
∨

Ci) (g)
∨

(ICi
∧ Ci)∨ C

(c)
∧

(ICi
∨ Ci)∧ (
∨

Ci ∨ C) (h)
∨

(ICi
∧ Ci)∨ (
∧

Ci ∧ C)
(d)
∧

(ICi
∨ Ci)∧ C (i)

∨

(ICi
∧ Ci)∨ (
∧

Ci)
(e)
∧

(ICi
∨ Ci) (j)

∨

(ICi
∧ Ci)∨ (
∧

Ci ∧ C)∨ C

(3.17)

It is not hard to argue that every formula from (3.17) satisfies (3.16). However,
not any formula from (3.17) could be used as a partial interpolant IC , as partial
interpolants need to be clean. Note however that P is an AB-partition; this means
that the root of Π′ is clean, yielding that f (C) = g(C) = C are clean formulae.
Hence, whether a formula from (3.17) is clean depends only on whether the leaves
of Π′ are also clean. To define the set Φ2, we therefore exploit the definition of AB-
partitions and adjust (3.17) to the following three cases. In the sequel we refer by
(a), . . . , (j) to the formulae denoted by (a), . . . , (j) in (3.17).

Case (i). All leaves Ci of Π′ are clean. Any formula from (3.17) is a partial inter-
polant and:

Φ2 = {(a), (b), (c), (d), (e), (f), (g), (h), (i), (j)}

Case (ii). Some leaves of Π′ are A-dirty. Let us write {Ci} = {Dk} ∪ {C j}, where C j

are the clean leaves and Dk denote the A-dirty leaves of Π′. By the definition of AB-
partitions, Dk are also leaves of Π. From property (AB1), we conclude A |=

∧

Dk

and take IDk
=⊥ as the partial interpolants of Dk. From (AB2), we have |=

∨

Ci∨C .
Then from A |=

∧

Dk and |=
∨

Ci ∨ C , we derive A |=
∨

C j ∨ C . Thus, restricting
ourselves to the clean leaves C j, the constraints (3.14) become:

A |=
∧

(IC j
∨ C j)∧ (
∨

C j ∨ C)∧ C → IC B |= IC →
∨

(IC j
∧ C j)∨ C

73 3.5 A Parametric Interpolation Framework for First Order Theories

Let (a′),(b′),(c′),(f′),(g′) denote the formulae obtained from (a),(b),(c),(f),(g), by
replacing Ci with C j; then any formula (a′),(b′),(c′),(f′),(g′) can be taken as a partial
interpolant IC of C . Hence:

Φ2 = {(a′), (b′), (c′), (f′), (g′)}

Case (iii). Some leaves of Π′ are B-dirty. Using the notation of Case (ii), (3.14)
imposes the following constraints over IC :

A |=
∧

(IC j
∨ C j)∧ C → IC , B |= IC j

→
∨

(IC j
∧ C j)∨ (
∧

C j ∧ C)∨ C .

Let (d′),(e′),(h′),(i′),(j′) denote the formulae obtained from (d),(e),(h),(i),(j), by
replacing Ci with C j. Then, (d′),(e′),(h′),(i′),(j′) are partial interpolants IC of C .
Hence:

Φ2 = {(d′),(e′),(h′),(i′),(j′)}

Interpolation Algorithm for First Order Inference Systems. Algorithm 5 yields
a new interpolation procedure for arbitrary first order inference systems. It takes
as input an AB-refutation Π and an AB-partition P of Π; the functions f , g satisfy
the condition f (C) = g(C) = C , for every C , whereas construct is defined by
using the above given sets Φ1 and Φ2 in (3.15). With these considerations on its
inputs, Algorithm 5 returns an interpolant I of A and B by recursively computing the
partial interpolants of leaves and subroots ofΠ. The (partial) interpolants derived by
Algorithm 5 are of different strength and structure and are generated from the same
proof.

Logical Relations among Partial Interpolants. Figure 3.7 shows the relationship
among the formulae from (3.17) in terms of logical strength. An arrow is drawn
between two formulae denoted by (x) and (y) if (x)|=(y). All implications are valid,
which can be proved by simply applying resolution on (x)∧(y). The logical relations
of Figure 3.7 correspond to Case (i) above; the relations corresponding to Cases (ii)
and (iii) are special instances of Figure 3.7.

The partial interpolants cover a range of degrees of logical strength, and the
choice of each partial interpolant directly affects the strength of the overall inter-
polant returned by Algorithm 5. We can in fact state:

Theorem 3.5.1. Given an AB-refutation Π and an AB-partition P , assume that
partial interpolants have been chosen from the sets Φ1 and Φ2 for each leaf and root

74 3.5 A Parametric Interpolation Framework for First Order Theories

in the subproofs Π′ ∈ P , so that Algorithm 5 yields an interpolant I . Then, if any
partial interpolant IC is replaced by a stronger partial interpolant I ′C , Algorithm 5
generates an interpolant I ′ s.t. I ′ |= I .

Proof. The result follows from the monotonicity of the propositional connectives
∨,∧. Partial interpolants are recursively built by combining previously computed
partial interpolants, taken with positive sign, and other formulae by means of ∨,∧.
Replacing in I every occurrence of a certain IC by means of an I ′C s.t. I ′C |= IC thus
yields a new I ′ s.t. I ′ |= I .

While previous methods, e.g. [JM05, DKPW10, Wei12], also address logical
strength, they are restricted to quantifier-free interpolants. Our approach instead
characterizes interpolants strength in full first order logic, and can be employed in
arbitrary first order theories.

The quality of the generated interpolants indeed depends on the verification tech-
niques in which they are used, so that weaker or stronger interpolants might be ben-
eficial in different verification environments: this subject will be addressed in §3.6.

(a)

(b)

(d)

(c) (e) (f) (h) (i)

(j)(g)

Figure 3.7. Implication graph of partial interpolants in first order inference systems.

The Local Proofs Framework. The interpolation algorithm of [KV09] extracts
interpolants from local proofs or split proofs. An inference in a local proof cannot
use both A-local and B-local symbols; inferences of local proofs are called local
inferences. It is easy to see that local proofs are special cases of AB-proofs.

Given a local AB-proofΠ, by making use of our notation, the algorithm of [KV09]
can be summarized as follows. A partition P of Π is first created such that each
subproof Π′ of Π is an A-subproof or a B-subproof. Next, partial interpolants are
constructed as:

• If C is a clean subleaf of Π, then: Φ1 =

¨

{C} if A |= C
{C} if B |= C

75 3.5 A Parametric Interpolation Framework for First Order Theories

• If C is a clean subroot of a subproof Π′ with leaves C1, . . . , Cn, then C1, . . . , Cn |=
C . Let {C j} denote the set of clean leaves of Π′. Hence, {C j} ⊆ {C1, . . . , Cn} and:

Φ2 =

¨

{
∧

j(C j ∨ IC j
)∧
∨

j C j} if Π′ is an A-dirty subproof
{
∧

j(C j ∨ IC j
)} if Π′ is a B-dirty subproof

It is therefore not hard to prove that the algorithm of [KV09] is a special case of
Algorithm 5. The partial interpolants generated by [KV09] are in fact a subset of
the partial interpolants we compute; in particular, if Π′ is an A-dirty (respectively,
B-dirty) subproof, then the partial interpolant of the subroot C of Π′ in [KV09]
corresponds to our formula (b′) (respectively, (e′)) defined before.

Note that the sets Φ1 and Φ2 computed by [KV09] contain exactly one formula,
giving thus exactly one interpolant, while the cardinality of Φ1 and Φ2 in our method
can be greater than one (lines 4 and 14 of Algorithm 5). Moreover, some of our
interpolants cannot be obtained by other methods, as shown in Example 3.5.1.

Example 3.5.2. We illustrate our first order interpolation system by using the for-
mulae A and B of Example 3.5.1. Consider the AB-refutation Π given in Figure 3.6
and take the AB-partition P = {Π′,Π′′}, where Π′ and Π′′ are respectively given in
Figure 3.8 and Figure 3.9.
By applying Algorithm 5, we first visit the subproof Π′′ and compute Ia=b. Since
Π′′ has A-dirty leaves, the set of partial interpolants corresponding to the root a = b
of Π′′ is: {(a′), (b′), (c′), (f′), (g′)}. Since all the subleaves of Π′′ are dirty leaves,
(a′),(b′),(c′),(f′),(g′) respectively reduce to a = b ∧ a 6= b, ⊥, a = b, ⊥, a = b. The
set of partial interpolants Ia=b is thus given by: {a = b,⊥}.

a = b
f (a) = f (b)

f (a) 6= f (h)
h= b

f (h) = f (b)
f (a) 6= f (b)

⊥

Figure 3.8. Subproof Π′.

∀z(z = c) a = c
∀z(z = a)

a = b

Figure 3.9. Subproof Π′′.

Next, we visit the subproof Π′. As Π′ has B-dirty leaves, the set of partial in-
terpolants corresponding to the root ⊥ of Π′ is {(d′), (e′), (h′), (i′), (j′)}. Since Π′ has
two clean subleaves, namely a = b and h = b, the formulae (d′),(e′),(h′),(i′),(j′)
are simplified, yielding the following set of partial interpolants I⊥: {(Ia=b ∨ a =
b) ∧ (Ih=b ∨ h = b), (Ia=b ∧ a 6= b) ∨ (Ih=b ∧ h 6= b) ∨ (a = b ∧ h = b)}. To de-
rive Ih=b, note that h = b is the only clean leaf of B. Therefore, the set of partial

76 3.5 A Parametric Interpolation Framework for First Order Theories

interpolants Ih=b is given by {>, h 6= b}. Based on these results, the set of (partial)
interpolants I⊥ is finally given by {a = b, h 6= b ∨ (a = b ∧ h= b)}.

The AB-partition we used here is different from the one used in [KV09]. The
flexibility in choosing AB-partitions in Algorithm 5 allows us to derive quantifier-
free interpolants from Figure 3.6.

3.5.3 Interpolation in the Hyper-Resolution System

In this section, we instantiate the parametric interpolation framework in the proposi-
tional hyper-resolution system; we turn Algorithm 5 into an interpolation procedure
for the propositional hyper-resolution system, by fixing the choices of f , g, con-
struct, and P . We also prove that our approach generalizes the work of [Wei12].

We begin by introducing some notation specific to the HR system. For each
clause C and inference in Π, we define two arbitrary subsets ∆C

A ,∆C
B ⊆ ΣAB of AB-

common symbols, where ∆C
A ∪ ∆

C
B = ΣAB. We then write C |A∆C

A
= C |A ∨ C |∆C

A
,

C |B∆C
B
= C |B ∨ C |∆C

B
. It is important to remark that ∆C

A ,∆C
B need not to be the same

for the inferences where C is involved: for example, an AB-common symbol of C
can be treated as A-local in the inference where C is the conclusion, and as B-local
in an inference where C is a premise. With these notations at hand, we now define
the input parameters f , g, construct and P of Algorithm 5 in the HR system.

Definition of f and g. We take f and g such that, for every C :

f (C) = C |A∆C
A

g(C) = C |B∆C
B

(3.18)

Note that f (C)∨ g(C) = C |A∨ C |B ∨ C |AB = C for any C . Similarly to [DKPW10],
f (C) and g(C) separate the symbols of C into sets of A-local and B-local symbols,
where the AB-common symbols in ΣAB can be treated either as A-local, B-local, or
AB-common.

Definition of P . We fix the partition of an AB-proof to a so-called HR-partition,
as defined below.

Definition 3.5.3. [HR-partition] Let Π be an AB-proof and consider a partitionP =
{Π′j} of Π into a set of subproofs Π′j. The partitionP of Π is called an HR-partition
if the following condition holds:

• for each subproof Π′j with root C and leaves C0, . . . , Cn−1, the inference C0 ... Cn−1

C
is

an application of the hyper-resolution rule. That is, for some clauses E, D1, . . . , Dn−1

and literals p1, . . . , pn−1, C0 can be written as p1∨· · ·∨pn−1∨E, C1, . . . , Cn−1 denote
respectively D1 ∨ p1, . . . , Dn−1 ∨ pn−1, and C is

∨

Di ∨ E.

77 3.5 A Parametric Interpolation Framework for First Order Theories

In this section we fix P to be an HR-partition, and proceed to the definition of
the construct function for partial interpolants.

Definition of construct for Partial Interpolants of Leaves. Let C be a leaf of Π.
Note that, if A |= C , then we have C ∈ LA. Similarly, if B |= C then C ∈ LB holds.
Therefore, by using the definition of f and g from (3.18), the constraints of (3.11)
over the partial interpolants IC ∈ LAB reduce to:

A |= C ∧ C |A∆C
A
→ IC B |= IC → C |∆C

B
if A |= C

A |= C |∆C
A
→ IC B |= IB → C ∨ C |B∆C

B
if B |= C

A set Φ1 of partial interpolants is defined as:

Φ1 =

¨

{C∆C
B
} if A |= C

{C |∆C
A
} if B |= C

Definition of construct for Partial Interpolants of Subroots. Let C be the root
of a subproof Π′ ∈ P , and let C0, . . . , Cn−1 denote the leaves of Π′. Further, set
∆i

A = ∆
Ci
A and ∆i

B = ∆
Ci
B . Considering the definitions of f and g from (3.18), the

constraints of (3.14) over the partial interpolants IC ∈ LAB are simplified to:

A |=
∧

(ICi
∨ Ci|A∆i

A
)∧ (
∨

Ci ∨ C)∧ C |A∆C
A
→ IC

B |= IC →
∨

(ICi
∧ Ci|B∆i

B
)∨ (
∧

Ci ∧ C)∨ C |B∆C
B

(3.19)

Any formula IC ∈ Φ2 thus satisfies (3.19). A potential set Φ2 of partial inter-
polants therefore consists of the following ten formulae (similarly to §3.5.2, anno-
tated from (a) to (j)):

(a)
∧

(ICi
∨ Ci|A∆i

A
)∧ (
∨

Ci ∨ C)∧ C |A∆C
A

(f)
∨

(ICi
∧ Ci|B∆i

B
)

(b)
∧

(ICi
∨ Ci|A∆i

A
)∧ (
∨

Ci) (g)
∨

(ICi
∧ Ci|B∆i

B
)∨ C |B∆C

B

(c)
∧

(ICi
∨ Ci|A∆i

A
)∧ (
∨

Ci ∨ C) (h)
∨

(ICi
∧ Ci|B∆i

B
)∨ (
∧

Ci ∧ C)
(d)
∧

(ICi
∨ Ci|A∆i

A
)∧ C |A∆C

A
(i)
∨

(ICi
∧ Ci|B∆i

B
)∨ (
∧

Ci)
(e)
∧

(ICi
∨ Ci|A∆i

A
) (j)

∨

(ICi
∧ Ci|B∆i

B
)∨ (
∧

Ci ∧ C)∨ C |B∆C
B

(3.20)
To use the formulae from (3.20) as partial interpolants we need to ensure that

they are clean. Similarly to §3.5.2, the definition of Φ2 comes by considering the
following three cases.

78 3.5 A Parametric Interpolation Framework for First Order Theories

Case (i). The root C and all leaves Ci of Π′ are clean. As C is clean, we have
C |A∆C

A
= C |∆C

A
and C |B∆C

B
= C |∆C

B
. A similar result for Ci is also derived. The

formulae (a),(d),(g),(j) of (3.20) are therefore partial interpolants in IC . Moreover,
if C = C |∆C

A
, (b),(f),(h) are also partial interpolants. On the other hand, if C = C |∆C

B
,

(c),(e),(i) also yield partial interpolants. We thus have:

Φ2 =

{(a),(b),(d),(f),(g),(h),(j)} if C = C |∆C
A

{(a),(c),(d),(e),(g),(i),(j)} if C = C |∆C
B

{(a),(d),(g),(j)} otherwise

Case (ii). Some leaves of Π′ are A-dirty. We write {Ci}= {Dk} ∨ {C j}, where C j are
the clean leaves and Dk represent the A-dirty leaves of Π′. Let (a′),(b′),(c′),(f′),(g′)
denote the formulae obtained from (a),(b),(c),(f),(g), by replacing Ci with C j. We
then have:

Φ2 =

{(a′),(b′),(f′),(g′)} if C = C |∆C
A

{(a′),(c′),(g′)} if C = C |∆C
B

{(a′),(g′)} otherwise

Case (iii). Some leaves of Π′ are B-dirty. Using the notation of Case (ii), let
(d′),(e′),(h′),(i′),(j′) denote the formulae obtained from (d),(e),(h),(i),(j), by replacing
Ci with C j. Then:

Φ2 =

{(d′),(h′),(j′)} if C = C |∆C
A

{(d′),(e′),(i′),(j′)} if C = C |∆C
B

{(d′),(j′)} otherwise

We will show later how the set Φ2 can be extended by exploiting the peculiarities
of the HR system; in particular, we will decribe how to obtain additional clean
formulae by removing local literals thanks to the HR rule.

Interpolation Algorithm for the HR System. Algorithm 5 yields a new interpo-
lation system for the HR system. It takes as input an AB-refutation Π and an HR-
partition P of Π; the functions f , g satisfy (3.18), whereas construct is defined by
using the above specified Φ1 and Φ2 in (3.15). With such specification, Algorithm 5
computes an interpolant I of A and B in the HR system; our method benefits from
computing partial interpolants of different strength and structure, from the same
proof.

79 3.5 A Parametric Interpolation Framework for First Order Theories

Logical Relations among Partial Interpolants. The logical relations among the
formulae of (3.20) are given in the implication graph of Figure 3.10. Similarly to
Figure 3.7, an arrow in Figure 3.10 is drawn between two formulae denoted by (x)
and (y) if (x)|=(y). Furthermore, an arrow annotated by Í (resp. Ï) in Figure 3.10

(a)

(b)

(d)

(c) (e) (f) (h) (i)

(j)(g)

Í Ï
Í Ï

Figure 3.10. Implication graph of partial interpolants in the HR system.

is drawn between two formulae (x) and (y) if (x)|=(y) under the assumption that
C = C |∆C

A
(resp. C = C |∆C

B
). Figure 3.10 shows that some of the implications do not

always hold: (a)|=(b) and (d)|=(h) only if C = C |∆C
A
, while (c)|=(g) and (i)|=(j) only

if C = C |∆C
B
.

The Labeled Hyper-Resolution Framework. We now relate Algorithm 5 to the ap-
proach of [Wei12] in the HR system. Given an AB-refutation Π, using our notation,
the algorithm of [Wei12] can be summarized as follows:

• If C is a leaf of Π, then:

Φ1 =

¨

C |b if A |= C
C |a if B |= C

• If C is the conclusion of the HR rule with premises C0, . . . , Cn−1, then, for some
literals p1, . . . , pn−1 and clauses D1, . . . , Dn−1, E, we have C0 = p1 ∨ · · · ∨ pn−1 ∨ E,
C1 = D1∨p1, . . . , Cn−1 = Dn−1∨pn−1, and C =

∨

Di∨E. The pivots pi are assumed
to be uniformly labeled in [Wei12]. Then:

Φ2 =

IC0
∨
∨n−1

i=1 ICi
if ∀i L(pi, C0)t L(pi, Ci) = a

IC0
∧
∧n−1

i=1 ICi
if ∀i L(pi, C0)t L(pi, Ci) = b

¨

(IC0
∨
∨

pi)∧
∧n−1

i=1 (pi ∨ ICi
)

(IC0
∧
∧

pi)∨
∨n−1

i=1 (pi ∧ ICi
)

if ∀i L(pi, C0)t L(pi, Ci) = ab

We argue that Algorithm 5 in the HR system generalizes the method of [Wei12]. To
this end, we will show how the behavior of the labeling function on the AB-common
literals can be simulated in our framework, by assigning appropriate sets ∆C

R ,∆C
B to

every clause C in every inference.

80 3.5 A Parametric Interpolation Framework for First Order Theories

Consider a leaf C of the AB-refutation Π, such that C ∈ LA. Using [Wei12], the
A-local literals of C are labeled with a, and the AB-common literals with one of
the labels a, b, ab. The partial interpolant C |b is thus a subclause of C |AB. We
then fix ∆C

B such that C |b = C |∆C
B
, and hence our partial interpolant is also a partial

interpolant of [Wei12]. A similar argument holds when C ∈ LB.

Consider an arbitrary HR inference in Π, with root C and leaves Ci. The goal
is to exploit the HR rule to remove local literals in order to make dirty formulae
clean. This allows to obtain an additional set of partial interpolants for subproofs
containing dirty subleaves/subroots. Let Π′ ∈ P be a subproof with root C and
leaves C0, . . . , Cn−1. As P is an HR-partition, formulae C and Ci are as given in
Definition 3.5.3. Consider now the formulae (d) and (g) from (3.20), and replace C
and Ci with the clauses from Definition 3.5.3. We thus obtain the new formulae (d)
and (g):

(d) (IC0
∨ (E ∨
∨

pi)|A∆0
A
)∧
∧

(ICi
∨ (Di ∨ pi)|A∆i

A
)∧ (
∨

Di ∨ E)|A∆C
A

(g) (IC0
∧ (E ∨
∨

pi)|B∆0
B
)∨
∨

(ICi
∧ (Di ∨ pi)|B∆i

B
)∨ (
∨

Di ∨ E)|B∆C
B

From Figure 3.10, we have (a)|=(d) and (g)|=(j). It can be further derived that
(d)|=(g), since (d)∧ (g) is unsatisfiable as shown below:

(IC0
∨ (E ∨
∨

pi)|A∆0
A
)∧
∧

(ICi
∨ (Di ∨ pi)|A∆i

A
)∧ (
∨

Di ∨ E)|A∆C
A
∧

(IC0
∨ (E ∨
∨

pi)|B∆0
B
)∧
∧

(ICi
∨ (Di ∨ pi)|B∆i

B
)∧ (
∨

Di ∨ E)|B∆C
B
⇒

((E ∨
∨

pi)|A∆0
A
∨ (E ∨
∨

pi)|B∆0
B
)∧
∧

((Di ∨ pi)|A∆i
A
∨ (Di ∨ pi)|B∆i

B
)∧

(
∨

Di ∨ E)|A∆C
A
∧ (
∨

Di ∨ E)|B∆C
B
⇒

(E ∨
∨

pi)∧
∧

(Di ∨ pi)∧
∧

Di ∧ E ⇒ ⊥

The relation (d)|=(g) can be exploited to obtain intermediate pairs of formulae
(x),(y), such that (d)|=(x), (x)|=(y) and (g) |= (y). We now apply the HR rule to
obtain new partial interpolants by removing the local literals of Di and E in (d) and
(g); this gives us the following formulae:

(m) (IC0
∨ E|∆0

A
∨
∨

pi|A∆0
A
)∧
∧

(ICi
∨ Di|∆i

A
∨ pi|A∆i

A
)∧
∧

Di|∆C
A
∧ E|∆C

A

(n) (IC0
∧ E|∆0

B
∧
∧

pi|B∆0
B
)∨
∨

(ICi
∧ Di|∆i

B
∧ pi|B∆i

B
)∨
∨

Di|∆C
B
∨ E|∆C

B

It is always possible to split a HR inference into a sequence of HR inferences
so that a uniform labeling of the pivots is achieved (see [Wei12] and §3.3.4). In

81 3.5 A Parametric Interpolation Framework for First Order Theories

turn, the presence of a uniform labeling allows to further simplify (m) and (n), thus
deriving the partial interpolants of [Wei12] as special cases of our formulae.

We show how the choice of sets ∆A,∆B is affected in our setup, by analyzing
the three possible cases:

(A) if the label is a, then the ∆A,∆B sets are chosen so that, if pi is AB-common,
then pi ∈∆i

A \∆
i
B and pi ∈∆0

A \∆
0
B;

(B) if the label is b then, if pi is AB-common, then pi ∈∆i
B \∆

i
A and pi ∈∆0

B \∆
0
A;

(C) if the label is ab then pi ∈∆i
A∩∆

i
B and pi ∈∆0

A∩∆
0
B.

In case (A), (n) reduces to:

(o) (IC0
∧ E|∆0

B
)∨
∨

(ICi
∧ Di|∆i

B
)∨
∨

Di|∆C
B
∨ E|∆C

B

Formula (o) can be thus also used as an additional partial interpolant inΦ2. A special
case of (o) is the partial interpolant

∨n−1
i=0 ICi

.

In case (B), (m) reduces to:

(p) (IC0
∨ E|∆0

A
)∧
∧

(ICi
∨ Di|∆i

A
)∧
∧

Di|∆C
A
∧ E|∆C

A

Formula (p) can then be also used as a partial interpolant in Φ2. A special case of
(p) is
∧n−1

i=0 ICi
.

In case (C), (m) and (n) can also be used as partial interpolants in Φ2. Special cases
of (m) and (n) are the two partial interpolants of [Wei12].

The relations between Figure 3.10 and the formulae (m), (n), (p), and (o) are
shown in Figure 3.11. Similarly to Figure 3.7, an arrow in Figure 3.11 is drawn
between two formulae denoted by (x) and (y) if (x)|=(y). In addition, an arrow
annotated by ? (respectively, by ∗ and •) is drawn between (x) and (y) if (x)|=(y)
under the assumption that pi ∈ (∆i

A ∩∆
i
B) (respectively, pi ∈ (ΣB\AB ∪ (∆i

B \∆
i
A))

and pi ∈ (ΣA\AB ∪ (∆i
A \∆

i
B))).

Example 3.5.3. Consider a proof Π with an HR inference, as in Figure 3.12. As-
sume that the following partial interpolants are given: I0 = Ip1p2q1

, I1 = Ip1q2
,

I2 = Ip2q3
. We assume that all literals belong to Σ|AB, and the pivots p1 and p2

are both labeled as ab.
The algorithm of [Wei12] yields the partial interpolant Iq1q2q3

= (I0∨ p1∨ p2)∧ (I1∨
p1)∧ (I2∨ p2). W.l.o.g., we assume that the sets∆A,∆B have been chosen such that,

82 3.5 A Parametric Interpolation Framework for First Order Theories

(d) (m) (g)(n)

(o)

(p)

?

•

∗

•

∗

?

Figure 3.11. Additional implication graph of partial interpolants in the HR system.

...
p1p2q1

...
p1q2

...
p2q3

q1q2q3

...

Figure 3.12. AB-proof Π with HR inferences.

for every clause C , all common variables of C are in ∆C
A ∩∆

C
B

1. Then, our method
generates the partial interpolant Iq1q2q3

as the formula (m), simplified below:

I = (I0 ∨ q1 ∨ p1 ∨ p2)∧ (I1 ∨ q2 ∨ p1)∧ (I2 ∨ q3 ∨ p2)∧ q1 ∧ q2 ∧ q3

Our interpolant I , which is stronger than the interpolant I ′ of [Wei12], cannot be
generated in [Wei12]. Moreover, our method can also generate the interpolant I ′

of [Wei12], by applying the HR rule with pivots qi.

We thus conclude that Algorithm 5 generalizes and extends the method of [Wei12]
in a number of ways. While in [Wei12] the label L(p, C) of a variable p in the con-
clusion C of an HR inference is derived in a unique manner from the labels of the
inference premises, in our framework the sets ∆C

A and ∆C
B can be chosen indepen-

dently for every clause C and every inference.
An important aspect of the labeled systems is that they allow to systematically

compare the strength of the interpolants resulting from different labelings. In par-
ticular, in [DKPW10] a total order � is defined over the labels {a, b, ab,⊥} as
b � ab � a �⊥. Then, � is extended to a partial order over labeling functions
L, L′, as follows: L � L′ is defined if, for every clause C and variable p in C ,
L(p, C) � L′(p, C). If L � L′, then the interpolant given by L is stronger than the
one given by L′. Our framework also benefits from such a comparison, since in
any AB-refutation we are able to simulate the labeling function L by an appropriate

1This is case (C). The other choices of ∆R,∆B yield other generalizations of [Wei12].

83 3.5 A Parametric Interpolation Framework for First Order Theories

choice of∆C
A ,∆C

B for every clause in the refutation. Therefore, for any AB-refutation
and labelings L, L′ such that L � L′, the interpolant obtained with L is stronger than
the one obtained with L′.

3.5.4 Related Work

Our approach offers a theoretical characterization of a class of interpolation systems
which have in common specific structural properties, generalizing existing interpo-
lation systems for first order theories and for propositional logic; in particular, we
show how the systems of [KV09, HKV12] and of [DKPW10, Wei12], respectively
illustrated in §3.3.3 and in §3.3.4, can be regarded as special cases of our method in
the context of arbitrary first order and hyper-resolution inference systems.

When compared to [KV09], the differences and benefits of our approach can
be summarized as follows. We derive an algorithm for arbitrary first order theories
and inference systems, which extracts interpolants as propositional combinations
of formulae from a refutation. Our algorithm can be applied to a class of proofs
strictly larger than the class of local proofs in [KV09]; it can also produce a family
of interpolants which contains the interpolants of [KV09]. Within this family, we
relate and compare the interpolants by their logical strength. The results of [KV09]
about the existence of local proofs in the superposition calculus and turning non-
local proofs into local ones in the style of [HKV12] can be naturally extended to our
framework. Remarkably, our method allows to compute quantifier-free interpolants
for problems on which [KV09] can only derive quantified interpolants.

Referring to [Wei12, DKPW10], our approach is different in the following as-
pects. We integrate the hyper-resolution system into our first order interpolation
algorithm, and discuss the applicability of the family of interpolants proposed there.
We then extend the class of proofs from first order theories to arbitrary hyper-
resolution refutations, and show how the structure of the formulae and inference
rules allows to obtain additional interpolants, containing those generated by [Wei12].
Finally, we also compare the produced interpolants by their logical strength.

3.5.5 Summary and Future Developments

In this section we contributed to a theoretical formalization of a generic interpolation
approach, based on the adoption of structure and strength as features that affect the
quality of interpolants, as well as on the characterization of a class of recursive
interpolation systems.

We developed a new parametric interpolation framework for arbitrary first order
theories and inference systems, which is able to compute interpolants of different

84 3.5 A Parametric Interpolation Framework for First Order Theories

structure and strength, with or without quantifiers, from the same proof. We de-
scribed the framework in relation with well-known interpolation algorithms, that
respectively address local proofs in first order logic and the propositional hyper-
resolution system, and showed that they can be regarded as instantiations of our
method.

Future work can consist in adjusting the parametric interpolation framework to
cover other existing interpolation systems, as well as to develop new efficient algo-
rithms specialized to various inference systems and theories; a first line of research
could concern the generalization of our results about the HR labeled system to the
ambit of satisfiability modulo theories, addressing the theory labeled interpolation
systems presented in §3.4.

The approaches we focus on in this thesis obtain interpolants from refutations,
and the quality of the interpolants is naturally dependent on the quality of the proofs
from which they are generated. A second promising direction of study can thus
involve a characterization of proofs and of the features that make them “good”; for
example, an analysis could be performed of proofs containing only ground formulae
or with restricted quantification.

We introduced in §3.5.2 the notion of AB-partition, as a technical requirement
that enables interpolation in arbitrary inference systems. A natural question that
arises is whether a given refutation admits an AB-partition; even more interesting
is to understand which inference systems are able to produce, for any unsatisfi-
able A∧ B, an AB-refutation that allows at least an AB-partition. To some extent,
the works of [KV09, HKV12] answer these questions by considering local proofs,
which always admit an AB-partitioning, as seen in §3.5.2. In [HKV12], it is shown
that non-local proofs in some cases can be translated into local ones, by existen-
tially quantifying away dirty uninterpreted constants; [KV09] proves instead that an
extension of the quantifier-free superposition calculus with quantifier-free linear ra-
tional arithmetic always guarantees local proofs. Deriving sufficient and necessary
conditions over AB-partitions of AB-refutations is an interesting task to be further
investigated.

Relevant structural and semantic aspects of formulae, besides quantification, in-
clude size, intended as number of connectives, and content in terms of predicates.
On one hand, storing and employing small formulae can make verification more effi-
cient; on the other hand, works as [AM13] show that the presence of particular kinds
of predicates improves the likelihood of convergence of certain verification tech-
niques. On the practical side, the impact our work could be assessed on problems
related for example to bounded model checking or predicate synthesis, similarly
to §3.6, where we provide an experimental evaluation of the effect of interpolants
strength and size in SAT-based BMC.

85 3.6 Impact of Interpolant Strength and Structure

3.6 Impact of Interpolant Strength and Structure

In this section we put into practice the theoretical framework developed in the first
part of the chapter and analyze the concrete impact of interpolants features in veri-
fication. We address the problem of generating effective interpolants in the context
of SAT-based software bounded model checking (BMC) [BCC+03], and study the
impact of size and strength. Specifically, we present the PeRIPLO [Rol] frame-
work and discuss its ability to drive interpolation by providing routines that act on
complementary levels: (i) manipulation (including compression) of the resolution
refutations generated by a SAT solver, from which interpolants are computed, and
(ii) systematic variation of the strength of the interpolants, as allowed by the labeled
interpolation systems.

As case studies we consider two applications of BMC: verification of a C pro-
gram incrementally with respect to a number of different properties (as in the Fun-
Frog tool [SFS11]), and incremental verification of different versions of a C program
with respect to a fixed set of properties (as in the eVolCheck tool [SFS12b]). Both
applications rely on interpolation to generate abstractions of the behavior of function
calls (function summaries); the goal of summarization is to store and reuse informa-
tion about already analyzed portions of a program, to make subsequent verification
checks more efficient. If summaries (i.e. interpolants) are fit, a remarkable per-
formance improvement is usually achieved; if spurious errors have been introduced
due to overapproximation, (some of) the summaries need to be refined, which might
be resource-consuming. The challenge we address is to use PeRIPLO to drive the
generation of interpolants so as to obtain effective summaries.

In this section we contribute to the state-of-the-art in interpolation-based model
checking in the following ways. We present an interpolation framework, PeRIPLO,
able to generate individual interpolants and collections of interpolants satisfying par-
ticular properties. PeRIPLO offers a set of tunable techniques to manipulate refuta-
tions and to obtain interpolants of different strength from them; it can be integrated
in any SAT based verification framework which makes use of interpolants.

We provide solid experimental evidence that compact interpolants improve per-
formance in the context of software BMC. To the best of our knowledge, the only
previous work to concretely assess the impact of the size of interpolants is [CLV13],
which, as discussed in §3.2, addresses the use of interpolants in hardware unbounded
model checking.

We present a first systematic evaluation of the impact of interpolant strength in
a specific verification domain. We target function summarization in software BMC
and show that interpolants of different strength are beneficial to different applica-
tions; in particular, stronger and weaker interpolants are respectively suitable for the

86 3.6 Impact of Interpolant Strength and Structure

FunFrog and eVolCheck approaches. These results match the intuition behind the
use of interpolants as function summaries.

3.6.1 PeRIPLO

PeRIPLO (Proof tRansformer and Interpolator for Propositional LOgic) is an open-
source SAT solver, built on MiniSAT 2.2.0 [ES04], that provides proof logging,
proof manipulation routines and propositional interpolation. It can be used as a
standalone tool or as a library; its routines are accessible via configuration file or
API. Figure 3.13 illustrates the tool architecture.

PeRIPLO receives as input a propositional formula F from the verification envi-
ronment, and passes it to the SAT solver, that checks satisfiability while performing
proof logging. If the formula is unsatisfiable, a resolution refutation Π is built in
form of a directed acyclic graph.
Π can be further processed by the proof transformer, for example it can be com-

pressed or manipulated as a preliminary step to interpolation.
Once Π is available, the environment can ask the interpolator for the generation

of an individual or a collection of interpolants {Ii} by means of an interpolation
system I t p, providing a subdivision of F into A∧ B; if the collection is related to
some interpolation property P, then an additional checking phase can be enabled to
ensure that P is satisfied.

Interpolant Strength. PeRIPLO realizes the labeled interpolation systems of
[DKPW10] and allows to systematically vary the strength of the interpolants. It
is able to produce both individual interpolants and collections of interpolants, w.r.t.
various interpolation properties (e.g., tree interpolation, see §3.6.3) and in accor-
dance with the constraints imposed by the properties on the LISs [RSS12, GRS13].
Chapter 4 will provide a detailed description of such properties and of their relation-
ship with the LISs.

Proof Compression. PeRIPLO allows to compress refutations by means of the
following techniques, which target different kinds of redundancies in proofs: (i)
the RecyclePivotsWithIntersection (RPI) algorithm of [FMP11, BIFH+08], (ii) the
PushdownUnits (PU) algorithm based on [FMP11], (iii) a structural hashing based
approach (SH) similar to that of [Cot10], (iv) the Local Transformation Framework
of [RBS10, RBST, BRST10]. Some manipulation routines are available depending
on the LIS chosen: for example, in case of McMillan’s system I t pM it is possible to
perform a fast transformation of the refutation to achieve a partial CNFization of the

87 3.6 Impact of Interpolant Strength and Structure

 SAT solver

 Proof Transformer Interpolator

Verification Environment

PeRIPLO

SAT /
UNSAT

φ {Ii}

A∧ B

Π

I t p

P

Figure 3.13. PeRIPLO architecture.

interpolant [JM05, RBST]. The local rewriting rules can also be applied to further
strengthen or weaken the interpolant with respect to a given LIS [JM05]. PeRIPLO
does not implement techniques to directly minimize the interpolants after their gen-
eration; nevertheless, structural hashing is performed while building logic formulae,
for a more efficient representation in memory. Chapter 5, which is dedicated to the
topic of proof manipulation, will discuss the abovementioned approaches to com-
pression in detail.

3.6.2 Function Summaries in Bounded Model Checking

SAT-based BMC is one of the most successful approaches to software verification.
It checks a program w.r.t. a property by (i) unwinding loops and recursive func-
tion calls up to a given bound, (ii) encoding program and negated property into a
propositional formula (BMC formula), and (iii) using a SAT solver to check the
BMC formula. If the formula is unsatisfiable, the program is safe w.r.t. the bound;
otherwise, a satisfying assignment identifies a behavior that violates the property.

We describe in the following two BMC applications which employ interpolation-
based function summaries as overapproximations of function calls. These applica-
tions, respectively implemented in the FunFrog [SFS12a] and eVolCheck [FSS13]

88 3.6 Impact of Interpolant Strength and Structure

tools, prove suitable to assess, by means of PeRIPLO, the impact size and strength
of interpolants can have on verification.

FunFrog. [SFS11] presents a framework to perform incremental verification of a
set of properties. Summaries are used to store information about the already an-
alyzed portions of the program, which helps to check subsequent properties more
efficiently.

A summary I f for a function f is an interpolant constructed from an unsatisfiable
BMC formula A f ∧ Bπ, where A f encodes f and its nested calls, Bπ the rest of the
program and the negated property π (which holds for the program). While checking
the program w.r.t. another property π′, the BMC formula changes to A f ∧ Bπ′; I f

is used in place of f : if I f ∧ Bπ′ turns out to be unsatisfiable, then the summary is
still valid and π′ is proved to hold in the program. If instead I f ∧ Bπ′ is satisfiable,
satisfiability could be caused by the overapproximation due to I f : I f is replaced by
the precise encoding of f and the check is repeated. If A f ∧ Bπ′ is satisfiable, the
error is real; if A f ∧Bπ′ is unsatisfiable, then the error is spurious and I f is refined to
a new I ′f .

The ability to reuse summaries depends on their quality. According to our in-
tuition, accurate summaries (i.e. strong interpolants) are effective in FunFrog: a
summary in fact overapproximates the behavior of a function call w.r.t. an assertion;
the more precise the summary is, the more closely it reflects the behavior of the
corresponding function and the more likely it is to be employed in the verification
of subsequent assertions.

eVolCheck. The upgrade checking algorithm of [SFS12b] uses function summa-
rization for BMC in a different way. Verification is done simultaneously w.r.t. a
fixed set of properties, but for a program that undergoes modifications. Summaries
{Ii} are computed for the function calls {A fi

} of the original version of the program,
and applied to perform local incremental checks of the new version. If the old sum-
maries are general enough to overapproximate the new behavior of the modified
functions {A f ′j

} (i.e. A f ′j
|= I j) then the new version is safe. Otherwise, the sum-

maries of the caller functions of the {A f ′j
} are checked in the same way. If the check

succeeds, new summaries {I ′j} are generated that refine the old {I j}. This process
continues up to the root of the call tree. If in the end the summary of the main
function is proven invalid, then the new version is buggy.

In contrast with FunFrog, coarse summaries (i.e. weak interpolants) are more
suitable for eVolCheck; the underlying intuition is that weaker interpolants represent
abstractions which are more “tolerant” and are more likely to remain valid when the

89 3.6 Impact of Interpolant Strength and Structure

functions are updated.
Compact summaries are expected to yield a more efficient verification both in

the FunFrog and eVolCheck frameworks: on one hand, storing and reusing smaller
formulae is less expensive, on the other hand, summary reduction via proof com-
pression allows to remove redundancies while keeping the relevant information; in
the FunFrog approach, additionally, new summaries are built when possible from
refutations involving previously computed summaries.

3.6.3 Experimental Evaluation

We evaluated FunFrog and eVolCheck on a collection of 50 crafted C benchmarks
characterized by a non trivial call tree structure reflecting the structure of real C pro-
grams used in previous experimentation [SFS12a, FSS13]. The benchmarks contain
assertions distributed on different levels of the tree, which makes them particularly
suitable for summary-based verification. FunFrog and eVolCheck employ PeRIPLO
for symbolic reasoning and interpolation; they provide as input BMC formulae and
receive as output interpolants, specifying a LIS depending on the desired interpolant
strength. Proof compression techniques can also be applied in order to produce
smaller summaries. The experiments were carried out on a 64-bit Ubuntu server
featuring a Quad-Core 4GHz Xeon CPU, with a memory threshold of 13GB2.

FunFrog. In a first phase, FunFrog was run to check the assertions of each bench-
mark incrementally w.r.t. the call tree, with the goal of maximizing the reuse of
summaries.

Consider a program with the following chain of nested calls:

main(){ f (){ g(){h(){}Assertg}Assert f }Assertmain}

where Assertx denotes an assertion in the body of a function x . In a successful
scenario, (i) Assertg is checked and a summary Ih for h is created; (ii) Assert f is effi-
ciently verified by exploiting Ih (Ig is then built over Ih) and (iii) so is Assertmain by
means of Ig . Each benchmark was tested in different configurations: with/without
performing proof compression before interpolation and choosing one among I t pM ,
I t pP , I t pM ′ to compute all the interpolants. Compression consisted of a sequential
run of LU,SH,RPI (see §3.6.1); this particular combination is effective in reducing
proofs, as shown in [RBST].

2The full experimental data is available at http://verify.inf.usi.ch/sites/
default/files/Rollini-phddissertationmaterial.tar.gz

http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz
http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz

90 3.6 Impact of Interpolant Strength and Structure

eVolCheck. In a second phase, new versions of the benchmarks were created,
modifying syntax/semantics of the original programs. First eVolCheck was run to
check all assertions at once, yielding a collection of function summaries; then the
new program versions were verified w.r.t. the same assertions by using the sum-
maries. As discussed in [SFS12b], while performing upgrade checking the inter-
polants need to satisfy a property known as tree interpolation. In §4.3.2 we will
show that tree interpolation is satisfied by I t pM , I t pP but not by I t pM ′; for this rea-
son we only took into account I t pM and I t pP for experimentation. Compression
was performed as in FunFrog.

Experimental Results. Small interpolants indeed have a strong impact on the per-
formance in both frameworks. Figure 3.14 compares the verification times for the
benchmarks in FunFrog (a) and eVolCheck (b), with and without performing proof
compression before interpolation. Table 3.10 provides additional statistics for the
individual interpolation systems: #Refinements denotes the total amount of sum-
mary refinements in FunFrog, while #Invalid summaries the total number of sum-
maries that in eVolCheck were made invalid because of program updates; Avg|I |
and Time(s) indicate the average size of interpolants and the average verification
time over all the benchmarks; TimeC /TimeV ratio is the ratio between the time spent
for proof compression and the verification time.

Figure 3.14 and Table 3.10 show the remarkable performance improvement
achieved by exploiting proof compression; FunFrog, e.g., obtains a reduction in
the average interpolants size Avg|I | up to 95% and a speedup up to 54%. Note also
in Figure 3.14 that the effect of compression increases with the complexity of the
benchmark; the overhead due to applying compression techniques becomes in fact
less and less significant as the benchmark verification time grows.

According to the intuitions discussed in §3.6.2, strong interpolants prove bene-
ficial in FunFrog, while weak interpolants are more suitable for eVolCheck; this is
represented in Table 3.10 by a smaller amount of summary refinements in FunFrog
and of invalidated summaries in eVolCheck.

The results show that the size of interpolants seems to have definitely an overall
greater impact than interpolant strength. Verification time, in fact, is principally
determined by the size of the summaries, so that, even in presence of a larger amount
of refinements or invalidated summaries, smaller summaries tend to lead to a better
performance.

It is important to remark that both size and strength are dependent on the features
of the refutations from which the interpolants are produced, as well as on the specific
interpolation algorithms, and that these aspects cannot be considered separately. For

91 3.6 Impact of Interpolant Strength and Structure

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

C
o
m

p
re

s
s
io

n
 -

 V
e
ri
fi
c
a

ti
o
n
 t

im
e
(s

)

No compression - Verification time(s)

McMillan
Pudlak

McMillan’
 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

C
o
m

p
re

s
s
io

n
 -

 V
e
ri
fi
c
a

ti
o
n
 t

im
e
(s

)

No compression - Verification time(s)

(a) FunFrog

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

C
o

m
p

re
s
s
io

n
 -

 V
e

ri
fi
c
a
ti
o
n

 t
im

e
(s

)

No compression - Verification time(s)

McMillan
Pudlak

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

C
o

m
p

re
s
s
io

n
 -

 V
e

ri
fi
c
a
ti
o
n

 t
im

e
(s

)

No compression - Verification time(s)

(b) eVolCheck

Figure 3.14. Proof compression effect on verification time.

example, in our experimentation we found considerable differences in the size of
the interpolants generated by the three LISs, and in the effect of proof compression:
interpolants generated with I t pM ′ in FunFrog were on average twice as big as those
generated with I t pM , but they benefited the most from compression.

Moreover, among all existing refutations for a certain unsatisfiable formula (in-

92 3.6 Impact of Interpolant Strength and Structure

Table 3.10. Verification statistics for FunFrog and eVolCheck.

(a) FunFrog

No Compression I t pM I t pP I t pM ′

#Refinements 290 298 308
Avg |I | 38886.62 39372.07 72994.08
Time(s) 4568.08 4929.93 6805.81

Compression I t pM I t pP I t pM ′

#Refinements 293 293 294
Avg |I | 4336.21 3402.58 3255.69
Time(s) 3327.56 3450.17 3201.72
TimeC /TimeV ratio 0.32 0.33 0.32

(b) eVolCheck

No Compression I t pM I t pP

#Invalid summaries 65 63
Avg |I | 334554.64 377903.11
Time(s) 4322.57 4402.00

Compression I t pM I t pP

#Invalid summaries 63 62
Avg |I | 12579.89 12929.82
Time(s) 2073.79 2057.34
TimeC /TimeV ratio 0.19 0.19

cluding those obtained via compression), there might be some which are of better
“quality” w.r.t. interpolation by means of LISs. A good refutation could be charac-
terized by a large logical “distance” between the interpolant I yielded by I t pM and
I ′ yielded by I t pM ′ , where the distance between I and I ′ – remember that I |= I ′

– is defined as the number of models of I ′ that are not models of I . A large dis-
tance in this sense would allow for a higher degree of variation in the coarseness of
summaries, with direct impact on verification.

3.6.4 Summary and Future Developments

In this section we addressed the key problem of generating effective interpolants in
verification by evaluating the impact of size and logical strength in the context of
software SAT-based BMC.

93 3.6 Impact of Interpolant Strength and Structure

To this end, we introduced PeRIPLO, a novel framework that drives interpolation
by providing routines for manipulation of the resolution refutations from which the
interpolants are computed and for systematic variation of the interpolants strength.
As case studies we considered two BMC applications which use interpolation to
generate function summaries: (i) verification of a C program incrementally with
respect to a number of different properties, and (ii) incremental verification of dif-
ferent versions of a C program with respect to a fixed set of properties. We provided
solid experimental evidence that compact interpolants improve the verification per-
formance in the two applications. We also carried out a first systematic evaluation
of the impact of strength in a specific verification domain, showing that different ap-
plications benefit from interpolants of different strength: specifically, stronger and
weaker interpolants are respectively desirable in (i) and (ii).

Future work can move both in a theoretical and in an experimental directions. On
the experimental side, new collections of benchmarks can be extracted from pieces
of software encoding problems of industrial and academic origin. It would be an
interesting task to subject the benchmarks to verification by means of both SAT-
based techniques – as we did, employing the FunFrog and eVolCheck frameworks
developed by our group – and SMT-based ones, comparing the effect of strength and
size reduction by means of proof compression in the two cases.

On the theoretical side, it could be useful to identify families of problems based
on their call tree structure, on the position of the assertions within the call tree, and
on the content of the assertions themselves.

For example, in application (i), an interpolant is computed with respect to an
assertion; the interpolant represents an overapproximation of the behavior of a func-
tion, and it is certainly dependent on how much information the assertion (assuming
it holds) gives on the behavior of the function. Intuitively, the less tight the assertion
is w.r.t. the behavior, the more room there is to tune the strength of interpolants.

It might be even possible to formally characterize problems where, for a certain
interpolation-based technique, a stronger or weaker interpolant can be mathemati-
cally demonstrated to make convergence faster; such a research, however, should be
paired with an experimental investigation to guarantee that similar problems corre-
spond to real software programs.

94 3.6 Impact of Interpolant Strength and Structure

Chapter 4

Interpolation Properties in Model
Checking

In many verification tasks, a single interpolant, i.e., a single subdivision of con-
straints into two groups A and B, is not sufficient.

Properties such as path interpolation, simultaneous abstraction, interpolation se-
quence, symmetric interpolation, tree interpolation are used in existing tools like
IMPACT [McM06], Whale [AGC12], FunFrog [SFS12a] and eVolCheck [FSS13],
which implement instances of predicate abstraction [JM06], lazy abstraction with in-
terpolants (LAWI) [McM06], interpolation-based function summarization [SFS12b,
SFS11]. These properties, to which we refer as collectives since they concern col-
lections of interpolants, are not satisfied by arbitrary Craig interpolants and must be
established for each interpolation algorithm and verification framework, in order to
make verification possible.

In this chapter we perform a systematic study of collectives in verification and
identify the particular constraints they impose on interpolation systems for proposi-
tional logic and first order theories respectively used in SAT- and SMT-based model
checking.

A first limitation in the state-of-the-art is that there is no framework which cor-
relates the existing interpolation systems and compares the various collectives; we
address the problem and, for the first time, we gather, identify, and uniformly present
the most common collectives imposed on interpolation by existing verification ap-
proaches (§4.1).

In addition to the issues related to a diversity of interpolation properties, it is
desirable to have flexibility in choosing different algorithms for computing differ-
ent interpolants in a collection, rather than using a single interpolation system. To
guarantee such a flexibility, we present a framework which generalizes the tradi-

95

96

tional setting consisting of a single interpolation system to allow for collections, or
families, of interpolation systems.

Families find practical applicability in several contexts. One example is LAWI-
style verification, where it is desirable to obtain a collection of path interpolants {Ii}
with weak interpolants at the beginning (i.e., I1, I2, . . .) and strong interpolants at
the end (i.e., . . . , In−1, In). This would increase the likelihood of convergence and
the performance of the model checking algorithm, and can be achieved by using
a family of systems of different strength. Another example is the computation of
function summaries by means of interpolation. We discussed in §3.6 how different
applications of summarization could require different levels of abstraction by means
of interpolation. A system that generates stronger interpolants can yield a tighter
abstraction, more closely reflecting the behavior of the corresponding function. On
the other hand, a system that generates weaker interpolants would give an abstrac-
tion which is more “tolerant” and is more likely to remain valid when the function
is updated.

In §4.2 we systematically examine the collectives and the relationships among
them; in particular, we show that for families of interpolation systems the collectives
form a hierarchy, whereas for a single system all but two (i.e., path interpolation and
simultaneous abstraction) are equivalent.

Another issue which this chapter deals with is the fact that there exist different
approaches for generating interpolants, as presented in §3.3. The variety of interpo-
lation algorithms makes it difficult to reason about their properties in a systematic
manner. At a low level of representation, the challenge is determined by the com-
plexity of individual algorithms and by the diversity among them, which makes it
hard to study them uniformly. On the other hand, at a high level, where the details
are hidden, not many interesting results can be obtained. For this reason, we adopt a
twofold approach, working both at a high and at a low level of representation: at the
high level, we give a global view of the entire collection of properties and of their
relationships and hierarchy; at the low level, we obtain additional stronger results
for concrete interpolation systems. In particular, we first investigate the properties
of interpolation systems treating them as black boxes, and then focus on the propo-
sitional LISs. In this chapter, the results of §4.2 apply to arbitrary interpolation
algorithms, while those of §4.3 apply to LISs.

For the first time, both sufficient and necessary conditions are given for a family
of LISs and for a single LIS to enjoy each of the collectives. In particular, we
show that in case of a single system path interpolation is common to all LISs, while
simultaneous abstraction is as strong as all other properties. Our results have also
concrete applications, as discussed in §4.3.2.

Finally, in §4.4, we move to first order theories, and extend some of the results

97 4.1 Interpolation Systems

obtained for LISs to the theory labeled interpolation systems in the context of SMT
solving, building on the framework we outlined in §3.4.

4.1 Interpolation Systems

In this section we adapt the notation of §3.3 to deal with collections of interpolants,
and then proceed to discuss the collectives, highlighting their use in the context of
model checking. We employ the standard convention of identifying conjunctions
of formulae with sets of formulae and concatenation with conjunction, whenever
convenient. For example, we interchangeably use {φ1, . . . ,φn} and φ1 · · ·φn for
φ1 ∧ · · · ∧φn.

Definition 4.1.1 (Interpolation System). An interpolation system I t pS is a func-
tion that, given an inconsistent Φ = {φ1,φ2}, returns a Craig interpolant, a formula
Iφ1,S = I t pS(φ1 | φ2) such that:

φ1 |= Iφ1,S Iφ1,S ∧φ2 |=⊥ LIφ1,S
⊆Lφ1

∩Lφ2

The new notation is appropriate to address the generation of multiple inter-
polants from the same collection of formulae Φ = {φ1, . . . ,φn}, by splitting the
formulae in Φ into two groups A and B in different manners; we write Iφ1···φi ,S

to denote I t pS(φ1 · · ·φi | φi+1 · · ·φn), where A = φ1 · · ·φi and B = φi+1 · · ·φn.
W.l.o.g., we assume that, for any I t pS and any formula φ, I t pS(> | φ) => and
I t pS(φ | >) =⊥, where we equate the constant true > with the empty formula. We
omit S whenever clear from the context.

An interpolation system I t p is called symmetric if for any inconsistent
Φ = {φ1,φ2}:

I t p(φ1 | φ2)⇔ I t p(φ2 | φ1)

Definition 4.1.2 (Family of Interpolation Systems). A collectionF = {I t pS1
, . . . , I t pSn

}
of interpolation systems is called a family.

As in §3.5, we implicitly assume an underlying first order theory when dealing
with generic interpolation systems.

4.1.1 Collectives

In the following, we formulate the properties of interpolation systems that are re-
quired by existing verification algorithms. Furthermore, we generalize the collec-
tives by presenting them over families of interpolation systems (i.e., we allow the
use different systems to generate different interpolants in a collection). Later, we
restrict the properties to the more traditional setting of the singleton families.

98 4.1 Interpolation Systems

n-Path Interpolation (PI) has been first defined in [JM06], where it is employed
in the refinement phase of CEGAR-based predicate abstraction. It has also appears
in [VG09] under the name interpolation-sequence, where it is used for a specialized
interpolation-based hardware verification algorithm.

Formally, a family of n+ 1 interpolation systems {I t pS0
, . . . , I t pSn

} has the n-
path interpolation property (n-PI) iff for any inconsistent Φ = {φ1, . . . ,φn} and for
0≤ i ≤ n− 1 (recall that I> => and IΦ =⊥):

Iφ1...φi ,Si
∧φi+1 |= Iφ1...φi+1,Si+1

n-Generalized Simultaneous Abstraction (GSA) is the generalization of simulta-
neous abstraction, a property that has been introduced, under the name symmetric
interpolation, in [JM05], where it is used for approximation of a transition relation
for predicate abstraction. We changed the name to avoid confusion with the no-
tion of symmetric interpolation system (see above). The reason for generalizing the
property will be apparent later.

Formally, a family of n+ 1 interpolation systems {I t pS1
, . . . , I t pSn+1

} has the
n-generalized simultaneous abstraction property (n-GSA) iff for any inconsistent
Φ = {φ1, . . . ,φn+1}:

n
∧

i=1

Iφi ,Si
|= Iφ1...φn,Sn+1

The case n= 2 is called Binary GSA (BGSA): Iφ1,S1
∧ Iφ2,S2

|= Iφ1φ2,S3
.

If φn+1 = >, the property is called n-simultaneous abstraction (n-SA):

n
∧

i=1

Iφi ,Si
|=⊥(= Iφ1...φn,Sn+1

)

and, if n= 2, binary SA (BSA). In n-SA I t pSn+1
is irrelevant and is often omitted.

n-State-Transition Interpolation (STI) is defined as a combination of PI and SA
in a single family of systems. It has been introduced in [AGC12] as part of the
inter-procedural verification algorithm Whale. Intuitively, the “state” interpolants
overapproximate the set of reachable states, and the “transition” interpolants sum-
marize the transition relations (or function bodies). The STI requirement ensures
that state overapproximation is “compatible” with the summarization.

Formally, a family of interpolation systems {I t pS0
, . . . , I t pSn

, I t pT1
, . . . , I t pTn

}
has the n-state-transition interpolation property (n-STI) iff for any inconsistent Φ =
{φ1, . . . ,φn} and for 0≤ i ≤ n− 1:

Iφ1...φi ,Si
∧ Iφi+1,Ti+1

|= Iφ1...φi+1,Si+1

99 4.2 Collectives of Interpolation Systems

T-Tree Interpolation (TI) is a generalization of classical interpolation used in model
checking applications, in which partitions of an unsatisfiable formula naturally cor-
respond to a tree structure such as call tree or program unwinding. The collective has
been first defined in [MR13] for analysis of recursive programs, and is equivalent to
the nested interpolants of [HHP10].

Formally, let T = (V, E) be a tree with n nodes V = [1, . . . , n]. A family of n
interpolation systems {I t pS1

, . . . , I t pSn
} has the T -tree interpolation property (T -TI)

iff for any inconsistent Φ = {φ1, . . . ,φn}:
∧

(i, j)∈E

IF j ,S j
∧φi |= IFi ,Si

where Fi = {φ j | i v j}, and i v j iff node j is a descendant of node i in T . Note
that for the root i of T , Fi = Φ and IFi ,Si

=⊥.
An interpolation system I t pS is said to have a property P (or, simply, to have P),

where P is one of the properties defined above, if every family induced by I t pS has
P. For example, I t pS has GSA iff for every k the family {I t pS1

, . . . , I t pSk
}, where

I t pSi
= I t pS for all i, has k-GSA.

4.2 Collectives of Interpolation Systems

In this section, we study collectives of general interpolation systems, that is, we treat
interpolation systems as black boxes. In section §4.3 we will extend the study to the
implementation-level details of LISs.

4.2.1 Collectives of Single Systems

We begin by studying the relationships among the various collectives of single in-
terpolation systems.

Theorem 4.2.1. Let I t pS be an interpolation system. The following are equivalent:
I t pS has BGSA (1), I t pS has GSA (2), I t pS has TI (3), I t pS has STI (4).

Proof. We show that 1⇒ 2, 2⇒ 3, 3⇒ 4, 4⇒ 1.
(1 ⇒ 2) Assume I t pS has BGSA. Take any inconsistent Φ = {φ1, . . . ,φn+1}.

Then, for 2≤ i ≤ n:
Iφ1···φi−1

∧ Iφi
|= Iφ1···φi

which together yield:
n
∧

i=1

Iφi
|= Iφ1...φn

100 4.2 Collectives of Interpolation Systems

Hence, I t pS has GSA.
(2⇒ 3) Let T = ([1, . . . , n], E), take any inconsistent Φ = {φ1, . . . ,φn}. Since

I t pS has GSA:
∧

(i, j)∈E

IF j
∧ Iφi

|= IFi

and, from the definition of Craig interpolation, φi |= Iφi
. Hence, I t pS has T -TI.

(3⇒ 4) Take any inconsistent Φ = {φ1, . . . ,φn} and extend it to a Φ′ by adding
n copies of > at the end. Define a tree TST I = ([1, . . . , 2n], E) s.t.:

E = {(n+ i, i) | 1≤ i ≤ n} ∪ {(n+ i, n+ i− 1) | 1≤ i ≤ n}

Then, for 1 ≤ i ≤ n, Fi = {φi} and Fn+i = {φ1, . . . ,φi}, where Fi is as in the
definition of T -TI. By the T -TI property:

IFn+i
∧ IFi+1

∧> |= IFn+i+1

which is equivalent to STI.
(4⇒ 1) Follows from STI being syntactically equivalent to BGSA for i = 1.

Theorem 4.2.1 has a few simple extensions. First, GSA implies SA directly from
the definitions. Similarly, since φ |= Iφ, STI implies PI. Finally, we conjecture that
both SA and PI are strictly weaker than the rest. In §4.3.2 (Theorem 4.3.11), we
prove that, for LISs, PI is strictly weaker than SA. As for SA, Proposition 4.2.1
shows that it is equivalent to BGSA in symmetric interpolation systems; but, in the
general case, the conjecture remains open.

Proposition 4.2.1. SA implies BGSA in symmetric interpolation systems.

Proof. Take any inconsistent Φ = {φ1,φ2,φ3}. If an interpolation system has SA,
then:

Iφ1
∧ Iφ2

∧ Iφ3
|=⊥

Equivalently,
Iφ1
∧ Iφ2

|= Iφ3

For a symmetric system, Iφ3
= Iφ1φ2

.

These results define a hierarchy of collectives which is summarized in Fig-
ure 4.1, where the edges indicate implications among the collectives. Note that
SA⇒ GSA holds only for symmetric systems.

In summary, the main contribution in the setting of a single system is the proof
that almost all collectives are equivalent and the hierarchy of the collectives col-
lapses. From a practical perspective, this means that McMillan’s interpolation sys-
tem I t pM (implemented by most interpolating SMT solvers) has all of the collective
properties, including the recently introduced tree interpolation.

101 4.2 Collectives of Interpolation Systems

BGSA

GSA

TI

STI

PISA

symm

Figure 4.1. Collectives of single systems.

4.2.2 Collectives of Families of Systems

Here, we move from single systems to studying collectives of families of interpola-
tion systems. We first show that the collectives introduced in §4.1 directly extend
from families to subfamilies. Second, we examine the hierarchy of the relationships
among the properties. Finally, we conclude by discussing the practical implications
of these results.

Collectives of Subfamilies. If a family of interpolation systems F has a property
P, then subfamilies of F have P as well. We prove this statement for the various
collectives individually, remarking that k-STI has an application later in the proof
of Theorem 4.3.3.

Theorem 4.2.2. A family {I t pS0
, . . . , I t pSn

, I t pT1
, . . . , I t pTn

} has n-STI iff for all
k ≤ n the subfamily {I t pS0

, . . . , I t pSk
} ∪ {I t pT1

, . . . , I t pTk
} has k-STI.

Proof. (⇒) Assume an inconsistent Φ = {φ1, . . . ,φk}. We can extend it to a Φ′ =
{φ′1, . . . ,φ′n} such that φ′i = φi, by adding n− k empty formulae >. If F has the
n-STI property, for 0≤ j ≤ k− 1:

Iφ1...φ j ,S j
∧ Iφ j+1,T j+1

|= Iφ1...φ j+1,S j+1

(⇐) Follows from k = n.

A simple modification of the previous proof yields:

Theorem 4.2.3. A family {I t pS0
, . . . , I t pSn

} has n-PI iff for all k ≤ n the subfamily
{I t pS0

, . . . , I t pSk
} has k-PI.

Theorem 4.2.4. A family F = {I t pS1
, . . . , I t pSn+1

} has n-GSA iff for all k ≤ n all
the subfamilies {I t pSi1

, . . . , I t pSik+1
} have k-GSA.

Proof. (⇒) Let n be a natural number. Take any inconsistent Φ = {φ1, . . . ,φk+1}
such that k ≤ n. Let {i1, . . . , ik+1} be a subset of {1, . . . , n + 1}. Extend Φ to a

102 4.2 Collectives of Interpolation Systems

Φ′ = {φ′1, . . . ,φ′n+1} by adding (n− k) copies of >, so that φ′i1 = φ1, . . . ,φ′ik = φk,
φ′ik+1

= φn+1. Since F has n-GSA:

n
∧

j=1

Iφ′j ,S j
|= Iφ′1...φ′n,Sn+1

and, since φ′j => for j 6∈ {i1, . . . , ik}:
∧

j∈{i1...ik}

Iφ j ,S j
|= Iφi1...ik

,Sik+1

(⇐) Follows from k = n.

With the same reasoning we obtain:

Theorem 4.2.5. A family {I t pS1
, . . . , I t pSn

} has n-SA iff for all k ≤ n all the sub-
families {I t pSi1

, . . . , I t pSik
} have k-SA.

Theorem 4.2.6. For a given tree T = (V, E), a family {I t pSi
}i∈V has T -TI iff for

every subtree T ′ = (V ′, E′) of T , the family {I t pS j
} j∈V ′ has T ′-TI.

Proof. (⇒) Assume an inconsistent Φ = {φi1 , . . . ,φik} decorating T ′. We can ex-
tend Φ with |V ′| − |V | empty formulae > to Φ′ = {φ′1, . . . ,φ′n} decorating T . If
{I t pSi

}vi∈V has the T -TI property, for all v′i in V and in particular for all vi in V ′‘:

∧

(vi ,v j)∈E′

IF j ,S j
∧φi |= IFi ,Si

(⇐). Follows from T ′ = T .

Relationships Among Collectives. We now show the relationships among collec-
tives. First, we note that n-SA and BGSA are equivalent for symmetric interpolation
systems. Whenever a family F = {I t pS1

, . . . , I t pSn+1
} has (n+ 1)-SA and I t pSn+1

is symmetric, then F has n-GSA, as proved by Proposition 4.2.2, which is the ana-
logue of Proposition 4.2.1 for single systems.

Proposition 4.2.2. If a family F = {I t pS1
, . . . , I t pSn+1

} has (n+ 1)-SA and I t pSn+1

is symmetric, then F has n-GSA.

Proof. Take any inconsistent Φ = {φ1, . . . ,φn}. Since F has (n + 1)-SA, then
Iφ1,S1

∧ · · · ∧ Iφn+1,Sn+1
|= ⊥. Assuming I t pSn+1

is symmetric, Iφn+1,Sn+1
= Iφ1,...,φn,Sn+1

and the thesis is proved.

103 4.2 Collectives of Interpolation Systems

In the rest of the section, we delineate the hierarchy of collectives. In particular,
we show that T -TI is the most general collective, immediately followed by n-GSA,
which is followed by BGSA and n-STI, which are equivalent, and at last by n-SA
and n-PI. The first result is that the n-STI property implies both the n-PI and n-SA
properties separately:

Theorem 4.2.7. If a family F = {I t pS0
, . . . , I t pSn

, I t pT1
, . . . , I t pTn

} has n-STI then
(1) {I t pS0

, . . . , I t pSn
} has n-PI and (2) {I t pT1

, . . . , I t pTn
} has n-SA.

Proof. (1) It follows from φi |= Iφi ,Si
for every i.

(2) Take any inconsistent Φ = {φ1, . . . ,φn}. IfF has n-STI, then, for 0≤ i ≤ n−1:

Iφ1···φi ,Si
∧ Iφi+1,Ti+1

|= Iφ1···φi+1,Si+1

Since Iφ1···φn
=⊥, we get Iφ1,T1

∧ · · · ∧ Iφn,Tn
|=⊥.

A natural question to ask is whether the converse of Theorem 4.2.7 is true. That
is, whether the family F1 ∪ F2 that combines two arbitrary families F1 and F2

that independently enjoy n-PI and n-SA, respectively, has n-STI. We show in §4.3,
Theorem 4.3.3, that this is not the case.

As for BGSA, the n-STI property is closely related to it: deciding whether a fam-
ily F has n-STI is in fact reducible to deciding whether a collection of subfamilies
of F has BGSA.

Theorem 4.2.8. A family F = {I t pS0
, . . . , I t pSn

, I t pT1
, . . . , I t pTn

} has n-STI iff
{I t pSi

, I t pTi+1
, I t pSi+1

} has BGSA for all 0≤ i ≤ n− 1.

Proof. (⇒) Take any inconsistent Φ = {φ1,φ2,φ3}. For 0 ≤ i ≤ n− 1, extend Φ
to a Φ′ = {φ′1, . . . ,φ′n} by adding (n− 3) copies of >, so that φ′i = φ1, φ′i+1 = φ2,
φ′i+2 = φ3. Since F has n-STI:

Iφ′1···φ′i ,Si
∧ Iφ′i+1,Ti+1

|= Iφ′1···φ′i+1,Si+1

Hence, by construction:
Iφ1,Si

∧ Iφ2,Ti+1
|= Iφ1φ2,Si+1

(⇐) Take any inconsistent Φ = {φ1, . . . ,φn}. Since {I t pSi
, I t pTi+1

, I t pSi+1
} has

BGSA, it follows that for {φ′1,φ′2,φ′3}, where φ′1 = φ1 ∧ · · · ∧ φi, φ′2 = φi+1,
φ′3 = φi+2 ∧ · · · ∧φn:

Iφ′1,Si
∧ Iφ′2,Ti+1

|= Iφ′1φ′2,Si+1

Hence, by construction:

Iφ1...φi ,Si
∧ Iφi+1,Ti+1

|= Iφ1...φi+1,Si+1

104 4.2 Collectives of Interpolation Systems

From Theorem 4.2.8 and Theorem 4.2.7 we derive:

Corollary 4.2.3. If there exists a family {I t pS0
, . . . , I t pSn

} ∪ {I t pT1
, . . . , I t pTn

} s.t.
{I t pSi

, I t pTi+1
, I t pSi+1

} has BGSA for all 0≤ i ≤ n− 1, then {I t pT1
, . . . , I t pTn

} has
n-SA.

We now relate T -TI and n-GSA. Note that the need for two theorems with dif-
ferent statements arises from the asymmetry between the two properties: all φi are
abstracted by interpolation in n-GSA, whereas in T -TI a formula is not abstracted,
when considering the correspondent parent together with its children.

Theorem 4.2.9. Given a tree T = (V, E) if a family F = {I t pSi
}i∈V has T -TI, then,

for every parent ik+1 and its children i1, . . . , ik:

1. If ik+1 is the root, {I t pSi1
, . . . , I t pSik

} has k-SA.

2. Otherwise, {I t pSi1
, . . . , I t pSik

, I t pSik+1
} has k-GSA.

Proof. Take any inconsistent Φ = {φi1 , . . . ,φik+1
}. Consider a parent ik+1 and its

children i1, . . . , ik. If ik+1 is not the root, extend Φ to a Φ′ in such a way that: the
children are decorated with φi1 , . . . ,φik , all their descendants and ik+1 with >, all
the nodes external to the subtree rooted in ik+1 with φn+1. Since F has T -TI, then
at node ik+1:

∧

(ik+1, j)∈E

IF j ,S j
∧φik+1

|= IFik+1
,Sik+1

that is:
∧

i∈{i1...ik}

Iφi ,Si
∧> |= Iφi1 ···φik

,Sk+1

If ik+1 is the root, the proof simply ignores the presence of φik+1
and Sik+1

.

Theorem 4.2.10. Given a tree T = (V, E), a family F = {I t pSi
}i∈V has T -TI if, for

every node ik+1 and its children i1, . . . , ik, there exists Tik+1
such that:

1. If ik+1 is the root, {I t pSi1
, . . . , I t pSik

, I t pTik+1
} has (k+ 1)-SA.

2. Otherwise, {I t pSi1
, . . . , I t pTik+1

, I t pSik+1
} has (k+ 1)-GSA.

Proof. Take any inconsistent Φ = {φ1, . . . ,φn}. Consider a parent ik+1 different
from the root and its children i1, . . . , ik.
If {I t pSi1

, . . . , I t pTik+1
, I t pSik+1

} has k-GSA, for {Fi1 , . . . , Fik ,φik+1
,Φ\(
⋃

Fi j
∪{φik+1

})}:
∧

i∈{i1...ik}

IFi ,Si
∧ Iφik+1

,Tik+1
|= IFik+1

,Sik+1

105 4.2 Collectives of Interpolation Systems

The thesis follows since φik+1
|= Iφik+1

,Tik+1
. If ik+1 is the root, IFik+1

,Sik+1
= ⊥ and

Sik+1
is superfluous.

An important observation is that the T -TI property is the most general, in the
sense that it realizes any of the other properties, given an appropriate choice of the
tree T . We prove that n-GSA and n-STI can be implemented by T -TI for some
T n

GSA and T n
ST I ; the remaining cases can be derived in a similar manner. Note that the

converse implications are not necessarily true in general, since the tree interpolation
requirement is stronger.

Theorem 4.2.11. If a family F = {I t pSn+1
, I t pS1

, . . . , I t pSn+1
} has T n

GSA-TI, then
{I t pS1

, . . . , I t pSn+1
} has n-GSA.

Proof. Let T n
GSA = (V, E) be the tree shown in Figure 4.2, where V = {0, . . . , n+ 1}

and E = {(0, i) | 1≤ i ≤ n} ∪ {(n+ 1, 0)}.
Take any inconsistent Φ = {φ1, . . . ,φn+1}. We decorate node 0 with >, all other

nodes i with φi, for 1≤ i ≤ n+ 1. Since F has T -TI, then at node 0:
∧

(0, j)∈E

IF j ,S j
∧> |= IF0,Sn+1

Hence, by construction:
n
∧

i=1

Iφi ,Si
|= Iφ1...φn,Sn+1

Theorem 4.2.12. If a family F = {I t pS0
, . . . , I t pSn

} ∪ {I t pT1
, . . . , I t pTn

} has T n
ST I -

TI, then it has n-STI.

Proof. Let T n
ST I = (V, E) be the tree shown in Figure 4.3, where V = {1, . . . , 2n}

and E = {(n+ i, i) | 1≤ i ≤ n} ∪ {(n+ i, n+ i− 1) | 1≤ i ≤ n}.
Take any inconsistent Φ = {φ1, . . . ,φn}. For 1≤ i ≤ n, we decorate i with φi,

n+ i with >; similarly we associate i with I t pTi
and n+ i with I t pSi

. Since F has
T -TI, then at every node n+ i+ 1, for 0≤ i ≤ n− 1:

(IFn+i ,Si
∧ IFi+1,Ti+1

)∧> |= IFn+i+1,Si+1

Hence, by construction,

Iφ1...φi ,Si
∧ Iφi+1,Ti+1

|= Iφ1...φi+1,Si+1

106 4.2 Collectives of Interpolation Systems

0 n+ 1
φn+1

1
φ1

n
φn

· · ·

Figure 4.2. T n
GSA.

n+ 1

1
φ1

2
φ2

· · · n
φn

n+ 2 · · · 2n

Figure 4.3. T n
ST I .

The results of so far (including Theorem 4.3.3 of §4.3) define a hierarchy of col-
lectives which is summarized in Figure 4.4. The solid edges indicate direct implica-
tion between properties; SA⇒ GSA requires symmetry, while GSA⇒ T I requires
the existence of an additional set of interpolation systems. The dashed edges repre-
sent the ability of TI to realize all the other properties for an appropriate tree; only
the edges to STI and GSA are shown, the other ones are implicit. The dash-dotted
edges represent the subfamily properties.

TI

GSA STI

BGSA SA PI

*

symm

Figure 4.4. Collectives of families of systems.

An immediate application of our results is that they show how to overcome
limitations of existing implementations. For example, they enable the trivial con-
struction of tree interpolants in the MathSAT SMT solver [BCF+08] (currently
only available in iZ3) – thus enabling its usability for upgrade checking [SFS12b]
– by reusing existing BGSA-interpolation implementation of MathSAT. Similarly,
our results enable construction of BGSA and GSA interpolants in the iZ3 SMT
solver [McM11] (currently only available in MathSAT) – thus enabling the use of
iZ3 in Whale [AGC12].

107 4.3 Collectives of Labeled Interpolation Systems

4.3 Collectives of Labeled Interpolation Systems

In this section, we move from the abstract level of general interpolation systems
to the implementation level of the propositional labeled interpolation systems; we
study collectives of families, then summarize the results for single LISs, also an-
swering the questions left open in §4.2.

In the following, we will make use of the notation introduced in §3.3.4 for the
resolution system and the labeled interpolation systems, adapting it to collections of
interpolants and systems. Since a labeled system I t pL is uniquely determined by the
labeling L, when discussing a family of LISs {I t pL1

, . . . , I t pLn
} we will refer to the

correspondent family of labelings as {L1, . . . , Ln}.

Labeling Notation. In the previous sections, we saw how the various collectives
involve the generation of multiple interpolants from a single inconsistent formula
Φ = {φ1, . . . ,φn} for different subdivisions of Φ into an A and a B parts; we refer
to these ways of splitting Φ as configurations. Remember that a labeling L has free-
dom in assigning labels only to occurrences of AB-common propositional variables;
each configuration identifies these variables. We will say that a variable p has class
A, B, AB to indicate that p is A-local, B-local, AB-common.

Since we deal with several configurations at a time, it is useful to separate the
variables into partitions of Φ depending on whether the variables are local to a φi

or shared, taking into account all possible combinations. For example, Table 4.1 is
the labeling table that characterizes 3-SA.

Table 4.1. 3-SA.

p in ?
Variable class, label

φ1 | φ2φ3 φ2 | φ1φ3 φ3 | φ1φ2

φ1 A, a B, b B, b
φ2 B, b A, a B, b
φ3 B, b B, b A, a
φ1φ2 AB,α1 AB,α2 B, b
φ2φ3 B, b AB,β2 AB,β3

φ1φ3 AB,γ1 B, b AB,γ3

φ1φ2φ3 AB,δ1 AB,δ2 AB,δ3

Recall that in 3-SA we are given an inconsistent Φ = {φ1,φ2,φ3} and a family
of labelings {L1, L2, L3} and generate three interpolants Iφ1,L1

, Iφ2,L2
, Iφ3,L3

. The
labeling Li is associated with the ith configuration. For example, the table shows

108 4.3 Collectives of Labeled Interpolation Systems

that L1 can independently assign a label from {a, b, ab} to each occurrence of each
variable shared between φ1 and φ2, φ1 and φ3 or φ1,φ2 and φ3 (as indicated by
the presence of α1,γ1,δ1).

When talking about an occurrence of a variable p in a certain partitionφi1 · · ·φik ,
it is convenient to associate to p and the partition a labeling vector (ηi1 , . . . ,ηik), rep-
resenting the labels assigned to p by Li1 , . . . , Lik in configuration i1, . . . , ik (all other
labels are fixed). Strength of labeling vectors is compared pointwise, extending the
linear order b � ab � a �⊥ as described in §3.3.4.2.

We reduce the problem of deciding whether a family F = {I t pL1
, . . . , I t pLn

}
has an interpolation property P to showing that all labeling vectors of {L1, . . . , Ln}
satisfy a certain set of labeling constraints. For simplicity of presentation, in the rest
of the chapter we assume that all occurrences of a variable are labeled uniformly.
The extension to differently labeled occurrences is straightforward.

4.3.1 Collectives of Families of LISs

We derive in the following both necessary and sufficient conditions for the collec-
tives to hold in the context of LISs families. The practical significance of our results
is to identify which LISs satisfy which collectives. In particular, for the first time,
we show that not all labeled interpolation systems satisfy all collectives. The results
of our research provide an essential guide for using interpolant strength results when
collectives are required (such as in upgrade checking).

We proceed as follows. First, we identify necessary and sufficient labeling con-
straints to characterize BGSA. Second, we extend them to n-GSA and to n-SA.
Third, we exploit the connections between BGSA and n-GSA on one side, and n-
STI and T -TI on the other (Theorem 4.2.8, Lemma 4.2.9, Lemma 4.2.10) to derive
the labeling constraints both for n-STI and T -TI, thus completing the picture.

4.3.1.1 BGSA

Let Φ = {φ1,φ2,φ3} be an unsatisfiable formula in CNF,F = {I t pL1
, I t pL2

, I t pL3
}

a family of LISs. We want to identify the restrictions on the labeling vectors of
{L1, L2, L3} for whichF has BGSA, i.e., Iφ1,L1

∧ Iφ2,L2
|= Iφ1φ2,L3

. We define a set of
BGSA constraints CCBGSA on labelings as follows:

Definition 4.3.1 (BGSA Constraints CCBGSA). A family of labelings {L1, L2, L3}

109 4.3 Collectives of Labeled Interpolation Systems

satisfies CCBGSA iff:

(α1,α2), (δ1,δ2)� {(ab, ab), (b, a), (a, b)}
β2 � β3 γ1 � γ3

δ1 � δ3 δ2 � δ3

hold for all variables, where αi, βi, γi and δi are as shown in Table 4.2, the labeling
table for BGSA. ∗ � {∗1,∗2} denotes that ∗ � ∗1 or ∗ � ∗2 (both can be true).

Table 4.2. BGSA.

p in ?
Variable class, label

φ1 | φ2φ3 φ2 | φ1φ3 φ1φ2 | φ3

φ1 A, a B, b A, a
φ2 B, b A, a A, a
φ3 B, b B, b B, b
φ1φ2 AB,α1 AB,α2 A, a
φ2φ3 B, b AB,β2 AB,β3

φ1φ3 AB,γ1 B, b AB,γ3

φ1φ2φ3 AB,δ1 AB,δ2 AB,δ3

We aim to prove that CCBGSA is necessary and sufficient for a family of LISs
to have BGSA. On one hand, we claim that, if {L1, L2, L3} satisfies CCBGSA, then
{I t pL1

, I t pL2
, I t pL3

} has BGSA. It is sufficient to prove the thesis for a set of re-
stricted BGSA constraints CC∗BGSA, defined as follows:

Definition 4.3.2 (Restricted BGSA Constraints CC∗BGSA). A family of labelings {L1, L2, L3}
satisfies CC∗BGSA iff:

(α1,α2), (δ1,δ2) ∈ {(ab, ab), (b, a), (a, b)}
β2 = β3 γ1 = γ3

δ3 =max{δ1,δ2}

Note that the conditions on the δi are equivalent to (δ1,δ2,δ3) ∈ {(ab, ab, ab), (b, a, a),
(a, b, a)}, due to the order b � ab � a �⊥.

Lemma 4.3.1. If {L1, L2, L3} satisfies CC∗BGSA, then {I t pL1
, I t pL2

, I t pL3
} has BGSA.

Proof by structural induction. We show that, given a refutation of Φ, for any clause
C in the refutation the partial interpolants satisfy:

Iφ1,L1
(C)∧ Iφ2,L2

(C) |= Iφ1φ2,L3
(C)

110 4.3 Collectives of Labeled Interpolation Systems

that is
Iφ1,L1

(C)∧ Iφ2,L2
(C)∧ Iφ1φ2,L3

(C) |=⊥

For simplicity, we write I1, I2, I3 to refer to the three partial interpolants for C
and, if C has antecedents, we denote their partial interpolants with I+1 , I+2 , I+3 and
I−1 , I−2 , I−3 .
Base case (leaf). Case splitting on C (refer to Table 4.2):

C ∈ φ1 : I1 = C |1,b I2 = C |2,a I3 = C |3,b

C ∈ φ2 : I1 = C |1,a I2 = C |2,b I3 = C |3,b

C ∈ φ3 : I1 = C |1,a I2 = C |2,a I3 = C |3,a

The goal is to show that in each case I1 ∧ I2 ∧ I3 |=⊥. Representing C by grouping
variables into the different partitions, with overbraces to show the label assigned to
each variable, we have:

C ∈ φ1 :

C |1,b =

a
︷︸︸︷

Cφ1
|b∨

α1
︷ ︸︸ ︷

Cφ1φ2
|b∨

γ1
︷ ︸︸ ︷

Cφ1φ3
|b∨

δ1
︷ ︸︸ ︷

Cφ1φ2φ3
|b

C |2,a =

b
︷︸︸︷

Cφ1
|a∧

α2
︷ ︸︸ ︷

Cφ1φ2
|a∧

b
︷ ︸︸ ︷

Cφ1φ3
|a∧

δ2
︷ ︸︸ ︷

Cφ1φ2φ3
|a

C |3,b =

a
︷︸︸︷

Cφ1
|b∧

a
︷ ︸︸ ︷

Cφ1φ2
|b∧

γ3
︷ ︸︸ ︷

Cφ1φ3
|b∧

δ3
︷ ︸︸ ︷

Cφ1φ2φ3
|b

C ∈ φ2 :

C |1,a =

b
︷︸︸︷

Cφ2
|a∧

α1
︷ ︸︸ ︷

Cφ1φ2
|a∧

b
︷ ︸︸ ︷

Cφ2φ3
|a∧

δ1
︷ ︸︸ ︷

Cφ1φ2φ3
|a

C |2,b =

a
︷︸︸︷

Cφ2
|b∨

α2
︷ ︸︸ ︷

Cφ1φ2
|b∨

β2
︷ ︸︸ ︷

Cφ2φ3
|b∨

δ2
︷ ︸︸ ︷

Cφ1φ2φ3
|b

C |3,b =

a
︷︸︸︷

Cφ2
|b∧

a
︷ ︸︸ ︷

Cφ1φ2
|b∧

β3
︷ ︸︸ ︷

Cφ2φ3
|b∧

δ3
︷ ︸︸ ︷

Cφ1φ2φ3
|b

C ∈ φ3 :

C |1,a =

b
︷︸︸︷

Cφ3
|a∧

b
︷ ︸︸ ︷

Cφ2φ3
|a∧

γ1
︷ ︸︸ ︷

Cφ1φ3
|a∧

δ1
︷ ︸︸ ︷

Cφ1φ2φ3
|a

C |2,a =

b
︷︸︸︷

Cφ3
|a∧

β2
︷ ︸︸ ︷

Cφ2φ3
|a∧

b
︷ ︸︸ ︷

Cφ1φ3
|a∧

δ2
︷ ︸︸ ︷

Cφ1φ2φ3
|a

111 4.3 Collectives of Labeled Interpolation Systems

C |3,a =

b
︷︸︸︷

Cφ3
|a∨

β3
︷ ︸︸ ︷

Cφ2φ3
|a∨

γ3
︷ ︸︸ ︷

Cφ1φ3
|a∨

δ3
︷ ︸︸ ︷

Cφ1φ2φ3
|a

We can carry out some simplifications, due to the equality constraints in CC∗BGSA and
the fact that variables with label a restricted w.r.t. b (and vice versa) are removed,
leading (with the help of the resolution rule) to the constraints:

(

α1
︷ ︸︸ ︷

Cφ1φ2
|b∨

δ1
︷ ︸︸ ︷

Cφ1φ2φ3
|b)∧

α2
︷ ︸︸ ︷

Cφ1φ2
|a∧

δ2
︷ ︸︸ ︷

Cφ1φ2φ3
|a∧

δ3
︷ ︸︸ ︷

Cφ1φ2φ3
|b |=⊥

α1
︷ ︸︸ ︷

Cφ1φ2
|a∧

δ1
︷ ︸︸ ︷

Cφ1φ2φ3
|a∧(

α2
︷ ︸︸ ︷

Cφ1φ2
|b∨

δ2
︷ ︸︸ ︷

Cφ1φ2φ3
|b)∧

δ3
︷ ︸︸ ︷

Cφ1φ2φ3
|b |=⊥

δ1
︷ ︸︸ ︷

Cφ1φ2φ3
|a∧

δ2
︷ ︸︸ ︷

Cφ1φ2φ3
|a∧

δ3
︷ ︸︸ ︷

Cφ1φ2φ3
|a |=⊥

Finally, the constraints on (α1,α2) and (δ1,δ2,δ3) guarantee that the remaining
variables are simplified away, proving the base case.

Inductive step (inner node). The inductive hypothesis (i.h.) consists of I+1 ∧ I+2 ∧
I+3 |=⊥, I−1 ∧ I−2 ∧ I−3 |=⊥. We do a case splitting on the pivot p:

Case 1 (p in φ1).

I1 ∧ I2 ∧ I3⇔

(I+1 ∨ I−1)∧ (I
+
2 ∧ I−2)∧ (I

+
3 ∨ I−3)⇔

(I+1 ∨ I−1)∧ I+2 ∧ I−2 ∧ I+3 ∧ I−3 ⇒

(I+1 ∧ I+2 ∧ I+3)∨ (I
−
1 ∧ I−2 ∧ I−3)⇒

i.h. ⊥

Case 2 (p in φ2).

I1 ∧ I2 ∧ I3⇔

(I+1 ∧ I−1)∧ (I
+
2 ∨ I−2)∧ (I

+
3 ∨ I−3)⇔

I+1 ∧ I−1 ∧ (I
+
2 ∨ I−2)∧ I+3 ∧ I−3 ⇒

(I+1 ∧ I+2 ∧ I+3)∨ (I
−
1 ∧ I−2 ∧ I−3)⇒

i.h. ⊥

Case 3 (p in φ3).

112 4.3 Collectives of Labeled Interpolation Systems

I1 ∧ I2 ∧ I3⇔

(I+1 ∧ I−1)∧ (I
+
2 ∧ I−2)∧ (I

+
3 ∧ I−3)⇔

I+1 ∧ I−1 ∧ I+2 ∧ I−2 ∧ (I
+
3 ∨ I−3)⇒

(I+1 ∧ I+2 ∧ I+3)∨ (I
−
1 ∧ I−2 ∧ I−3)⇒

i.h. ⊥

Case 4 (p in φ1φ2). If (α1,α2) = (ab, ab):

I1 ∧ I2 ∧ I3⇔

(I+1 ∨ p)∧ (I−1 ∨ p)∧ (I+2 ∨ p)∧ (I−2 ∨ p)∧ (I+3 ∨ I−3)⇒

(I+1 ∨ p)∧ (I−1 ∨ p)∧ (I+2 ∨ p)∧ (I−2 ∨ p)∧ (I+3 ∨ p)∧ (I−3 ∨ p)⇒

((I+1 ∧ I+2 ∧ I+3)∨ p)∧ ((I−1 ∧ I−2 ∧ I−3)∨ p)⇒resol

(I+1 ∧ I+2 ∧ I+3)∨ (I
−
1 ∧ I−2 ∧ I−3)⇒

i.h. ⊥

Case 5 (p in φ1φ2φ3). If (δ1,δ2,δ3) = (ab, ab, ab):

I1 ∧ I2 ∧ I3⇔

(I+1 ∨ p)∧ (I−1 ∨ p)∧ (I+2 ∨ p)∧ (I−2 ∨ p)∧ ((I+3 ∨ p)∧ (I−3 ∨ p))⇔

(I+1 ∨ p)∧ (I−1 ∨ p)∧ (I+2 ∨ p)∧ (I−2 ∨ p)∧ ((I+3 ∧ p)∨ (I−3 ∧ p))⇒

((I+1 ∨ p)∧ (I+2 ∨ p)∧ I+3 ∧ p)∨ ((I−1 ∨ p)∧ (I−2 ∨ p)∧ I−3 ∧ p)⇒resol

(I+1 ∧ I+2 ∧ I+3)∨ (I
−
1 ∧ I−2 ∧ I−3)⇒

i.h. ⊥

All the remaining cases are treated in a similar manner, to reach a point (possibly
after a resolution step if some of the labels are ab) where the inductive hypothesis
can be applied.

Recall that, given two labelings L, L′ s.t. L � L′, the interpolant IL obtained
from a refutation with L is stronger than the interpolant IL′ obtained with L′, that is
IL |= IL′ . The connection between partial order on labelings and LISs and strength
of the generated interpolants allows to relax CC∗BGSA to CCBGSA.

Lemma 4.3.2. The CC∗BGSA constraints:

(α1,α2), (δ1,δ2) ∈ {(ab, ab), (b, a), (a, b)}
β2 = β3 γ1 = γ3

δ3 =max{δ1,δ2}

113 4.3 Collectives of Labeled Interpolation Systems

can be relaxed to CCBGSA:

(α1,α2), (δ1,δ2)� {(ab, ab), (b, a), (a, b)}
β2 � β3 γ1 � γ3

δ1 � δ3 δ2 � δ3

Proof. Let Φ = {φ1,φ2,φ3} be an unsatisfiable formula in CNF. Consider an ar-
bitrary family of LISs F = {I t pL1

, I t pL2
, I t pL3

} s.t. {L1, L2, L3} satisfies CC∗BGSA;
then, by Lemma 4.3.1, F has BGSA, i.e.:

Iφ1,L1
∧ Iφ2,L2

∧ Iφ1φ2,L3
|=⊥

Note from Table 4.2, the labeling table for BGSA, that α1,γ1,δ1 refer to L1, α2,β2,δ2

refer to L2, and β3,γ3,δ3 refer to L3. Consider now an arbitrary {L′1, L′2, L′3} that sat-
isfies CCBGSA; due to the definitions of CCBGSA and CC∗BGSA, it derives that L′1 � L1,
L′2 � L2 and L′3 � L3. This in turn implies Iφ1,L′1

|= Iφ1,L1
, Iφ2,L′2

|= Iφ2,L2
, and

Iφ1φ2,L3
|= Iφ1φ2,L′3

, yielding:

Iφ1,L′1
∧ Iφ2,L′2

∧ Iφ1φ2,L′3
⇒ Iφ1,L1

∧ Iφ2,L2
∧ Iφ1φ2,L3

⇒⊥

Thus, the family F ′ = {I t pL′1
, I t pL′2

, I t pL′3
} has BGSA.

The above considerations lead to the following result:

Corollary 4.3.3. If {L1, L2, L3} satisfies CCBGSA, then {I t pL1
, I t pL2

, I t pL3
} has BGSA.

On the other hand, it holds that the satisfaction of the CCBGSA constraints is
necessary for BGSA:

Lemma 4.3.4. If {I t pL1
, I t pL2

, I t pL3
} has BGSA, then {L1, L2, L3} satisfies CCBGSA.

Proof by contradiction. We show that, if any of the CCBGSA constraints is violated,
there exist an unsatisfiable formula Φ = {φ1,φ2,φ3} and a refutation such that
Iφ1,L1

∧ Iφ2,L2
6|= Iφ1φ2,L3

. The possible violations for the CCBGSA constraints consist
of:

1. (α1,α2), (δ1,δ2) ∈ {(a, a), (ab, a), (a, ab)}

2. (β2,β3), (γ1,γ3), (δ1,δ3), (δ2,δ3) ∈ {(a, ab), (a, b), (ab, b)}

It is sufficient to take into account (α1,α2) ∈ {(a, a), (a, ab)} and (β2,β3) ∈ {(a, ab),
(a, b), (ab, b)}. The remaining cases follow by symmetry.

114 4.3 Collectives of Labeled Interpolation Systems

(1) (α1,α2) = (a, a) : φ1 = (p ∨ q)∧ r, φ2 = (p ∨ r)∧ q, φ3 = s

A= φ1 B = φ2,φ3

p ∨ q [⊥] p ∨ r [p ∧ r]
q ∨ r [p ∧ r] r [⊥]

q [p ∧ r] q [q]
⊥ [(p ∧ r)∨ q]

A= φ2 B = φ1,φ3

p ∨ q [p ∧ q] p ∨ r [⊥]
q ∨ r [p ∧ q] r [r]

q [(p ∧ q)∨ r] q [⊥]
⊥ [(p ∧ q)∨ r]

We have Iφ1,L1
= (p∧ r)∨q, Iφ2,L2

= (p∧q)∨ r, Iφ1φ2,L3
=⊥ since s is absent

from the proof. Then, Iφ1,L1
∧ Iφ2,L2

6|= Iφ1φ2,L3
: a counterexample is q, r.

(2) (α1,α2) = (a, ab) : φ1 = (p ∨ q)∧ r, φ2 = (p ∨ r)∧ q, φ3 = s

A= φ2 B = φ1,φ3

p ∨ q [>] p ∨ r [⊥]
q ∨ r [p] q [⊥]

r [(p ∨ q)∧ q] r [>]
⊥ [((p ∨ q)∧ q)∨ r]

We have Iφ1,L1
= (p ∧ r) ∨ q and Iφ1φ2,L3

= ⊥ as in (1), while Iφ2,L2
=

((p ∨ q)∧ q)∨ r. Then, Iφ1,L1
∧ Iφ2,L2

6|= Iφ1φ2,L3
: a counterexample is q, r.

(3) (β2,β3) = (a, b) : φ1 = s, φ2 = (p ∨ r)∧ q, φ3 = (p ∨ q)∧ r

A= φ1,φ2 B = φ3

p ∨ q [>] p ∨ r [p ∨ r]
q ∨ r [p ∨ r] r [>]

q [p ∨ r] q [q]
⊥ [(p ∨ r)∧ q]

115 4.3 Collectives of Labeled Interpolation Systems

We have Iφ1,L1
=>, since s is absent from the proof, while Iφ2,L2

= (p∧q)∨ r
as in (1); Iφ1φ2,L3

= (p ∨ r) ∧ q. Then, Iφ1,L1
∧ Iφ2,L2

6|= Iφ1φ2,L3
: a counterex-

ample is q, r.

(4) (β2,β3) = (a, ab) : φ1 = s, φ2 = (p ∨ r)∧ q, φ3 = (p ∨ q)∧ r

A= φ1,φ2 B = φ3

p ∨ q [>] p ∨ r [⊥]
q ∨ r [p] r [>]

q [p ∨ r] q [⊥]
⊥ [(p ∨ r ∨ q)∧ q]

Iφ1,L1
= > as in (3), Iφ2,L2

= (p ∧ q) ∨ r as in (1), Iφ1φ2,L3
= (p ∨ r ∨ q) ∧ q.

Then, Iφ1,L1
∧ Iφ2,L2

6|= Iφ1φ2,L3
: a counterexample is q, r.

(5) (β2,β3) = (ab, b) : φ1 = s, φ2 = (p ∨ r)∧ q, φ3 = (p ∨ q)∧ r

Iφ1,L1
= > as in (3), Iφ2,L2

= ((p ∨ q)∧ q)∨ r as in (2), Iφ1φ2,L3
= (p ∨ r)∧ q

as in (3). Then, Iφ1,L1
∧ Iφ2,L2

6|= Iφ1φ2,L3
: a counterexample is q, r.

Having proved that CCBGSA is both sufficient and necessary, we conclude:

Theorem 4.3.1. A family {I t pL1
, I t pL2

, I t pL3
} has BGSA if and only if {L1, L2, L3}

satisfies CCBGSA.

4.3.1.2 n-GSA

After addressing the binary case, we move to defining necessary and sufficient con-
ditions for n-GSA. A family of LISs {I t pL1

, . . . , I t pLn+1
} has n-GSA if, for any

inconsistent Φ = {φ1, . . . ,φn+1}:

Iφ1,L1
∧ · · · ∧ Iφn,Ln

|= Iφ1...φn,Ln+1

As we defined a set of labeling constraints for BGSA, we now introduce the n-GSA
constraints (CCnGSA) on a family of labelings.

116 4.3 Collectives of Labeled Interpolation Systems

Definition 4.3.3 (n-GSA Constraints CCnGSA). A family of labelings {L1, . . . , Ln+1}
satisfies CCnGSA if for every variable with labeling vector (αi1 , . . . ,αik+1

), 1≤ k ≤ n,
letting m= ik+1 if ik+1 6= n+ 1, m= ik otherwise:

(1) (∃ j ∈ {i1, . . . , im}α j = a)→ (∀h ∈ {i1, . . . , im} h 6= j→ αh = b)

Also, if ik+1 = n+ 1:

(2) ∀ j ∈ {i1, . . . , ik},α j � αik+1

That is, if a variable is not shared with φn+1, then, if one of the labels is a, all
the others must be b; if the variable is shared with φn+1, condition (1) still holds for
(αi1 , . . . ,αik−1

), and all these labels must be stronger or equal than αik+1
= αn+1. We

can prove that these constraints are necessary and sufficient for a family of LISs to
have n-GSA; in order to do so, we make use of a set of restricted constraints:

Definition 4.3.4 (Restricted n-GSA Constraints CC∗nGSA). A family of labelings
{L1, . . . , Ln+1} satisfies CC∗nGSA if for every variable with labeling vector (αi1 , . . . ,αik+1

),
1≤ k ≤ n:

(1) If ik+1 6= n+ 1, then either (αi1 , . . . ,αik+1
) = (ab, . . . , ab) or

∃! j ∈ {i1, . . . , ik}α j = a ∧ (∀h ∈ {i1, . . . , im} h 6= j→ αh = b)

(2) If ik+1 = n+ 1, then ∀ j ∈ {i1, . . . , ik},α j = αik+1

The restriction mechanism is the generalization of the one shown in Definition 4.3.2.

Lemma 4.3.5. If {L1, . . . , Ln+1} satisfies CC∗nGSA, then the family {I t pL1
, . . . , I t pLn+1

}
has n-GSA.

Proof by structural induction. We prove that, given a refutation of Φ, for any clause
C in the refutation the partial interpolants satisfy:

Iφ1,L1
(C)∧ · · · ∧ Iφn,Ln

(C) |= Iφ1...φn,Ln+1
(C)

that is
Iφ1,L1

(C)∧ · · · ∧ Iφn,Ln
(C)∧ Iφ1...φn,Ln+1

(C) |=⊥

Base case (leaf). Remember that, if C ∈ φi, i 6= n + 1, C ∈ A in configuration
i (hence the partial interpolant is C |i,b) and in configuration n + 1 (C |n+1,b) and
C ∈ B in all the other configurations j 6= i, n+ 1 (C | j,a). If C ∈ φn+1, C ∈ B in all

117 4.3 Collectives of Labeled Interpolation Systems

configurations (C |n+1,a in configuration n+1, C |i,a everywhere else). So we need to
prove:

C |1,a ∧ · · · ∧ C |i−1,a ∧ C |i,b ∧ C |i+1,a ∧ · · · ∧ C |n,a ∧ C |n+1,b |=⊥

C |1,a ∧ · · · ∧ C |i−1,a ∧ C |i,a ∧ C |i+1,a ∧ · · · ∧ C |n,a ∧ C |n+1,a |=⊥

respectively for i 6= n+ 1 and i = n+ 1.
We can divide the variables of C ∈ φi into partitions, obtaining C = Cφi

∨Cφiφ2
∨

· · ·∨Cφ1...φn
, leading to a system of constraints as shown for BGSA; the conjunction

of:
(Cφi
∨ Cφiφ2

∨ · · · ∨ Cφ1...φn
)|1,a

...

(Cφi
∨ Cφiφ2

∨ · · · ∨ Cφ1...φn
)|i,b

...

(Cφi
∨ Cφiφ2

∨ · · · ∨ Cφ1...φn
)|n,a

must imply ⊥ for every φi, i 6= n+ 1 (similarly for φn+1). All the simplifications
are carried out in line with the proof of Lemma 4.3.1.

Inductive step (inner node). The proof is a again a direct generalization of the proof
of Lemma 4.3.1.

Performing a case splitting on the pivot and on its labeling vector, the starting
point is a conjunction of the partial interpolants I1 ∧ · · · ∧ In ∧ In+1 of C , which is
then expressed in terms of the partial interpolants for the antecedents. The goal
is to reach a formula ψ= (I+1 ∧ · · · ∧ I+n ∧ I+n+1)∨ (I

−
1 ∧ · · · ∧ I−n ∧ I−n+1) where the

inductive hypothesis can be applied.
The key observation is that the restricted CCnGSA constraints give rise to a com-

bination of boolean operators (after the dualization of the ones in In+1 due to the
negation) which makes it always possible to obtain the desired ψ, possibly with the
help of the resolution rule.

Similarly to what done for BGSA in Lemma 4.3.2, the CC∗nGSA constraints can
be relaxed to CCnGSA, yielding the following result:

Lemma 4.3.6. If {L1, . . . , Ln+1} satisfies CCnGSA, then the family {I t pL1
, . . . , I t pLn+1

}
has n-GSA.

We move now from the sufficient to the necessary conditions:

118 4.3 Collectives of Labeled Interpolation Systems

Lemma 4.3.7. If a family F = {I t pL1
, . . . , I t pLn+1

} has n-GSA, then {L1, . . . , Ln+1}
satisfies CCnGSA.

Proof by induction and contradiction. We prove the theorem by strong induction on
n≥ 2.
Base Case (n= 2). Follows by Lemma 4.3.4.
Inductive Step. Assume the thesis holds for all k ≤ n− 1, we prove it for k = n. By
Lemma 4.2.4, if a family F = {I t pL1

, . . . , I t pLn+1
} has n-GSA, then any subfamily

of size k+ 1 ≤ n has k-GSA. Combined with the inductive hypothesis, this implies
that it is sufficient to establish the theorem for every variable p and labeling vectors
~α = (α1, . . . ,αn) and ~β = (β1, . . . ,βn+1) corresponding to partitions φ1 · · ·φn and
φ1 · · ·φn+1, respectively.

We only show the case of ~α. The proof for ~β is analogous. W.l.o.g., assume
that there is a p such that ~α violates CCnGSA for α1 = α2 = a (other cases are
symmetric). Construct a family of labelings {L′1, L′2, L′n+1} from {L1, . . . , Ln+1} by
(1) taking all labelings of partitions involving only subsets of φ1, φ2 and φn+1. For
example, vectors (η3,η4) and (η1,η2,η3,ηn+1) would be discarded, while (η1,η2)
and (η1,η2,ηn+1) would be kept; and (2) for p, set the labeling vector of partition
φ1φ2 to (α1,α2) = (a, a). By Lemma 4.3.4, {L′1, L′2, L′n+1} does not have BGSA.
Let Φ′ = {φ1,φ2,φn+1} be such that Iφ1,L′1

∧ Iφ2,L′2
6|= Iφ1φ2,L′n+1

, and let Π be the
corresponding resolution refutation.

Construct Φ = {φ1,φ2, p, . . . , p,φn+1} by adding (n− 2) copies of p to Φ′. Φ is
unsatisfiable, and Π is also a valid refutation for Φ. From this point, we assume that
all interpolants are generated from Π.

Assume, by contradiction, that F has n-GSA. Then,

Iφ1,L1
∧ · · · ∧ Iφn,Ln

|= Iφ1···φn,Ln+1

But, because φ3, . . . ,φn do not contribute any clauses to Π, Iφi ,Li
=> for 3≤ i ≤ n.

Hence,
Iφ1,L1

∧ Iφ2,L2
|= Iφ1φ2,Ln+1

However, by construction:

Iφ1,L1
= Iφ1,L′1

Iφ2,L2
= Iφ2,L′2

Iφ1φ2,Ln+1
= Iφ1φ2,L′n+1

which leads to a contradiction. Hence ~α must satisfy CCnGSA.

We can now state the main theorem:

Theorem 4.3.2. A family F = {I t pL1
, . . . , I t pLn+1

} has n-GSA if and only if
{L1, . . . , Ln+1} satisfies CCnGSA.

119 4.3 Collectives of Labeled Interpolation Systems

4.3.1.3 n-SA

The constraints for n-SA follow as a special case of CCnGSA:

Definition 4.3.5 (n-SA Constraints CCnSA). A family of labelings {L1, . . . , Ln} sat-
isfies CCnSA if for every variable with labeling vector (αi1 , . . . ,αik), 2 ≤ k ≤ n, it
holds that:

(∃ j ∈ {i1, . . . , ik}α j = a)→ (∀h ∈ {i1, . . . , ik}h 6= j→ αh = b)

Corollary 4.3.8. A familyF = {I t pL1
, . . . , I t pLn

} has n-SA if and only if {L1, . . . , Ln}
satisfies CCnSA.

In particular, for n= 2, we have:

Corollary 4.3.9. A family {I t pL1
, I t pL2

} has 2-SA if and only if {L1, L2} satisfies
(α1,α2)� {(ab, ab), (a, b), (b, a)}.

Recall from §3.3.4 that the LIS corresponding to Pudlák’s system I t pP is ob-
tained by labeling all AB-common propositional variables with ab. The set of all
families of labelings {L′1, . . . , L′n} s.t. every I t pL′i

is stronger or equivalent to I t pP is
thus a subset of the set of all families of labelings {L1, . . . , Ln} satisfying CCnSA; the
inclusion is strict since CCnSA also allows for tuples of labels (e.g., (α1,α2) = (a, b)
or (δ1,δ3,δ2) = (a, b, b)) not comparable with Pudlák’s labeling.

The result of Corollary 4.3.8 allows then to formally relate I t pP and n-SA:

Corollary 4.3.10. Suppose that, in a family F = {I t pL1
, . . . , I t pLn

}, each I t pLi
is

stronger or equivalent to I t pP . Then F has n-SA.

Moreover, a family that has (n+1)-SA also has n-GSA if the last member of the
family is Pudlák’s system. In fact, from Proposition 4.2.2 and Pudlák’s system being
symmetric (as shown in [Hua95]), it follows that if a family {I t pL1

, . . . , I t pLn
, I t pP}

has (n+ 1)-SA, then it has n-GSA; this in turn yields:

Corollary 4.3.11. Suppose that, in a family F = {I t pL1
, . . . , I t pLn

}, each I t pLi
is

stronger or equivalent to I t pP . Then F ′ = {I t pL1
, . . . , I t pLn

, I t pP} has n-GSA.

Besides directly proving the necessary and sufficient labeling constraints for n-
GSA, and deriving those for n-SA as a corollary, we can show an alternative way
to build a family {I t pL1

, . . . , I t pLn
} which enjoys n-SA by applying the following

Lemma 4.3.12.

Lemma 4.3.12. If a family {I t pL0
, I t pL1

, I t pL3
, I t pL4

} has 3-PI , then an L2 can
always be found s.t. {I t pL1

, I t pL2
, I t pL3

} has BGSA.

120 4.3 Collectives of Labeled Interpolation Systems

Proof. Follows as a corollary of Theorem 4.3.5 and from the fact that, in 3-PI, the
only relevant condition is:

Iφ1,L1
∧φ2 |= Iφ1φ2,L2

since, for any L0, L1, L2, L3, >= I>,L0
∧φ1 |= Iφ1,L1

and Iφ1φ2,L2
∧ φ3 |=

Iφ1φ2φ3,L3
=⊥.

We can combine Lemma 4.3.12 and Theorem 4.3.8 of §4.3.2 concerning PI for
a single LIS in order to build a family {I t pL1

, . . . , I t pLn
} that has n-SA.

Theorem 4.3.8 states that, given any L, I t pL has PI, in particular for any Φ =
{φ1,φ2,φ3}:

Iφ1,L ∧φ2 |= Iφ1φ2,L

Lemma 4.3.12 shows that {L, L} can be extended to an {L, L′, L} such that {I t pL, I t pL′ ,
I t pL} has BGSA, that is, for any Φ = {φ1,φ2,φ3}:

Iφ1,L ∧ Iφ2,L′ |= Iφ1φ2,L

We iteratively generate a collection of families {L, L′i, L} that have BGSA, i.e.:

Iφ1,L ∧ Iφ2,L′i
|= Iφ1φ2,L

for 0 ≤ i ≤ n; following Theorem 4.2.8 relating n-STI and BGSA, we then obtain
a family F that has n-STI. Finally, from F we extract, as in Theorem 4.2.7, a sub-
family {I t pL′1

, . . . , I t pL′n
} that has n-SA.

After investigating n-GSA and n-SA, we address two questions which were left
open in §4.2.2: do n-SA and n-PI imply n-STI? Is the requirement of additional
interpolation systems necessary to obtain T -TI from n-GSA? We show here that n-
SA and n-PI do not necessarily imply n-STI, and that, for LISs, n-GSA and T -TI
are equivalent.

4.3.1.4 n-STI

Theorem 4.2.7 shows that if a family has n-STI, then it has both n-SA and n-PI. We
prove that the converse is not necessarily true. First, it is not difficult to prove that
any family {I t pL0

, I t pL1
, I t pL2

} has 2-PI:

Proposition 4.3.13. Any family {I t pL0
, I t pL1

, I t pL2
} has 2-PI.

121 4.3 Collectives of Labeled Interpolation Systems

Proof. Recall that I>,L0
=> and Iφ1φ2,L2

=⊥ for any L0, L2. Hence, 2-PI reduces to
the following two conditions: φ1 |= Iφ1,L1

, Iφ1,L1
∧φ2 |= ⊥, which are true of any

Craig interpolant.

A second result is that:

Lemma 4.3.14. There exists a family {I t pL0
, I t pL1

, I t pL2
} that has 2-PI and a fam-

ily {I t pL′1
, I t pL′2

} that has 2-SA, but the family {I t pL0
, I t pL1

, I t pL2
, I t pL′1

, I t pL′2
}

does not have 2-STI.

Proof. By Theorem 4.2.8, a necessary condition for 2-STI is that {I t pL1
, I t pL′2

, I t pL2
}

has BGSA. By Proposition 4.3.13, {L0, L1, L2} can be arbitrary. By Theorem 4.3.1
and Corollary 4.3.9, there exists {L′1, L′2} such that {I t pL′1

, I t pL′2
} has 2-SA, but

{I t pL1
, I t pL′2

, I t pL2
} does not have BGSA.

We obtain the main result applying the STI subfamily property (Theorem 4.2.2):

Theorem 4.3.3. There exists a family {I t pS0
, . . . , I t pSn

} that has n-PI, and a family
{I t pT1

, . . . , I t pTn
} that has n-SA, but the family {I t pS0

, . . . , I t pSn
}∪

{I t pT1
, . . . , I t pTn

} does not have n-STI.

4.3.1.5 T-TI

In this section we discuss tree interpolation. Theorem 4.2.10 shows how T -TI can be
obtained by multiple applications of GSA at the level of each parent and its children,
provided that we can find an appropriate labeling to generate an interpolant for the
parent. We prove here that, in the case of LISs, this requirement is not needed, and
derive explicit constraints on labelings for T -TI.

Let us define n-GSA strengthening any property derived from n-GSA by not
abstracting any of the subformulae φi, for example:

Iφ1,L1
∧ · · · ∧ Iφn−1,Ln−1

∧φn |= Iφ1...φn,Ln+1

It can be proved that:

Lemma 4.3.15. The set of labeling constraints of any n-GSA strengthening is a
subset of constraints of n-GSA.

Proof. Assume w.l.o.g we strengthen the first subformula φ1. Then any variable
in any partition which does not involve φ1 has the same labeling vector and its
n-GSA labeling constraints are also the same. Instead, variables in any partition
φ1φi2 . . .φik have now a labeling vector (αi2 , . . . ,αik), where the first component α1

is missing. Referring to the definition of CCnGSA, it is easy to verify that the set of
the constraints for the strengthening are a subset of the constraints for n-GSA.

122 4.3 Collectives of Labeled Interpolation Systems

From Theorem 4.2.10 and Lemma 4.3.15, it follows that:

Lemma 4.3.16. Given a tree T = (V, E) a family {I t pSi
}i∈V has T -TI if, for every

parent ik+1 and its children i1, . . . , ik, the family of labelings of the (k + 1)-GSA
strengthening obtained by non abstracting the parent satisfies the correspondent
subset of (k+ 1)-GSA constraints.

Note that, in contrast to Theorem 4.2.10, in the case of LISs we do not need
to ensure the existence of an additional set of interpolation systems to abstract the
parents. The symmetry between the necessary and sufficient conditions given by
Theorem 4.2.10 and Theorem 4.2.9 is restored, and we establish:

Theorem 4.3.4. Given a tree T = (V, E) a family {I t pSi
}i∈V has T -TI if and only if

for every parent ik+1 and its children i1, . . . , ik, the family of labelings of the (k+1)-
GSA strengthening obtained by non abstracting the parent satisfies the correspon-
dent subset of (k+ 1)-GSA constraints.

Alternatively, in the case of LISs, the additional interpolation systems can be
constructed explicitly:

Theorem 4.3.5. Any F = {I t pLi1
, . . . , I t pLik

, I t pLn+1
} s.t. k < n that has an n-GSA

strengthening property can be extended to a family that has n-GSA.

Proof. Refer to the definition of CCnGSA and to Lemma 4.3.15. We can complete
F for example by introducing n− k instances of McMillan’s system I t pM . Both
constraints (1) and (2) for n-GSA are satisfied, since I t pM always assigns label b
(recall the order b � ab � a). Note that I t pM is not necessarily the only possible
choice.

4.3.1.6 n-PI

Theorem 4.2.7 derives n-SA from n-STI, which in turn is reduced to BGSA by
Theorem 4.2.8: a family F = {I t pS0

, . . . , I t pSn
, I t pT1

, . . . , I t pTn
} has n-STI iff

{I t pSi
, I t pTi+1

, I t pSi+1
} has BGSA for all 0≤ i ≤ n− 1.

We now prove a variant of Theorem 4.2.8 for n-PI, by exploiting the notion of
n-GSA strengthening introduced while discussing tree interpolation.

Theorem 4.3.6. A family F = {I t pL0
, . . . , I t pLn

} has n-PI iff, for all 0 ≤ i ≤
n−1, {I t pLi

, I t pLi+1
} has the BGSA strengthening BST obtained from BGSA by non

abstracting the second subformula.

123 4.3 Collectives of Labeled Interpolation Systems

Proof. (⇒). Take any inconsistent Φ = {φ1,φ2,φ3}. For 0 ≤ i ≤ n− 1, extend Φ
to a Φ′ = {φ′1, . . . ,φ′n} by adding (n− 3) copies of >, so that φ′i = φ1, φ′i+1 = φ2,
φ′i+2 = φ3. Since F has n-PI:

Iφ′1···φ′i ,Si
∧φ′i+1 |= Iφ′1···φ′i+1,Li+1

Hence, by construction, BST holds:

Iφ1,Li
∧φ2 |= Iφ1φ2,Li+1

(⇐) Take any inconsistent Φ = {φ1, . . . ,φn}. Since {I t pLi
, I t pLi+1

} has BST, it
follows that for {φ′1,φ′2,φ′3}, where φ′1 = φ1 ∧ · · · ∧φi, φ′2 = φi+1, φ′3 = φi+2 ∧
· · · ∧φn:

Iφ′1,Li
∧φ′2 |= Iφ′1φ′2,Li+1

Hence, by construction:

Iφ1...φi ,Li
∧φi+1 |= Iφ1...φi+1,Li+1

Table 4.3. BST.

p in ?
Variable class, label
φ1 | φ2φ3 φ1φ2|φ3

φ1 A, a A, a
φ2 B, b A, a
φ3 B, b B, b
φ1φ2 AB,α1 A, a
φ2φ3 B, b AB,β3

φ1φ3 AB,γ1 AB,γ3

φ1φ2φ3 AB,δ1 AB,δ3

Thanks to Lemma 4.3.15, we derive the labeling constraints of BST, and as a
consequence the constraints of n-PI, as a subset of the BGSA constraints:

Definition 4.3.6 (BST Constraints CCBST).

γ1 � γ3 δ1 � δ3

As BST is obtained from BGSA by non abstracting the second formula, Table 4.3,
the labeling table for BST, follows from Table 4.2 by omitting the second column.

We conclude stating the main result:

Theorem 4.3.7. A familyF = {I t pL0
, . . . , I t pLn

} has n-PI iff, for all 0≤ i ≤ n−1,
{Li, Li+1} satisfies CCBST .

124 4.3 Collectives of Labeled Interpolation Systems

4.3.2 Collectives of Single LISs

In the following, we highlight the fundamental results in the context of single LISs,
which represent the most common application of the framework of [DKPW10] to
SAT-based model checking.

A first result, important for its practical applications, is that any LIS satisfies PI:

Theorem 4.3.8. PI holds for all single LISs.

Proof. In the previous section we addressed n-PI for a family of LISs {I t pL0
, . . . , I t pLn

}.
We identified a set of constraints for each {Li, Li+1} as:

γ1 � γ3 δ1 � δ3

In case of a single LIS, γ1 = γ3 and δ1 = δ3, so all constraints are trivially satisfied
for all 0≤ i ≤ n− 1.

Second, recall that in §4.2 we proved that BGSA, STI, TI, GSA are equivalent
for single interpolation systems, and that SA⇒ BGSA for symmetric ones. We now
show that for a single LIS, SA is equivalent to BGSA and that PI is not.

Theorem 4.3.9. If a LIS has SA, then it has BGSA.

Proof. We show that, for any L, the labeling constraints of SA imply those of BGSA.
Refer to Table 4.2, Table 4.1, Theorem 4.3.2 and Corollary 4.3.8. In case of a family
{L1, L2, L3}, the constraints for 3-SA are:

(α1,α2), (β2,β3), (γ1,γ3)� {(ab, ab), (b, a), (a, b)}
(δ1,δ2,δ3)� {(ab, ab, ab), (a, b, b), (b, a, b), (b, b, a)}

When L1 = L2 = L3, they simplify to α,β ,γ,δ ∈ {ab, b}; this means that, in
case of a single LIS, only Pudlák’s or stronger systems are allowed. For a family
{L1, L2, L3}, the BGSA constraints are:

(α1,α2), (δ1,δ2)� {(ab, ab), (b, a), (a, b)}
β2 � β3 γ1 � γ3

δ1 � δ3 δ2 � δ3

When L1 = L2 = L3, they simplify to α,δ ∈ {ab, b}, so that the constraints for
3-SA imply those for BGSA.

125 4.3 Collectives of Labeled Interpolation Systems

From the proof of Theorem 4.3.9, we obtain:

Theorem 4.3.10. A LIS I t pL has the BGSA property iff it is stronger or equivalent
to Pudlák’s system I t pP . In particular, McMillan’s system I t pM has BGSA.

Finally, Theorem 4.3.8, Theorem 4.3.10, and the fact that I t pM ′ is strictly weaker
than I t pP yield:

Theorem 4.3.11. The system I t pM ′ has PI but does not have BGSA.

Note that the necessary and sufficient conditions for LISs to support each of
the collectives simplify implementing procedures with a given property, or, more
importantly from a practical perspective, determine which implementation supports
which property.

We summarize the results about labeled interpolation systems in Figure 4.5 and
in Figure 4.6; in comparison with the hierarchy of general interpolation systems out-
lined in Figure 4.1 and Figure 4.4, TI can be reduced to GSA in case of LISs families
without additional assumptions, while GSA and SA are equivalent for single LISs.

BGSA

GSA

TI

STI

PISA

Figure 4.5. Collectives of single LISs.

TI

GSA STI

BGSA SA PI
symm

Figure 4.6. Collectives of families of LISs.

126 4.4 Collectives of Theory Labeled Interpolation Systems

4.4 Collectives of Theory Labeled Interpolation Sys-
tems

After investigating propositional LISs, we move on to first order theories. The re-
sults of §4.2.1 and §4.2.2 about generic interpolation systems are directly applicable
to the theory labeled interpolation systems; the goal of this section is to analyze the
concrete constraints on T -labelings that allow collectives to be satisfied by T -LISs.

In §3.4 we discussed the two invariant properties that characterize LISs; the
soundness of a LIS I t pL is proved by showing that in a refutation of A∧ B, for each
clause C and partial interpolant I(C):

A∧¬(C |a ∨ C |ab) |= IL(C)

B ∧¬(C |b ∨ C |ab)∧ IL(C) |=⊥
LIL(C) ⊆LAB

while the relationship between labelings and interpolant strength is established by
the fact that, given two labelings L, L′ s.t. L � L′, for each clause C :

IL(C) |= IL′(C)∨ C |AB

The above conditions are at the base of the results about collectives and LISs pre-
sented so far.

In §3.4.1 we introduced the notions of T -labeling and T -LIS, for a first order
theory T , and generalized the conditions to:

A∧¬(C |a ∨ C |ab) |=T IL(C)

B ∧¬(C |b ∨ C |ab)∧ IL(C) |=T ⊥
LIL(C) ⊆LAB ∪LT

and:

IL(C) |=T IL′(C)∨ C |AB

Clearly, the invariant properties of a T -LIS correspond to those of a LIS, modulo
the underlying T . The main difference we need to consider is the presence of theory
lemmata. In fact, if a proof does not contain theory lemmata, then a T -labeling is
equivalent to a labeling; moreover, a T -LIS behaves as a LIS in generating inter-
polants (compare Table 3.9 and Table 3.5), and consequently all the proofs related
to LISs can be extended in a straightforward manner to T -LISs.

127 4.4 Collectives of Theory Labeled Interpolation Systems

4.4.1 Collectives of Families and of Single T -LISs

In the following, we systematically address some of the main results of §4.3.1 and
§4.3.2, adapting them to take into account the presence of theory lemmata: in par-
ticular, on one side we focus on BGSA and n-GSA, for their importance in the
hierarchy of collectives; on the other side, we examine n-PI and instantiate it in the
context of difference logic, further developing the theme of §3.4.2.

4.4.1.1 GSA

Let us recall here the CCBGSA constraints from §4.3.1.1:

(α1,α2), (δ1,δ2)� {(ab, ab), (b, a), (a, b)}
β2 � β3 γ1 � γ3

δ1 � δ3 δ2 � δ3

and the correspondent restricted CC∗BGSA:

(α1,α2), (δ1,δ2) ∈ {(ab, ab), (b, a), (a, b)}
β2 = β3 γ1 = γ3

δ3 =max{δ1,δ2}

Lemma 4.3.1 states that if a family of labelings {L1, L2, L3} satisfies CC∗BGSA,
then the family of LISs {I t pL1

, I t pL2
, I t pL3

} has BGSA. We extend the lemma to
T -LISs:

Lemma 4.4.1. Assume a family of T -labelings {L1, L2, L3} satisfies CC∗BGSA. As-
sume also that there exists a procedure T PIL s.t. for anyΦ = {φ1,φ2,φ3}, {L1, L2, L3}
satisfying CC∗BGSA, refutation Π of Φ and theory lemma C in Π:

T PIφ1,L1
(C)∧ T PIφ2,L2

(C)|=T T PIφ1φ2,L3
(C)

Then, {T -I t pL1
,T -I t pL2

,T -I t pL3
} has BGSA.

Proof by structural induction. The proof relies on showing that, for any clause C in
any refutation of any Φ, the partial interpolants satisfy:

Iφ1,L1
(C)∧ Iφ2,L2

(C)|=T Iφ1φ2,L3
(C)

.
Base case (leaf). The cases C ∈ φ1, C ∈ φ2, C ∈ φ3 are dealt exactly as in
Lemma 4.3.1; the remaining case, i.e. C is a theory lemma, follows from the hy-
pothesis on the existence of T PIL.

128 4.4 Collectives of Theory Labeled Interpolation Systems

Inductive step (inner node). There are no theory lemmata among the inner nodes,
so the inductive step is as in Lemma 4.3.1.

The relaxation of CC∗BGSA to CCBGSA derives from the relationship between partial
order on T -labelings and interpolant strength:

Theorem 4.4.1. Assume a family of T -labelings {L1, L2, L3} satisfies CC∗BGSA. As-
sume also that there exists a procedure T PIL s.t. for anyΦ = {φ1,φ2,φ3}, {L1, L2, L3}
satisfying CC∗BGSA, refutation Π of Φ and theory lemma C in Π:

T PIφ1,L1
(C)∧ T PIφ2,L2

(C)|=T T PIφ1φ2,L3
(C)

Then, {T -I t pL1
,T -I t pL2

,T -I t pL3
} has BGSA.

We stress that the assumptions on T PIL are important since the procedure must
be able to compute a theory partial interpolant for any theory lemma C in T and
for any way of labeling the clean atoms of C as a or b, independently from the
refutation where the lemma appears.

These assumptions are sufficient but not necessary. Consider in fact the con-
trapositive of the converse of Theorem 4.4.1: if (i) {L1, L2, L3} does not satisfy
CCBGSA or (ii) such a T PIL does not exist, then (iii) {I t pL1

, I t pL2
, I t pL3

} does not
have BGSA. Now, on one hand, (i)⇒(iii) follows from Lemma 4.3.4; on the other
hand, the existence of some theory lemma C in some refutation Π with:

T PIφ1,L1
(C)∧ T PIφ2,L2

(C) 6|= T T PIφ1φ2,L3
(C)

does not necessarily entail that, at the level of the root of Π:

Iφ1,L1
∧ Iφ2,L2

6|= T Iφ1φ2,L3

In the same manner as Lemma 4.3.1 for BGSA is generalized to Lemma 4.3.5
for n-GSA, we derive:

Theorem 4.4.2. Assume a family of T -labelings {L1, . . . , Ln+1} satisfies CCnGSA.
Assume also that there exists a procedure T PIL s.t. for any Φ = {φ1, . . . ,φn+1},
{L1, . . . , Ln+1} satisfying CCnGSA, refutation Π of Φ and theory lemma C in Π:

T PIφ1,L1
(C)∧ · · · ∧ T PIφn,Ln

(C) |=T T PIφ1...φn,Ln+1
(C)

Then, {T -I t pL1
, . . . ,T -I t pLn+1

} has n-GSA.

129 4.4 Collectives of Theory Labeled Interpolation Systems

4.4.1.2 PI

In §4.3.1.6 we deduced the CCBST constraints:

γ1 � γ3 δ1 � δ3

as a subset of the BGSA constraints and proved that a family of interpolation systems
{I t pL0

, . . . , I t pLn
} has n-PI iff, for all 0≤ i ≤ n− 1, {Li, Li+1} satisfies CCBST .

We employ Theorem 4.4.1 to derive:

Theorem 4.4.3. Assume a family of T -labelings {L0, . . . , Ln} s.t., for all 0 ≤ i ≤
n − 1, {Li, Li+1} satisfies CCBST . Assume also there exists a procedure T PIL s.t.
for any Φ = {φ1,φ2,φ3}, {L1, L3} satisfying CCBST , refutation Π of Φ and theory
lemma C in Π:

T PIφ1,L1
(C)∧φ2 |=T T PIφ1φ2,L3

(C)

Then, {T -I t pL0
, . . . ,T -I t pLn

} has n-PI.

Theorem 4.3.8 from §4.3.2 shows that, in case of any single LIS I t pL, the CCBST

constraints are trivially satisfied since γ1 = γ3 and δ1 = δ3. When dealing with T -
LISs, we thus need only to ensure the existence of an appropriate procedure T PIL:

Theorem 4.4.4. Assume there exists a procedure T PIL s.t. for anyΦ = {φ1,φ2,φ3},
T -labeling L, refutation Π of Φ and theory lemma C in Π:

T PIφ1,L(C)∧φ2 |=T T PIφ1φ2,L(C)

Then, any T -I t pL has n-PI.

In the case of difference logic, a suitable T PIL indeed exists, and is the one
introduced in Theorem 3.4.2, based on computing a theory interpolant T PIL(C)
for a DL lemma C as a maximum summary of the atoms labeled a in the cycle of
negative weight built over C .

Consider in fact the labeling table of BST, where A changes from φ1 to φ1 ∧φ2

when moving from the first to the second configuration. As a result, edges corre-
sponding to original atoms appearing in φ2 might pass from B or AB to A; similarly,
new theory atoms containing symbols local to φ2 might change from B-dirty to A-
dirty. Moreover, γ1 = γ3, δ1 = δ3, and α1,β3 ∈ {a, b} because we are labeling
atoms in a theory lemma. This implies that some of the edges of the cycle, that are
labeled b in the first configuration, are instead labeled a in the second one.

Following the same reasoning as in Theorem 3.4.2, the computation of maxi-
mum summaries yields T PIφ1φ2,L(C) = T PIφ1,L(C) ∧φ′2, where φ′2 is a subset of

130 4.5 Summary and Future Developments

Table . BST.

p in ?
Atom class, label
φ1|φ2φ3 φ1φ2|φ3

φ1 A, a A, a
φ2 B, b A, a
φ3 B, b B, b
φ1φ2 AB,α1 A, a
φ2φ3 B, b AB,β3

φ1φ3 AB,γ1 AB,γ3

φ1φ2φ3 AB,δ1 AB,δ3

the conjuncts of φ2. Now, φ2 |= φ′2, which in turn allows to derive:

T PIφ1,L(C)∧φ2⇒
T PIφ1,L(C)∧φ′2 =

T PIφ1φ2,L(C)

We can finally state:

Theorem 4.4.5. PI holds for all single DL-LISs, if theory interpolants of DL-lemmata
are computed by means of maximum summarization of the atoms labeled a.

4.5 Summary and Future Developments

In this chapter we carried out a systematic investigation of the most common inter-
polation properties exploited in verification, focusing on the constraints they impose
on interpolation systems used in SAT and in SMT-based model checking.

We systematized and unified the collectives and proved that, for families of in-
terpolation systems, the properties form a hierarchy, whereas for a single system all
properties except path interpolation and simultaneous abstraction are in fact equiva-
lent.

In the context of propositional logic, we defined and proved both sufficient and
necessary conditions for families of labeled interpolation systems. In particular, we
demonstrated that in case of a single system path interpolation is common to all
LISs, while simultaneous abstraction is as strong as all other more complex prop-
erties. Moreover, every LIS stronger or equivalent to Pudlák’s I t pP (including thus
I t pM) enjoys all properties, while only path interpolation is satisfied by I t pM ′; this
fact has been used in §3.6.3 with reference to tree interpolation.

131 4.5 Summary and Future Developments

We extended some of these results to first order theories in the framework of the-
ory labeled interpolation systems, where ad-hoc procedures are needed to compute
partial interpolants for theory lemmata, and discussed the case of difference logic.

Future work can concern, on one hand, a theoretical analysis of the requirements
these procedures must meet in order for T -LISs to satisfy the various collectives,
and of whether and how the necessary and sufficient conditions identified for LISs
are affected. On the other hand, such analysis can be complemented by the de-
velopment of concrete procedures tailored both for individual and combination of
theories, as delineated in §3.4.3.

On a practical side, experimentation can be performed with families of systems,
exploiting the flexibility given by computing different interpolants in a collection by
means of different systems. A first step could be to extend the SAT-based function
summarization framework of §3.6.3, allowing to tune the coarseness degree of indi-
vidual summaries by varying the strength of interpolants, both in the verification of
the same program incrementally with respect to various properties, and of various
versions of a program with respect to the same properties.

After that, our results could be applied to SMT-based model checking, for exam-
ple to LAWI-based verification algorithms relying on path interpolation. An inter-
esting aspect to investigate is that LAWI benefits from having weaker interpolants
at the beginning of a path and stronger at the end; our work shows instead that PI
is not guaranteed to hold if, in the sequence of LISs generating the interpolants, a
weaker LIS precedes a stronger one. A possible solution would be to start with the
weakest T -I t pM ′ , strengthening step by step as long as PI is satisfied until reaching
a certain T -LIS T -I t pL, and then to keep T -I t pL until the end of the path.

132 4.5 Summary and Future Developments

Chapter 5

Proof Manipulation

Resolution proofs find application in many verification techniques: first and fore-
most, all model checking approaches presented in §3.1 rely on interpolants, that can
be generated from refutations by means of the interpolation systems illustrated in
§3.3.2.

Proofs can also be used as justifications of specifications of inconsistency in
various industrial applications (e.g., product configuration or declarative model-
ing [SKK03, SSJ+03]). In the context of proof-carrying code [Nec97] a system
can verify a property about an application exploiting a proof provided with the ap-
plication executable code. SAT solvers and SMT solvers can be integrated into
interactive theorem provers as automated engines to produce proofs, that can be
later replayed and verified within the provers [Amj08, WA09, FMM+06]. An un-
satisfiable core, that is an inconsistent subset of clauses, can be extracted from a
proof, to be exploited for example during the refinement phase in model check-
ing [AM03, GLST05].

It is essential to develop techniques that allow to handle proofs efficiently, so as
to positively impact on the performance of the frameworks that rely on them. In this
chapter we focus on two important aspects: compression of resolution proofs, and
rewriting to facilitate the computation of interpolants. These approaches, which are
motivated and discussed in detail in §5.3 and §5.4, are both realized by means of a
set of local rewriting rules that enable restructuring and compression.

The chapter begins in §5.1 by recalling the notion of resolution proof, and de-
scribing the ways in which proofs are concretely represented. In §5.2 we introduce a
new proof transformation framework consisting of a set of local rewriting rules and
we prove its soundness.

In §5.3 we address the problem of compression, and present a collection of algo-
rithms based on the transformation framework. We compare them against existing

133

134 5.1 Resolution Proofs

compression techniques and provide experimental results that show their effective-
ness over SMT and SAT benchmarks.

In §5.4 we discuss the inability of state-of-the-art interpolation systems for first
order theories to deal with AB-mixed predicates, addressing a limitation already
mentioned in §3.3.5 and §3.4.1. We then illustrate an application of our transfor-
mation framework aimed at reordering resolution refutations, in such a way that
interpolation is made possible. The approach is demonstrated to be theoretically
sound and experiments are provided to show that it is also practically efficient.

As a theoretical investigation, we also examine the interaction between LISs
and proof manipulation by discussing algorithms that guarantee the generation of
interpolants in conjunctive or disjunctive normal form by reordering resolution steps
in a propositional refutation.

In §5.5 we describe some of the heuristics adopted in the application of rules
by the transformation framework, with reference to §5.3 and §5.4, while in §5.6 we
review the existing literature on proof manipulation.

5.1 Resolution Proofs

So far it has been sufficient to consider resolution proofs as trees: leaves are origi-
nal clauses or theory lemmata, while inner nodes are resolvents of resolution steps
whose antecedents are the two parents in the tree.

In this chapter, which focuses on techniques to manipulate proofs, it is necessary
to pay more attention to the ways proofs are actually represented; for this reason we
distinguish between a resolution proof tree and a resolution proof DAG.

Definition 5.1.1 (Resolution Proof Tree). A resolution proof tree of a clause C from
a set of clauses C is a tree such that:

1. Each node n is labeled by a clause C(n).

2. If n is a leaf, C(n) ∈ C

3. The root is a node n s.t. C(n) = C .

4. An inner node n has pivot piv(n) and exactly two parents n+, n− s.t. C(n) =
Respiv(n)(C(n+), C(n−))), that is, C(n) is the resolvent of a resolution step
with pivot p and antecedents C(n+), C(n−). C(n+) and C(n−) respectively
contain the positive and negative occurrence of the pivot.

5. Each non-root node has exactly one child.

135 5.1 Resolution Proofs

op pq pq opr

oq oqr

qr

p p p p

o o

op pq poq
pq opr p

oqr
oqr

Figure 5.1. Resolution proof tree.

In the following, we equivalently use a graph-based representation (left) or an
inference rule-based representation (right); for brevity, clauses can be shown as se-
quences of literals and subclauses omitting the “∨” symbol, as pqD.

In real-world applications proofs are rarely generated or stored as trees; for in-
stance proofs produced by CDCL solvers are represented as DAGs (directed acyclic
graph). We therefore introduce the following notion of resolution proof, which is
more suitable for describing the graph-based transformation algorithms illustrated
in this chapter.

Definition 5.1.2 (Resolution Proof DAG). A resolution proof DAG of a clause C
from a set of clauses C is a directed acyclic graph such that:

1. - 4. hold as in Definition 5.1.1.

5. Each non-root node has one or more children.

Resolution proof DAGs extend the notion of resolution proof trees by allowing a
node to participate as antecedent in multiple resolution steps.

op pq opr

oq oqr

qr

p p p p

o o

Figure 5.2. Resolution proof DAG.

We identify a node n with its clause C(n) whenever convenient; in general,
different nodes can be labeled by the same clause, that is C(ni) = C(n j) for i 6= j.
A proof P is a refutation if C = ⊥. A subproof P ′, with subroot n, of a proof P is
the subtree that derives C(n) from a subset of clauses that label leaves of P; when
referring to P and its root compared to P ′, we call P global proof and its root global
root.

136 5.2 The Local Transformation Framework

It is always possible to turn a resolution proof tree into a resolution proof DAG,
by merging two or more nodes labeled by a same clause into a single node, which
inherits the children of the merged nodes. On the other hand, a resolution proof
DAG can be “unrolled” into a resolution proof tree, possibly at exponential cost: it
is in fact sufficient to traverse the DAG bottom-up, duplicating nodes with multiple
children so that each node is left with at most one child.

Similarly to [BIFH+08], we distinguish between a legal and an illegal proof;
an illegal proof is a proof which has undergone transformations in such a way that
some clauses might not be the resolvents of their antecedents anymore. In this chap-
ter however an illegal proof represents an intermediate transformation step in an
algorithm, and the proof can always be reconstructed into a legal one, as explained
in the next sections.

In the following, we will consider refutations as obtained by means of modern
CDCL SAT solvers and lazy SMT solvers, involving both propositional and theory
atoms. Whenever the theory content is not relevant to the problem at hand, it is
convenient to represent each theory atom with a new propositional variable called
its propositional abstraction: for example an atom x+ y < 1 will be represented by
a certain variable q.

We use C1 ⊆ C2 to indicate that C1 subsumes C2, that is the set of literals C1 is a
subset of the set of literals C2; v(s) denotes the variable associated with a literal s.

5.2 The Local Transformation Framework

This section introduces a proof transformation framework based on local rewriting
rules. We start by assuming a resolution proof tree, and then extend the discussion to
resolution proof DAGs. All results related to proofs hold in particular for refutations.

The framework is built on a set of rewriting rules that transform a subproof
with root C into one whose subroot C ′ is logically equivalent or stronger than C
(that is, C ′ |= C). Each rewriting rule is defined to match a particular context,
identified by two consecutive resolution steps (see Figure 5.3). A context involves

C1 C2

C4 C3

C

p p

q q

C1 C2 p
C4 C3 q

C

Figure 5.3. Rule context.

137 5.2 The Local Transformation Framework

two pivots p and q and five clauses C1, C2, C4, C3, C ; we call C the context root;
the subproof rooted in C is the context subproof. Clearly p is contained in C1 and
C2 (with opposite polarity), and q is contained in C4 and C3 (again with opposite
polarity); q must be contained in C1 ∪ C2.

A clause C might be the root of two different contexts, depending on whether
C1 and C2 are taken as the antecedents of either of the two antecedents of C ; in that
case, to distinguish among them we talk about left and right context.

Figure 5.4 shows a set of proof transformation rules. Each rule is associated with
a unique context, and, conversely, each context can be mapped to at least one rule
(i.e., the set of rules is exhaustive, modulo symmetry, for every possible context). A
first property that characterizes the set of rules is locality: only the limited informa-
tion represented by a context is in fact needed to determine which rule is applicable.
A second property is strengthening: the rules either keep the context root unchanged
or turn it into a logically stronger formula.

The classification of rules into S (swapping) and R (reducing) depends on the
effect of the rules on the context rooted in C : S1 and S2 swap the two resolution
steps in the context without modifying C , while R1, R2, R2′ and R3 replace C with
a new C ′ such that C ′ ⊆ C ; in other words, the R rules generate subproofs with
stronger roots.

The influence of the S rules does not extend beyond the context where they are
applied, while that of the R rules possibly propagates down to the global root. The
R rules essentially simplify the proof and their effect cannot be undone, while an
application of an S rule can be reversed. In particular, the effect of rule S2 can be
canceled out simply by means of another application of the same S2. S1 has S1′ as
its inverse (note the direction of the arrow); S1′ is actually a derived rule, since it
corresponds to the sequential application of S2 and R2.

The rules R2 and R2′ are associated with the same context; they respectively
behave as S2 (with an additional simplification of the root) and R1. The decision
whether to apply either rule depends on the overall goal of the transformation. Note
that the application of rule R2 to a context turns it into a new context which matches
rule S1.

5.2.1 Extension to Resolution Proof DAGs

If the proof to be transformed is a DAG rather than a tree, some constraints are
necessary on the application of the rules.

Consider rules S1, S1′, S2, R2, and suppose clause C4 is involved in more than
one resolution step, having thus at least another resolvent C5 besides C . If C4 is
modified by a rule, it is not guaranteed that the correctness of the resolution step

138 5.2 The Local Transformation Framework

S1: s /∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : t F

C : DEF

v(s) v(s)

v(t) v(t)

Ö

C1 : stD C3 : t F C3 : t F C2 : stE

C ′4 : sDF C ′′4 : sEF

C : DEF

v(t) v(t) v(t) v(t)

v(s) v(s)

S1′: s /∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : t F

C : DEF

v(s) v(s)

v(t) v(t)

×

C1 : stD C3 : t F C3 : t F C2 : stE

C ′4 : sDF C ′′4 : sEF

C : DEF

v(t) v(t) v(t) v(t)

v(s) v(s)

S2: s /∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : t F

C : DEF

v(s) v(s)

v(t) v(t)

Ö

C1 : stD C3 : t F

C ′4 : sDF C2 : sE

C ′ : DEF

v(t) v(t)

v(s) v(s)

R1: s ∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

Ö
C1 : stD C3 : stF

C ′ : sDF

v(t) v(t)

R2: s ∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

Ö

C1 : stD C3 : stF

C ′4 : sDF C2 : sE

C ′ : DEF

v(t) v(t)

v(s) v(s)

R2′: s ∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

Ö
C1 : stD C3 : stF

C ′ : sDF

v(t) v(t)

R3: s ∈ C3, t 6∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

Ö C ′ = C2 : sE

Figure 5.4. Local transformation rules for resolution proof trees.

139 5.2 The Local Transformation Framework

having C5 as resolvent (and in turn of the resolution steps on the path from C5 to the
global root) is preserved. This problem does not concern clauses C1, C2, C3 and the
subproofs rooted in them, which are not changed by any rule.

A simple solution consists in creating a copy of C4, to which all resolvents of
C4 besides C are assigned, so that C4 is left with exactly one resolvent; at that point
any modification to C4 will affect only the context rooted in C . Since duplications
increase the size of the proof, they should be carried out sparingly (see §5.5).

A more efficient alternative exists in case of rules R1, R2′, R3, where C4 is
detached by the context rooted in C and loses C as resolvent, but keeps the other
resolvents (if any). The effect of the transformation rules is shown in Figure 5.5: the
presence of additional resolvents for C4 is denoted by a dotted arrow.

5.2.2 Soundness of the Local Transformation Framework

In this section we first prove that the rewriting rules preserve the legality of the
subproofs rooted in the contexts where the rules are applied; then we discuss how
the rules affect the global proof and what steps must be taken to maintain it legal.

Effect on a Context. Based on the following observations, we claim that after a
single application of a rule to a context with root C , the legal subproof rooted in C
is replaced by a legal subproof rooted in C ′ ⊆ C .

Refer to Figure 5.5. No additional subproofs are introduced by the rules and no
modifications are brought to the subproofs rooted in C1, C2, C3, which are simply
recombined or detached from the context. As for the S rules, C4 is either replaced
by the resolvent of C1, C3 (S2) or by the resolvent of the resolvents of C1, C3 and
C3, C2 (S1, where a new clause C ′′4 = Resv(s)(C2, C3) is also introduced). Note that
in both cases C is not modified. The R rules instead yield a more substantial change
in the form of a stronger context root C ′ ⊆ C :

• In R1 and R2′, the subproofs with root C1 and C3 are combined to obtain a
subproof with root sDF ⊆ sDEF .

• R2 has a swap effect similar to S2, but replaces the root sDEF with DEF ,
removing a single literal.

• In R3, the whole subproof is substituted by the subproof rooted in C2 = sE,
which subsumes C = sDEF .

All the above transformations involve updating the relevant clauses by means of
sound applications of the resolution rule.

140 5.2 The Local Transformation Framework

S1: s /∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : t F

C : DEF

v(s) v(s)

v(t) v(t)

Ö

C1 : stD C3 : t F C2 : stE

C ′4 : sDF C ′′4 : sEF

C : DEF

C4

v(t) v(t) v(t)

v(s) v(s)

S1′: s /∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : t F

C : DEF

C ′4

v(s) v(s)

v(t) v(t)

×

C1 : stD C3 : t F C2 : stE

C ′4 : sDF C ′′4 : sEF

C : DEF

v(t) v(t) v(t)

v(s) v(s)

S2: s /∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : t F

C : DEF

v(s) v(s)

v(t) v(t)

Ö

C1 : stD C3 : t F

C ′4 : sDF C2 : sE

C ′ : DEF

C4

v(t) v(t)

v(s) v(s)

R1: s ∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

Ö

C2 : stE C1 : stD C3 : stF

C4 C ′ : sDF

v(t) v(t)v(s)
v(s)

R2: s ∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

Ö

C1 : stD C3 : stF

C ′4 : sDF C2 : sE

C ′ : DEF

C4

v(t) v(t)

v(s) v(s)

R2′: s ∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

Ö

C2 : sE C1 : stD C3 : stF

C4 C ′ : sDF

v(t) v(t)v(s)
v(s)

R3: s ∈ C3, t 6∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

Ö

C1 : stD C ′ = C2 : sE

C4

v(s) v(s)

Figure 5.5. Local transformation rules for resolution proof DAGs.

141 5.2 The Local Transformation Framework

Effect on the Global Proof. The application of a rule to a context yields a legal
subproof rooted in a clause C ′ ⊆ C ; however, the global proof could turn into an
illegal one. In fact, the deletion of literals from C affects the sequence of resolution
steps that extends from C to the global root: some of these steps might become
superfluous, because they resolve upon a variable which was introduced by C (but
does not appear in C ′), and they should be appropriately removed. In the same way,
the elimination of a resolution step could itself lead to the disappearance of more
literal occurrences, leading to a chain reaction.

The following Algorithm 6, SubsumptionPropagation, has the purpose of prop-
agating the effect of the replacement of C by C ′ ⊆ C along the path leading from C
to the global root.

The algorithm restructures the proof in a top-down manner analyzing the se-
quence of resolution steps to ensure their correctness while propagating the effect of
the initial subsumption. We prove that, after an execution of SubsumptionPropaga-
tion following the application of an R rule to a legal proof, the result is still a legal
proof.

The idea at the base of the algorithm reflects the mechanisms of the restructuring
procedures first proposed in [BIFH+08, DKPW10]:

1. It determines the effect range of the substitution of C by C ′, which corresponds
to the set of nodes reachable from the node labeled by C ′.

2. It analyzes, one by one, all reachable nodes; it is necessary that the antecedents
of a node n have already been visited (and possibly modified), in order to
guarantee a correct propagation of the modifications to n.

3. Due to the potential vanishing of literals from clauses, it might happen that in
some resolution step the pivot is not present in both antecedents anymore; if
that is the case, the resolution step is deleted, by replacing the resolvent with
the antecedent devoid of the pivot (if the pivot is missing in both antecedents,
either of them is arbitrarily chosen), otherwise, the resolution step is kept and
the resolvent clause updated. At the graph level, n is substituted by n+ or n−,
assigning the children of n (if any) to it.

Theorem 5.2.1. Assume a legal proof P. The application of an R rule, followed by
an execution of SubsumptionPropagation, yields a legal proof P ′, whose new global
root subsumes the previous one.

Proof by structural induction. Base case. Assume an R rule is applied to a context
rooted in a clause C ; C is replaced by C ′ ⊆ C and the subproof rooted in C ′ is legal,

142 5.2 The Local Transformation Framework

Input: A legal proof modified by an R rule
Output: A legal proof
Data: W : set of nodes reachable from C ′, U : set of visited nodes

1 begin
2 U ← ;
3 Determine W , e.g. through a visit from C ′

4 while W \ U 6= ; do
5 Choose n ∈W \ U such that:
6 (n+ ∈W or n+ /∈W) and (n− ∈W or n− /∈W)
7 U ← U ∪ {n}
8 p← piv(n)
9 if p ∈ C(n+) and p ∈ C(n−) then

10 C(n)← Resp(C(n+), C(n−))
11 else if p /∈ C(n+) and p ∈ C(n−) then
12 Substitute n with n+

13 else if p ∈ C(n+) and p /∈ C(n−) then
14 Substitute n with n−

15 else if p /∈ C(n+) and p /∈ C(n−) then
16 Heuristically choose a parent, replace n with it
17 end
18 end

Algorithm 6: SubsumptionPropagation.

as previously shown. The subproofs rooted in the clauses of nodes not reachable
from C are not affected and thus remain legal.

Inductive step. All nodes reachable from C are visited; in particular, a node n
is visited after its reachable parents. By inductive hypothesis C ′(n+) ⊆ C(n+),
C ′(n−)⊆ C(n−) and the subproofs rooted in C ′(n+) and C ′(n−) are legal. We show
that, after visiting n, C ′(n) ⊆ C(n) and the subproof rooted in C ′(n) is legal. Let
p = piv(n). We have three possibilities:

• Case 1: the pivot still appears both in C ′(n+) and in C ′(n−); C ′(n) =
Resp(C ′(n+), C ′(n−)), thus C ′(n)⊆ C(n).

• Case 2: the pivot is present only in one antecedent, let us say C ′(n+); the
subproof rooted in C(n) is replaced by the one rooted in C ′(n−) (legal by
hypothesis). But C ′(n) = C ′(n−) ⊆ C(n) since C ′(n−) does not contain the
pivot.

143 5.2 The Local Transformation Framework

Step 1: Application of rule R2

pq pr pqr pq qpr pu pru rv ruv

Ö
pq pq qp pr pr pu pru rv ruv

Step 2: Elimination of an unnecessary resolution step (Case 2)

pq pq qp pr pr pu pru rv ruv

Ö
pq pq qp pr pr rv ruv

Step 3: Update of a resolving clause (Case 1)

pt pt
tp pr pr rv ruv

Ö
pt pt

tp pr pr rv rv

Figure 5.6. Example of rule application and subsumption propagation.

• Case 3: the pivot is not present in either antecedent. Same reasoning as for
Case 2, but arbitrarily choosing an antecedent for the substitution.

In all three cases the subproof rooted in C ′(n) is legal and C ′(n)⊆ C(n).

Figure 5.6 shows the effect of R2 and the subsequent application of Subsumption-
Propagation on a small proof.

5.2.3 A Transformation Meta-Algorithm

The Local Transformation Framework defined by our rules leaves to the user the
flexibility of choosing a particular strategy and a termination criterion for their ap-
plication.

144 5.3 Proof Compression

Whenever a sizeable amount of rules has to be applied, rather than running Sub-
sumptionPropagation multiple times, it is more efficient to combine the application
of all rules and the propagation of the modifications into a single traversal of the
proof.

Algorithm 7, TransformAndReconstruct, illustrates this approach. At first it per-
forms a topological sorting of the proof (line 2), in order to ensure that each node
is visited after its parents. Then it analyzes one node at a time, checking if the cor-
responding resolution step is still sound (line 6). If the resolution step is sound, it
updates the resolvent clause, determining the node contexts (if any) and the associ-
ated rules. At most one rule is applied, and the decision is based on local heuristic
considerations (line 10). If the resolution step is not sound and either antecedent
does not contain the pivot (lines 11, 13, 15), then the resolution step is removed by
replacing the resolvent with that antecedent (which, missing the pivot, subsumes the
resolvent); at the graph level, n is substituted by n+ or n−.

Note that the antecedent not responsible for the substitution might have lost all
its resolvents and thus does not contribute to the proof anymore; in that case it
is pruned away, together with the portion of the subproof rooted in it which has
become detached from the global proof.

A key point of the algorithm is the call to ApplyRule(left context, right context):
this method heuristically chooses at most one context (possibly none) rooted in n
and applies the corresponding rule. The instantiation of ApplyRule with different
procedures yields concrete algorithms suitable for particular applications, as illus-
trated in the next sections.

Based on the above observations and on Theorem 5.2.1, we have the following
result:

Theorem 5.2.2. TransformAndReconstruct outputs a legal proof.

5.3 Proof Compression

Resolution proofs, as generated by modern solvers, find application in many verifi-
cation techniques. In most cases, the size of the proofs affects the efficiency of the
methods in which they are used. It is known that the size of a resolution proof can
grow exponentially with respect to the size of the input formula: even when proofs
are representable in a manageable memory space, it might be crucial for efficiency to
reduce or compress them as much as possible. Several compression technique have
been developed and can be found in literature, ranging from memoization of com-
mon subproofs to partial regularization [Amj07, Amj08, Sin07, Cot10, BIFH+08,

145 5.3 Proof Compression

Input: A legal proof, an instance of ApplyRule
Output: A legal proof
Data: TS: nodes topological sorting vector

1 begin
2 TS← topological_sorting_top_down(proof)
3 foreach n ∈ TS do
4 if n is not a leaf then
5 p← piv(n)
6 if p ∈ C(n−) and p ∈ C(n+) then
7 C(n)← Resp(C(n−), C(n+))
8 Determine left context lc of n, if any
9 Determine right context rc of n, if any

10 ApplyRule(rc, lc)
11 else if p /∈ C(n−) and p ∈ C(n+) then
12 Substitute n with n−

13 else if p ∈ C(n−) and p /∈ C(n+) then
14 Substitute n with n+

15 else if p /∈ C(n−) and p /∈ C(n+) then
16 Heuristically choose a parent, substitute n with it
17 end
18 end

Algorithm 7: TransformAndReconstruct.

DKPW10, FMP11]; however, since the problem of finding a minimum proof is NP-
hard, it is still an open challenge to design heuristics capable of obtaining good
reduction in practical situations.

This section discusses algorithms aimed at compressing proofs. We identify
two kinds of redundancies in resolution proofs and present a set of post-processing
techniques aimed at removing them; the techniques are independent from the way
the refutation is produced and can be applied to an arbitrary resolution proof of
unsatisfiability. We also illustrate how to combine these algorithms in an effective
manner, and show the results of experimenting on a collection of SAT and SMT
benchmarks.

We do not address directly the problem of core minimization, that is nonetheless
achieved as a side effect of proof reduction. A rich literature exists on techniques
aimed at obtaining a minimum, minimal, or small unsatisfiable core, that is a sub-
set of the initial set of clauses that is still unsatisfiable [LMS04, CGS07, ZM03a,

146 5.3 Proof Compression

OMA+04, Hua05, Bru03, DHN06, GMP07, MLA+05].

5.3.1 Proof Redundancies

This chapter focuses on two particular kinds of redundancies in resolution proofs.
The first one stems from the observation that, along each path from a leaf to the

root, it is unnecessary to resolve upon a certain pivot more than once. The proof
can be simplified, for example by keeping (for a given variable and a path) only the
resolution step closest to the root, while cutting the others away. In the literature, a
proof such that each variable is used as a pivot at most once along each path from a
leaf to the root is said to be regular [Tse68].

The second kind of redundancy is related to the content of a proof. It might be
the case that there exist multiple nodes associated with equal clauses; such nodes can
be merged, keeping only one pair of parents and grouping together all the children.
In particular, we call a proof compact if C(ni) = C(n j)⇒ i = j for any i, j, that is,
different nodes are labeled by different clauses.

5.3.2 Proof Regularity

In this section we discuss how to make a proof (partially) regular. We show how to
employ Algorithm 7 for this purpose and present two algorithms explicitly devised
for regularization, namely RecyclePivots [BIFH+08] and its refinement RecyclePiv-
otsWithIntersection [FMP11]. We illustrate them individually and explain how they
can be combined to obtain more powerful algorithms.

5.3.2.1 Regularization in the Local Transformation Framework

The R rules are, as a matter of fact, a means to perform a “local” regularization;
they are applied to contexts where a resolution step on a pivot v(s) is immediately
followed by a reintroduction of the pivot with positive (R1, R2, R′2) or negative (R3)
polarity (see Figure 5.5).

Resolving on v(s) is redundant, since the newly introduced occurrence of the
pivot will be later resolved upon along the path to the global root; the R rules have the
effect of simplifying the context, possibly pruning subproofs which do not contribute
to the global proof anymore. Moreover, the rules replace the root of a context with
a stronger one, which allows to achieve further compression as shown below.

Consider, for example, the following proof:

147 5.3 Proof Compression

pq po pqo pq qpo
qr pq q

pr por os ors

(1)

The highlighted context can be reduced via an application of R2 as follows:

pq pq qp
qr pq q

pr por os ors

(2)

The proof has become illegal as the literal o is now not introduced by any clause.
Since a stronger conclusion (p ⊂ po) has been derived, o is now redundant and it can
be eliminated all the way down to the global root or up to the point it is reintroduced
by some other resolution step. In this example o can be safely removed together
with the last resolution step which also becomes redundant. The resulting legal (and
stronger) proof becomes:

pq pq qp
qr pq q

pr pr

(3)

At this stage no other R rule can be directly applied to the proof.
Rule S2 does not perform any simplification on its own, however it is still used

in our framework. Its contribution is to produce a “shuffling” effect in the proof, in
order to create more chances for the R rules to be applied.

Consider again our running example. S2 can be applied as follows:

pq pq qp
qr pq q

pr pr

(4)

qr

pq pq qp pq p
q qr

(5)

S2 has now exposed a new redundancy involving the variable q. The proof can be
readily simplified by means of an application of R2′:

148 5.3 Proof Compression

qr

pq pq qp pq p
q qr

(6)

qr
pq pq p

q qr

(7)

As discussed in §5.2.3, the rewriting framework defined by our rules allows the
flexibility of choosing a strategy and a termination criterion for their application.

A simple strategy is to eagerly apply the R rules until possible, shuffle the proof
by means of S2 with the purpose of disclosing other redundancies, and then apply
the R rules again, in an iterative fashion. However there is usually a very large
number of contexts where S2 could be applied, and it is computationally expensive
to predict whether one or a chain of S2 applications would eventually lead to the
creation of contexts for an R rule.

For efficiency reasons, we rely on the meta-algorithm described in Algorithm 7,
for a particular instantiation of the ApplyRule method. Algorithm 7 does a single
traversal of the proof, performing shuffling and compression; it is run multiple times,
setting a number of traversals to be performed and a timeout as termination criteria
(whichever is reached first). The resulting regularization procedure is ReduceAnd-
Expose, listed as Algorithm 8.

Input: A legal proof, timelimit: timeout, numtrav: number of transformation
traversals, an instantiation of ApplyRule

Output: A legal proof
1 begin
2 for i=1 to numtrav do
3 TransformAndReconstruct(ApplyRule)
4 if timelimit is reached then
5 break
6 end
7 end

Algorithm 8: ReduceAndExpose.

149 5.3 Proof Compression

5.3.2.2 The RecyclePivots Approach

The RecyclePivots algorithm was introduced in [BIFH+08] as a linear-time tech-
nique to perform a partial regularization of resolution proofs.

RecyclePivots is based on analyzing the paths of a proof, focusing on the pivots
involved in the resolution steps; if a pivot is resolved upon more than once on a
path (which implies that the pivot variable is introduced and then removed multiple
times), the resolution step closest to the root is kept, while the others are simplified
away.

We illustrate this approach by means of an example. Consider the leftmost path
of proof (1). Variable p is used twice as pivot. The topmost resolution step is
redundant as it resolves upon p, which is reintroduced in a subsequent step (curly
brackets denote the set RL of removable literals, see later).

pq po p
qo {p, q} pq q

po {p}
qo pq q

po po

(1)

Regularization can be achieved by eliminating the topmost resolution step and
by adjusting the proof accordingly. The resulting proof is shown below.

pq pq qp
qo pq q

po po

(2)

Algorithm 9 shows the recursive version of RecyclePivots (RP in the following).
It is based on a depth-first visit of the proof, from the root to the leaves. It starts from
the global root, having as input a set of removable literals RL (initially empty). The
removable literals are essentially the (partial) collection of pivot literals encountered
during the bottom-up exploration of a path. If the pivot variable of a resolution step
under consideration is in RL (lines 15 and 18), then the resolution step is redundant
and one of the antecedents may be removed from the proof. The resulting proof is
illegal and has to be reconstructed into a legal one, which can be done in linear time,
as shown in [BIFH+08].

Note that in the case of resolution proof trees, the outcome of the algorithm is
a regular proof. For arbitrary resolution proof DAGs the algorithm is executed in a
limited form (when nodes with multiple children are detected) precisely by resetting
RL (line 10); therefore the result is not necessarily a regular proof.

150 5.3 Proof Compression

Input: A node n, a set of removable literals RL
1 begin
2 if n is visited then
3 return
4 else
5 Mark n as visited
6 if n is a leaf then
7 return
8 else
9 if n has more than one child then

10 RL← ;
11 p← piv(n)
12 if p /∈ RL and p /∈ RL then
13 RecyclePivots(n+,RL ∪ {p})
14 RecyclePivots(n−,RL ∪ {p})
15 else if p ∈ RL then
16 n+← null
17 RecyclePivots(n−,RL)
18 else if p ∈ RL then
19 n−← null
20 RecyclePivots(n+,RL)
21 end

Algorithm 9: RecyclePivots(n,RL).

5.3.2.3 RecyclePivotsWithIntersection

The aforementioned limitation is due to the same circumstance that restricts the
application of rules in the Local Transformation Framework, as discussed in §5.2.1.
The set of removable literals of a node is computed for a particular path from the
root to the node (which is enough in presence of proof trees), but does not take
into account the existence of other possible paths to that node. Thus, suppose a
node n with pivot p is replaced by one of its parents (let us say n+) during the
reconstruction phase, and C(n+) * C(n); then, it might happen that some of the
literals in C(n+)\C(n) are not resolved upon along all paths from n to the root, and
are thus propagated to the root, making the proof illegal.

In order to address this issue, the authors of [FMP11] extend RP by proposing
RecyclePivotsWithIntersection (RPI), an iterative version of which is illustrated in
Algorithm 10. RPI refines RP by keeping track for each node n of the set of pivot

151 5.3 Proof Compression

literals RL(n) which get resolved upon along all paths from n to the root.
The computation of RL in the two approaches is represented in Figure 5.7 and

Figure 5.8. RP and RPI behave in the same way whenever a node n has only one
child. In case n has no children, i.e., it is the root, RPI takes into account the
possibility for the root to be an arbitrary clause (rather than only⊥, as in refutations)
and sets RL to include all variables of C(n); it is equivalent to having a path from n to
⊥ where all variables of C(n) are resolved upon. The major difference between RP
and RPI is in the way a node n with multiple children is handled: RP sets RL(n) to
;, while RPI sets RL(n) to the intersection

⋂

(RL(mi)∪qi) of the removable literals
sets of its children, augmented with the pivots of the resolution steps of which the
children are resolvents.

RL(n) = ;

RL(n) = (RL(m)∪ {q})

q =

¨

p if p ∈ C(n)
p if p ∈ C(n)

RL(n) = ;

n

· · ·m1 mk

p1 pk

n

m
p n

Figure 5.7. Computation of RL in RecyclePivots.

RL(n) =
⋂

(RL(mi)∪ {qi})

qi =

¨

pi if pi ∈ C(n)
pi if pi ∈ C(n)

RL(n) = (RL(m)∪ {q})

q =

¨

p if p ∈ C(n)
p if p ∈ C(n)

RL(n) =
⋃

{qi}

qi =

¨

pi if pi ∈ C(n)
pi if pi ∈ C(n)

n

· · ·m1 mk

p1 pk

n

m
p n

Figure 5.8. Computation of RL in RecyclePivotsWithIntersection.

RPI starts in Algorithm 10 by computing a topological sorting of the nodes (line
2), from the root to the leaves. RL(root) is computed as the set of literals in the root
clause; for any other node n, RL(n) is initialized and then iteratively refined each
time one of its children is visited. Similarly to RecyclePivots, whenever visiting an

152 5.3 Proof Compression

Input: A legal proof
Input: A proof to be reconstructed
Data: TS: nodes topological sorting vector, RL: vector of sets of removable

literals
1 begin
2 TS← topological_sorting_bottom_up(proof)
3 foreach n ∈ TS do
4 if n is not a leaf then
5 if n is the root then
6 RL(n)← {pi}pi∈C(n)

7 else
8 p← piv(n)
9 if p ∈ RL(n) then

10 n+← null
11 if n− not seen yet then
12 RL(n−)← RL(n)
13 Mark n− as seen
14 else RL(n−)← RL(n−)∩ RL(n)
15 else if p ∈ RL(n) then
16 n−← null
17 if n+ not seen yet then
18 RL(n+)← RL(n)
19 Mark n+ as seen
20 else RL(n+)← RL(n+)∩ RL(n)
21 else if p /∈ RL(n) and p /∈ RL(n) then
22 if n− not seen yet then
23 RL(n−)← (RL(n)∪ {p})
24 Mark n− as seen
25 else RL(n−)← RL(n−)∩ (RL(n)∪ {p})
26 if n+ not seen yet then
27 RL(n+)← (RL(n)∪ {p})
28 Mark n+ as seen
29 else RL(n+)← RL(n+)∩ (RL(n)∪ {p})
30 end
31 end

Algorithm 10: RecyclePivotsWithIntersection.

153 5.3 Proof Compression

inner node n, if piv(n) appears in RL(n) then the resolution step is redundant and
can be simplified away (lines 9-14, 15-20); in that case, RL(n) is propagated to a
parent of n without the addition of piv(n).

pq pr

qr qsp

rsp

qs

rs

rp p

r

p p

q q q q

ss

pp

Ö

pq qsp

sp

qs

s

p p

⊥

q q q q

ss

pp

Figure 5.9. Compression of a proof by means of RecyclePivotsWithIntersection.

Figure 5.9 shows the effect of RPI on a small proof where RP cannot achieve
any compression: RP sets RL(qr) = ; since qr has two children, while RPI sets
RL(qr) = {r, p, q} and consequently simplifies the uppermost resolution step, since
it is able to detect that p is resolved upon along both paths from qr to the root.

5.3.2.4 RecyclePivots and the Local Transformation Framework

RecyclePivots (as well as its refinement RecyclePivotsWithIntersection) and Re-
duceAndExpose both aim at compressing a proof by identifying and removing pivot
redundancies along paths from the root to the leaves. The main difference between
the two approaches is that RecyclePivots operates on a global perspective without
changing the topology of the proof (i.e., no shuffling), while ReduceAndExpose op-
erates on local contexts and allows the topology to change. Both approaches have
advantages and disadvantages.

Operating on a global perspective without modifying the topology allows a one-
pass visit and compression of the proof. Maintaining a fixed topology, however,
may prevent the disclosure of hidden redundancies. For instance the application
of RecyclePivots to the example of §5.3.2.1 would have stopped to step (3), since
no more redundant pivots can be found along a path (the proof is regular). The
local contexts instead have to be gathered and considered multiple times. On the
other hand, the ability of ReduceAndExpose to change the topology allows more
redundancies to be exposed.

Another advantage of RecyclePivots is that it can eliminate redundancies that are
separated by many resolution steps. The R rewriting rules instead are applicable only

154 5.3 Proof Compression

when there is a reintroduction of a certain variable immediately after a resolution
step upon it. Such configurations, when not present in the proof, can be produced
by means of applications of the S2 rule.

The ability of the Local Transformation Framework to disclose redundancies and
the effectiveness of RecyclePivots at removing them can be combined in a simple
hybrid approach, shown in Algorithm 11.

Input: A legal proof, numloop: number of global iterations, numtrav:
number of transformation traversals for each global iteration,
t imelimit: timeout, an instantiation of ApplyRule

Output: A legal proof
1 begin
2 t imeslot = t imelimit/numloop
3 for i=1 to numloop do
4 RecyclePivots(root,;)
5 // RP time is the time taken by RecyclePivots in the last call
6 ReduceAndExpose(t imeslot − RP time,numtrav,Appl yRule)
7 end
8 end

Algorithm 11: RP + RE.

The algorithm takes as input an overall time limit, a number of global iterations
and a number of transformation traversals for ReduceAndExpose. The time limit
and the amount of global iterations determine the execution time available to Re-
duceAndExpose during each iteration. ReduceAndExpose and RecyclePivots are
run one after the other by Algorithm 11, alternately modifying the topology to ex-
pose redundancies and simplifying them away.

A similar, but more efficient algorithm can be obtained by simply replacing the
call to RecyclePivots with a call to RecyclePivotsWithIntersection.

5.3.3 Proof Compactness

The focus of this section is the notion of compactness as introduced in §5.3.1: a
proof is compact whenever different nodes are labeled with different clauses, that
is C(ni) = C(n j) ⇒ i = j for any i, j. We first present an algorithm to address
redundancies related to the presence of multiple occurrences of a same unit clause in
a proof. Then we illustrate a technique based on a form of structural hashing, which
makes a proof more compact by identifying and merging nodes having exactly the

155 5.3 Proof Compression

same pair of parents. We conclude by showing how to combine these procedures
with the Local Transformation Framework.

5.3.3.1 Unit Clauses-Based Simplification

The simplification of a proof by exploiting the presence of unit clauses has already
been addressed in the literature in [FMP11] and [BIFH+08]. The two works pur-
sue different goals. The RecycleUnits algorithm from [BIFH+08] uses learned unit
clauses to rewrite subproofs that were derived before learning them. On the other
hand, the LowerUnits algorithm from [FMP11] collects unit clauses and reinserts
them at the level of the global root, thus removing redundancies due to multiple
resolution steps on the same unit clauses.

Following the idea of [FMP11], we present PushdownUnits, listed as Algo-
rithm 12. First, the algorithm traverses a proof in a top-down manner, detaching
and collecting subproofs rooted in unit clauses, while at the same time reconstruct-
ing the proof to keep it legal (based on the schema of Algorithm 7); then, (some
of) these subproofs are attached back at the end of the proof, adding new resolution
steps. PushdownUnits improves over LowerUnits by performing unit collection and
proof reconstruction in a single pass.

The algorithm works as follows. The proof is traversed according to a topolog-
ical order. When a node n is visited s.t. C(n) is the resolvent of a sound resolution
step with pivot p, its parents are examined. Assume n+ is a unit clause, that is
C(n+) = p; then n is replaced by the other parent n− and n+ is added to the set of
unit clauses CU .

This transformation phase might add extra literals EL to the original global root
r; if this is the case, the necessary resolution steps to make the proof legal are added
at the end, starting from r. The nodes previously collected are taken into account
one by one; for each m, if C(m) = s and s is one of the extra literals EL, then a new
resolution step is added and its resolvent becomes the new root.

Note that not necessarily all these nodes will be added back to the proof. Mul-
tiple nodes might be labeled by the same literal, in which case the correspondent
variable will be used only once as pivot. Also, a collected literal which was an
antecedent of some resolution step might have been anyway resolved upon again
along all paths from that resolution step to the global root; if so, it does not appear
in the set of extra literals. The subproofs rooted in these unnecessary nodes can be
(partially) pruned away to further compress the proof.

156 5.3 Proof Compression

Input: A legal proof
Output: A legal proof
Data: TS: nodes topological sorting vector, CU : collected units set, EL: set

of extra literals appearing in the global root
1 begin
2 TS← topological_sorting_top_down(proof)
3 r ← global root
4 foreach n ∈ TS do
5 if n is not a leaf then
6 p← piv(n)
7 if p ∈ C(n−) and p ∈ C(n+) then
8 C(n)← Resp(C(n−), C(n+))
9 if C(n+) = p then

10 Substitute n with n−

11 CU ← CU ∪ {n+}
12 else if C(n−) = p then
13 Substitute n with n+

14 CU ← CU ∪ {n−}
15 else if piv(n) /∈ C(n−) and piv(n) ∈ C(n+) then
16 Substitute n with n−

17 else if piv(n) ∈ C(n−) and piv(n) /∈ C(n+) then
18 Substitute n with n+

19 else if piv(n) /∈ C(n−) and piv(n) /∈ C(n+) then
20 Heuristically choose a parent, substitute n with it;
21 end
22 EL← extra literals of C(r)
23 foreach m ∈ CU do
24 s← C(m)
25 if s ∈ EL then
26 Add a new node o s.t. C(o) = Resv(s)(C(r), C(m))
27 r ← o
28 end
29 end

Algorithm 12: PushdownUnits.

157 5.3 Proof Compression

Step 1: Proof traversal and units collection

pqr p pqr qpo qrpo r
rpo ou

opu p pu

Ö

pqr qpo qrpo ou
opru

CU = {p, r}

Step 2: Reinsertion of units at the root level

pqr qpo qrpo ou
opru

Ö

pqr qpo qrpo ou
opru p pru r ru

Figure 5.10. Example of application of PushdownUnits. Note that the lowest occur-
rence of p is not added back to the proof.

5.3.3.2 Structural Hashing

The work of [Cot10] proposes an algorithm based on a form of structural hashing;
it explicitly takes into account how resolution proofs are obtained in CDCL SAT-
solvers from a sequence of subproofs deriving learnt clauses, and keeps a hash map
which stores for each derived clause its pair of antecedents. While building the
global proof from the sequence of subproofs, whenever a clause would be added, if
its pair of antecedents is already in the hash map, then the existing clause is used.

Taking inspiration from the idea at the base of this technique, we present a post-
processing compression algorithm, StructuralHashing, which aims at improving the
compactness of a proof. StructuralHashing is illustrated in Algorithm 13.

The proof is traversed in topological order. When a node n is visited, the algo-
rithm first checks whether its antecedents are already in the hash map; if so, another
node m with the same parents has been seen before. In that case, n is replaced by
m and the children of n are assigned to m. The use of a topological visit guarantees
the soundness of the algorithm: it is safe to replace the subproof rooted in n with
that rooted in m since either (i) m is an ancestor of n (and the subproof rooted in m
is contained in the subproof rooted in n) or (ii) m and n are not on a same path to

158 5.3 Proof Compression

Input: A legal proof
Output: A legal proof
Data: TS: nodes topological sorting vector, HM : hash map associating a

node to its pair of parents
1 begin
2 TS← topological_sorting_top_down(proof)
3 foreach n ∈ TS do
4 if n is not a leaf then
5 if < n+, n− >∈ HM then
6 m← HM(< n+, n− >)
7 Replace n with m
8 Assign n children to m
9 else

10 HM(< n+, n− >)← n
11 end
12 end

Algorithm 13: StructuralHashing.

the global root, so m is not involved in the derivation of n.
Note that StructuralHashing does not guarantee a completely compact proof;

if two nodes n1, n2 have the same parents, then C(n1) = C(n2), but the converse
is not necessarily true. A complete but more computationally expensive technique
might consist in employing a hash map to associate clauses with nodes (rather than
pairs of nodes with nodes as done in StructuralHashing), based on a function that
derives map keys from the clauses content; an implementation of this technique can
be found in [ske].

5.3.3.3 StructuralHashing and the Local Transformation Framework

StructuralHashing is a one-pass compression technique, like RecyclePivots and Re-
cyclePivotsWithIntersection. Nevertheless, it is still possible to exploit the Local
Transformation Framework in order to disclose new redundancies and remove them,
in an iterative manner. We illustrate this approach in Algorithm 14.

5.3.3.4 A Synergic Algorithm

It is possible to combine the compression techniques illustrated so far as shown in
Algorithm 15, exploiting their individual features for a synergistic effect. The com-

159 5.3 Proof Compression

Input: A legal proof, numloop: number of global iterations, numtrav: number
of transformation traversals for each global iteration, timelimit:
timeout, an instantiation of ApplyRule

Output: A legal proof
1 begin
2 timeslot=timelimit/numloop
3 for i=1 to numloop do
4 StructuralHashing()
5 // SHtime is the time taken by StructuralHashing in the last call
6 ReduceAndExpose(timeslot−SHtime,numtrav,ApplyRule)
7 end
8 end

Algorithm 14: SH + RE.

bined approach executes the algorithms sequentially for a given number of global
iterations. Note that PushdownUnits is kept outside of the loop: in our experience,
SH, RPI and RE are unlikely to introduce unit clauses in the proofs, thus for effi-
ciency PushdownUnits is run only once before the main loop.

Input: A legal proof, numloop: number of global iterations, numtrav: number
of transformation traversals for each global iteration, timelimit:
timeout, an instantiation of ApplyRule

Output: A legal proof
1 begin
2 timeslot=timelimit/numloop
3 PushdownUnits()
4 for i=1 to numloop do
5 StructuralHashing()
6 RecyclePivotsWithIntersection()
7 // SHtime and RPItime are the time taken by StructuralHashing

// and RecyclePivotsWithIntersection in the last call
8 ReduceAndExpose(timeslot−SHtime−RPItime,numtrav,ApplyRule)
9 end

10 end
Algorithm 15: PU + SH + RPI + RE.

The overall complexity of the combined algorithm is parametric in the num-
ber of global iterations and actual transformation traversals (also depending on the

160 5.3 Proof Compression

specified time limit).
PushdownUnits performs a topological visit of the proof, collecting unit clauses

and adding them back at the level of the global root; the complexity is O(|V |+ |E|),
linear in the size of the resolution proof DAG.

Complexity is O(|V |+ |E|) also for StructuralHashing, which traverses the proof
once, making use of an hash table to detect the existence of multiple nodes with the
same resolvents.

An iterative implementation of RecyclePivotsWithIntersection consists of a bottom-
up scan of the proof, while computing the sets of removable literals and pruning
branches, followed by a reconstruction phase; the complexity is again O(|V |+ |E|).

Each execution of TransformAndReconstruct, on which ReduceAndExpose is
based, computes a topological sorting of the nodes and traverses the proof top-down
applying rewriting rules. If m transformation traversals are executed, the complexity
of ReduceAndExpose is O(m(|V |+ |E|)).

Note that PushdownUnits, RecyclePivotsWithIntersection, TransformAndRecon-
struct also perform operations at the level of clauses, checking the presence of piv-
ots, identifying rule contexts, updating resolvents. These operations depend on the
width of the involved clauses; in practice, this value is very small compared to the
proof size, and the complexity can be considered O(|V |+ |E|).

Finally, if n global iterations are carried out, the total complexity is O(nm(|V |+
|E|)). There is a clear tradeoff between efficiency and compression. The higher the
value of m is, the more redundancies are exposed and then removed; in practice,
however, especially in case of large proofs, a complexity higher than linear cannot
be afforded, so the nm factor should be kept constant in the size of the proofs.

Some heuristics on the application of the local rules in conjunction with Recy-
clePivots, RecyclePivotsWithIntersection and StructuralHashing have been proved
particularly successful: we refer the reader to §5.3.4, §5.3.5 and §5.5 for details.

5.3.4 Experiments on SMT Benchmarks

As a first stage of experimentation, we carried out an evaluation of the three algo-
rithms RecyclePivots (RP), ReduceAndExpose (RE), and their combination RP+RE.
The algorithms were implemented inside the tool OpenSMT [BPST10], with proof-
logging capabilities enabled.

We experimented on the set of unsatisfiable benchmarks taken from the SMT-
LIB [RT06] from the categories QF_UF, QF_IDL, QF_LRA, QF_RDL. For these
sets of benchmarks we noticed that the aforementioned compression techniques are
very effective. We believe that the reason is connected with the fact that the intro-
duction of theory lemmata in SMT is performed lazily: the delayed introduction of

161 5.3 Proof Compression

clauses involved in the final proof may negatively impact the online proof construc-
tion in the SAT solver.

All the experiments were carried out on a 32-bit Ubuntu server featuring a Dual-
Core 2GHz Opteron CPU and 4GB of memory; a timeout of 600 seconds and a
memory threshold of 2GB (whatever is reached first) were put as limit to the execu-
tions 1.

Table 5.1. Results for SMT benchmarks. #Bench reports the number of benchmarks
solved and processed within the time/memory constraints, RedNodes% and Red-
Edges% report the average compression in the number of nodes and edges of the
proof graphs, and RedCore% reports the average compression in the unsatisfiable
core size. TranTime is the average transformation time in seconds.

#Bench RedNodes% RedEdges% RedCore% TranTime(s)

RP 1370 6.7 7.5 1.3 1.7
(a)

#Bench RedNodes% RedEdges% RedCore% TranTime(s)

Ratio RE RP+RE RE RP+RE RE RP+RE RE RP+RE RE RP+RE

0.01 1364 1366 2.7 8.9 3.8 10.7 0.2 1.4 3.5 3.4
0.025 1363 1366 3.8 9.8 5.1 11.9 0.3 1.5 3.6 3.6
0.05 1364 1366 4.9 10.7 6.5 13.0 0.4 1.6 4.3 4.1
0.075 1363 1366 5.7 11.4 7.6 13.8 0.5 1.7 4.8 4.5
0.1 1361 1364 6.2 11.8 8.3 14.4 0.6 1.7 5.3 5.0
0.25 1357 1359 8.4 13.6 11.0 16.6 0.9 1.9 8.2 7.6
0.5 1346 1348 10.4 15.0 13.3 18.4 1.1 2.0 12.1 11.5
0.75 1339 1341 11.5 16.0 14.7 19.5 1.2 2.1 15.8 15.1
1 1335 1337 12.4 16.7 15.7 20.4 1.3 2.2 19.4 18.8

(b)

The executions of RE and RP+RE are parameterized with a time threshold,
which we set as a fraction of the time taken by the solver to solve the benchmarks:
more difficult instances are likely to produce larger proofs, and therefore more time
is necessary to achieve compression. Notice that, regardless of the ratio, RE and
RP+RE both perform at least one complete transformation loop, which could result
in an execution time slightly higher than expected for low ratios and small proofs.

1The full experimental data is available at http://verify.inf.usi.ch/sites/
default/files/Rollini-phddissertationmaterial.tar.gz

http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz
http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz

162 5.3 Proof Compression

Table 5.2. Results for SMT benchmarks. MaxRedNodes% and MaxRedEdges% are
the maximum compression of nodes and edges achieved by the algorithms in the suite
on individual benchmarks.

MaxRedNodes% MaxRedEdges% MaxRedCore%

RP 65.1 68.9 39.1
(a)

MaxRedNodes% MaxRedEdges% MaxRedCore%

Ratio RE RP+RE RE RP+RE RE RP+RE

0.01 54.4 66.3 67.7 70.2 45.7 45.7
0.025 56.0 77.2 69.5 79.9 45.7 45.7
0.05 76.2 78.5 78.9 81.2 45.7 45.7
0.075 76.2 78.5 79.7 81.2 45.7 45.7
0.1 78.2 78.8 82.9 83.6 45.7 45.7

0.25 79.3 79.6 84.1 84.4 45.7 45.7
0.5 76.2 79.1 83.3 85.2 45.7 45.7

0.75 78.2 79.9 84.4 86.1 45.7 45.7
1 78.3 79.9 84.6 86.1 45.7 45.7

(b)

Table 5.1 shows the average proof compression after the application of the al-
gorithms. Table 5.1a shows the compression obtained after the execution of RP.
Table 5.1b instead shows the compression obtained with RE and RP+RE parameter-
ized with a timeout (ratio · solving time). In the columns we report the compression
in the number of nodes and edges, the compression of the unsatisfiable core, and the
actual transformation time. Table 5.2 is organized as Table 5.1 except that it reports
the best compression values obtained over all the benchmarks.

On a single run RP clearly achieves the best results for compression with respect
to transformation time. To get the same effect on average on nodes and edges, for
example, RE needs about 5 seconds and a ratio transformation time/solving time
equal to 0.1, while RP needs less than 2 seconds. As for core compression, the ratio
must grow up to 1. On the other hand, as already remarked, RP cannot be run more
than once.

The combined approach RP+RE shows a performance which is indeed better
than the other two algorithms taken individually. It is interesting to see that the
global perspective adopted by RP gives an initial substantial advantage, which is

163 5.3 Proof Compression

slowly but constantly reduced as more and more time is dedicated to local transfor-
mations and simplifications.

Table 5.2b displays some remarkable peaks of compression obtained with the
RE and RP+RE approaches on the best individual instances. Interestingly we no-
ticed that in some benchmarks, like 24.800.graph of the QF_IDL suite, RP does not
achieve any compression, due to the high amount of nodes with multiple resolvents
present in its proof that forces RecyclePivots to keep resetting the removable literals
set RL. RP+RE instead, even for a very small ratio (0.01), performs remarkably,
yielding 47.6% compression for nodes, 49.7% for edges and 45.7% for core.

5.3.5 Experiments on SAT Benchmarks

A second stage of experimentation was preceded by an implementation of all the
compression algorithms discussed so far (Algorithm 6 - Algorithm 15) within the
tool PeRIPLO, presented in §3.6.1.

We evaluated the following algorithms: PushdownUnits (PU), RecyclePivotsWith-
Intersection (RPI), ReduceAndExpose (RE), StructuralHashing (SH) (Algorithms
12,9,8,13) and their combinations RPI+RE (Algorithm 11), SH+RE (Algorithm 14),
PU+RPI+SH+RE (Algorithm 15); the evaluation was carried out on a set of purely
propositional benchmarks from the SAT Challenge 2012 [SATa], the SATLIB bench-
mark suite [SATc] and the CMU collection [CMU].

First, a subset of unsatisfiable benchmarks was extracted from the SAT Chal-
lenge 2012 collection by running MiniSAT 2.2.0 alone with a timeout of 900 sec-
onds and a memory threshold of 14GB; this resulted in 261 instances from the Ap-
plication track and the Hard Combinatorial track. In addition to these, another 125
unsatisfiable instances were obtained from the SATLIB Benchmark Suite and the
CMU collection, for a total of 386 instances 2.

The experiments were carried out on a 64-bit Ubuntu server featuring a Quad-
Core 4GHz Xeon CPU and 16GB of memory; a timeout of 1200 seconds and a
memory threshold of 14GB were put as limit to the executions. The PeRIPLO
framework was able to handle proofs up to 30 million nodes, as in the case of
the rbcl_xits_07_UNSAT instance from the Application track in the SAT Challenge
2012 collection.

Differently from the case of SMT benchmarks, we decided to specify as termi-
nation criterion an explicit amount of transformation traversals per global iteration,
focusing on the dependency between proofs size and time taken by the algorithms

2The full experimental data is available at http://verify.inf.usi.ch/sites/
default/files/Rollini-phddissertationmaterial.tar.gz

http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz
http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz

164 5.3 Proof Compression

Table 5.3. Results for SAT benchmarks. #Bench reports the number of bench-
marks solved and processed within the time/memory constraints, RedNodes% and
RedEdges% report the average compression in the number of nodes and edges of
the proof graphs, RedCore% the average compression in the unsatisfiable core size.
TranTime is the average transformation time in seconds; Ratio is the ratio between
transformation time and overall time.

#Bench RedNodes% RedCore% RedEdges% TranTime(s) Ratio

PU 200 1.81 0.00 2.18 5.44 0.09

SH 205 5.90 0.00 6.55 4.53 0.07

RPI 203 28.48 1.75 30.66 14.32 0.21

RE 3 203 4.16 0.09 4.85 24.84 0.31

RE 5 203 5.06 0.14 5.88 37.86 0.41

RE 10 202 6.11 0.17 7.08 67.09 0.56

PU+SH+RPI 196 32.81 1.47 35.70 18.66 0.27

(a)

RPI+RE #Bench RedNodes% RedCore% RedEdges% TranTime(s) Ratio

2,3 201 30.69 2.08 33.49 34.78 0.39

2,5 200 30.71 2.15 33.53 40.37 0.45

3,3 200 31.28 2.23 34.22 51.43 0.51

3,5 200 31.56 2.34 34.50 61.16 0.56
(b)

SH+RE #Bench RedNodes% RedCore% RedEdges% TranTime(s) Ratio

2,3 204 17.33 0.09 19.20 33.87 0.38

2,5 204 19.81 0.15 21.92 48.40 0.47

3,3 204 21.68 0.16 23.96 56.39 0.51

3,5 202 23.69 0.18 26.17 70.75 0.59
(c)

PU+SH+RPI+RE #Bench RedNodes% RedCore% RedEdges% TranTime(s) Ratio

2,3 195 39.46 1.89 43.34 35.23 0.44

2,5 195 40.46 1.93 44.49 38.49 0.46

3,3 195 41.68 2.06 45.86 47.41 0.51

3,5 195 42.41 2.05 46.71 52.91 0.54

(d)

165 5.3 Proof Compression

to move over proofs and compress them.

Table 5.3 reports the performance of the compression techniques. Table 5.3a
shows the results for the individual techniques PU, SH, RPI, RE, the latter tested
for an increasing amount of transformation traversals (3, 5, 10), and the combi-
nation PU+SH+RPI without RE. Tables 5.3b, 5.3c, 5.3d respectively report on the
combinations RPI+RE, SH+RE, PU+SH+RPI+RE: in the first column, a pair n, m
indicates that n global iterations and m transformation traversals per global iteration
were carried out.

RPI is clearly the most effective technique on a single run, as for compression
and ratio transformation time / overall time. For this set of experiments we tuned
RE focusing on its ability to disclose new redundancies, so we did not expect excep-
tional results when running the algorithm by itself; the performance of RE improves
with the number of transformation traversals performed, but cannot match that of
RPI.

On the other hand, the heuristics adopted in the application of the rewriting rules
(see §5.5) have a major effect on SH, enhancing the amount of compression from
about 6% to more than 20%.

The combined approaches naturally achieve better and better results as the num-
ber of global iterations and transformation traversals grows. In particular, Algo-
rithm 15, which brings together the techniques for regularization, compactness and
redundancies exposure, reaches a remarkable average compression level of 40%,
surpassing (ratio being equal) all other combined approaches.

Table 5.4. Results for SAT benchmarks. MaxRedNodes% and MaxRedEdges% are
the maximum compression of nodes and edges achieved by the PU+SH+RPI+RE
combination on a single benchmark.

PU+SH+RPI+RE MaxRedNodes% MaxRedCore% MaxRedEdges%

2,3 83.7 21.5 83.7

2,5 84.9 21.6 85.2

3,3 87.1 22.1 87.4

3,5 87.9 22.2 88.2

We report for completeness in Table 5.4 the maximum compression obtained by
the PU+SH+RPI+RE combination on the best individual instances.

166 5.4 Proof Transformation for Interpolation

5.4 Proof Transformation for Interpolation

In §3.3.5 we discussed interpolation for first order theories, in the context of lazy
SMT solving; we focused on the approaches of [YM05] and [CGS10], which inte-
grate propositional interpolation systems with procedures that compute interpolants
for conjunctions of atoms in a theory. Later, in §3.4.1, we introduced the notion of
theory labeled interpolation system and showed how it generalizes both the systems
of [YM05] and [CGS10].

All these frameworks suffer from a limitation: theory lemmata, appearing in
refutations, must not contain AB-mixed predicates. However, several decision proce-
dures defined for SMT solvers heavily rely on the creation of new predicates during
the solving process. Examples are delayed theory combination (DTC) [BBC+05b],
Ackermann’s expansion [Ack54], lemmas on demand [dMR02] and splitting on de-
mand [BNOT06] (see §5.4.2). All these methods may introduce new predicates,
which can potentially be AB-mixed.

In the following we use A and B to denote two quantifier-free formulae in a
theory T , for which we would like to compute an interpolant. Theories of interest
are equality with uninterpreted functions EU F , linear arithmetic over the rationals
LRA and the integers LIA, the theory of arrays AX , or a combination of theories,
such as EU F ∪ LRA.

This section shows how to compute an AB-pure proof from an AB-mixed one but
without interfering with the internals of the SMT solver; our technique applies to
any approach that requires the addition of AB-mixed predicates (see §5.4.2 for a set
of examples). We illustrate how to employ the Local Transformation Framework to
effectively modify the proofs, in such a way that the T -LISs can be applied; in this
way, it is possible to achieve a complete decoupling between the solving phase and
the interpolant generation phase.

A sketch of the approach is depicted in Figure 5.11. The idea is to move all
AB-mixed predicates (in grey) toward the leaves of the proof (Figure 5.11b) within
maximal AB-mixed subproofs.

Definition 5.4.1 (AB-Mixed Subproof). Given a resolution proof P, an AB-mixed
subproof is a subproof P ′ of P rooted in a clause C , whose intermediate pivots are
all AB-mixed predicates. P ′ is maximal if C does not contain AB-mixed predicates.

When dealing with a background theory T we note the following fact: if P ′ is
a maximal AB-mixed subproof rooted in a clause C , then C is a valid theory lemma
for T .

This observation derives from Definition 5.4.1 and from the fact that (i) AB-
mixed predicates can only appear in theory lemmata (as they do not appear in the

167 5.4 Proof Transformation for Interpolation

(a) (b) (c)

T -lemmaT -lemma

Figure 5.11. An overview of our approach. (a) is the proof generated by the SMT
solver. White points represent A-local predicates, black points represent B-local pred-
icates, grey points represent AB-mixed predicates. (b) AB-mixed predicates are con-
fined inside AB-mixed trees. (c) AB-mixed trees are removed and their roots are valid
theory lemmata in T .

original formula) and (ii) a resolution step over two theory lemmata generates an-
other theory lemma.

Once AB-mixed maximal subproofs are formed, it is possible to replace them
with their root clauses (Figure 5.11c). The obtained proof is now free of AB-mixed
predicates and can be used to derive an interpolant by means of a T -LIS, provided
that an interpolant generating procedure is available for the theory T .

The crucial part of our approach is an algorithm for proof transformation. It
relies on the Local Transformation Framework discussed in §5.2. An ad-hoc ap-
plication of the rules can be used to transform a proof P into a proof P ′, where all
AB-mixed variables are confined in AB-mixed subproofs. Each rewriting rule can ef-
fectively swap two pivots p and q in the resolution proof, or perform simplifications,
depending on the particular context.

In the following, to facilitate the understanding of the algorithm, we will call
AB-mixed and AB-pure predicates light and heavy respectively. The rules are applied
when a light predicate is below a heavy predicate in the proof graph. The effect of
an exhaustive application of the rules is to lift light predicates over heavy predicates
as bubbles in water.

5.4.1 Pivot Reordering Algorithms

The Local Transformation Framework can be effectively employed to perform a
local reordering of the pivots. Each rule in Figure 5.5 either swaps the position of
two pivots (S1, S2, R2), or it eliminates at least one pivot (R1, R2′, R3). This feature
can be used to create an application strategy aimed at sorting the pivots in a proof

168 5.4 Proof Transformation for Interpolation

P, by transforming it into a proof P ′ such that all light variables are moved above
heavy variables.

In order to achieve this goal it is sufficient to consider only unordered contexts,
i.e. those in which v(t) is a light variable and v(s) is a heavy variable. Therefore a
simple non-deterministic algorithm can be derived as Algorithm 16.

Input: A legal proof
Output: A legal proof without unordered contexts
Data: U : set of unordered contexts

1 begin
2 Determine U , e.g. through a visit of the proof
3 while U 6= ; do
4 Choose a context in U
5 Apply the associated rule, and SubsumptionPropagation if necessary
6 Update U
7 end
8 end

Algorithm 16: PivotReordering.

The algorithm terminates: note in fact that each iteration strictly decreases the
distance of an occurrence of a heavy pivot w.r.t. the global root, until no more
unordered contexts are left.

Input: A left context lc, a right context rc
1 begin
2 if lc is ordered and rc is unordered then
3 Apply rule for rc
4 else if lc is unordered and rc is ordered then
5 Apply rule for lc
6 else if lc is unordered and rc is unordered then
7 Heuristically choose between lc and rc and apply rule
8 end

Algorithm 17: ApplyRuleForPivotReordering.

A more efficient choice is to make use of Algorithm 7 TransformAndRecon-
struct, by instantiating the ApplyRule method so that it systematically pushes light
variables above heavy ones; a possible instantiation is shown in Algorithm 17. An
algorithm for pivot reordering would then consist of a number of consecutive runs of

169 5.4 Proof Transformation for Interpolation

TransformAndReconstruct, stopping when no more unordered contexts are found:
Algorithm 18, PivotReordering2, implements this approach.

Input: A legal proof
Output: A legal proof without unordered contexts

1 begin
2 while unordered contexts are found do
3 TransformAndReconstruct(ApplyRuleForPivotReordering)
4 end
5 end

Algorithm 18: PivotReordering2.

5.4.2 SMT Solving and AB-Mixed Predicates

In this section we show a number of techniques currently employed in state-of-
the-art SMT solvers that can potentially introduce AB-mixed predicates during the
solving phase. If these predicates become part of the proof of unsatisfiability, the
proof reordering algorithms described in §5.4.1 can be applied to produce an AB-
pure proof.

5.4.2.1 Theory Reduction Techniques

Let Tk and T j be two decidable theories such that Tk is weaker (less expressive)
than T j. Given a T j-formula ϕ, and a decision procedure SMT(Tk) for quantifier-
free formulae in Tk, it is often possible to obtain a decision procedure SMT(T j)
for quantifier-free formulae in T j by augmenting ϕ with a finite set of Tk-lemma
ψ. These lemmata (or axioms) explicitly encode the necessary knowledge such that
Tk |= ϕ ∧ψ if and only if T j |= ϕ. Therefore a simple decision procedure for T j is
as described by Algorithm 19.

Input: ϕ for T j

1 begin
2 ψ = generateLemmata(ϕ)
3 return SMT(Tk)(ϕ ∧ψ)
4 end

Algorithm 19: A reduction approach for SMT(T j).

170 5.4 Proof Transformation for Interpolation

In practice the lemmata generation function can be made lazy by plugging it in-
side the SMT solver directly; this paradigm is known as lemma on demand [dMR02]
or splitting on demand [BNOT06]. We show some reduction techniques as follows.

Reduction of AX to EUF. We consider the case where Tk = EU F , the theory
of equality with uninterpreted functions, and T j = AX , the theory of arrays with
extensionality. The axioms of EU F are the ones of equality (reflexivity, symmetry,
and transitivity) plus the congruence axioms ∀x , y (x = y → f (x) = f (y)), for
any functional symbol of the language.

The theory of arrays AX is instead axiomatized by:

∀x , y, z rd(wr(x , y, z), y) = z (5.1)

∀x , y, w, z y = w ∨ rd(wr(x , y, z), w) = rd(x , w) (5.2)

∀x , z x = z↔ (∀y. rd(x , y) = rd(z, y)) (5.3)

State-of-the-art approaches for AX implemented in SMT solvers [BB08, dMB09,
GKF08, BNO+08] are all based on reduction to EU F . Instances of the axioms of
AX are added to the formula in a lazy manner until either the formula is proven
unsatisfiable or saturation is reached. The addition of new lemmata may require the
creation of AB-mixed predicates when a partitioned formula is considered.

Example 5.4.1. Let ϕ = A∧ B, where A is c = wr(d, i, e), and B is rd(c, j) 6=
rd(d, j)∧ rd(c, k) 6= rd(d, k)∧ j 6= k. Symbols {i, e} are A-local, { j, k} are B-local,
and {c, d} are AB-common. To prove ϕ unsatisfiable with a reduction to EU F , we
need to instantiate axiom (5.2) twice, so that ψ is (i = j ∨ rd(wr(d, i, e), j) =
rd(d, j))∧ (i = k ∨ rd(wr(d, i, e), k) = rd(d, k)). Notice that we introduced four
AB-mixed predicates. Now we can send ϕ∧ψ to an SMT solver for EU F to produce
the proof of unsatisfiability. Figure 5.12 shows a possible resolution proof generated
by the SMT solver, and how it can be transformed into a proof without AB-mixed
predicates.

Reduction of LIA to LRA. Decision procedures for LIA (linear integer arithmetic)
often rely on iterated calls to a decision procedure for LRA (linear rational arith-
metic). An example is the method of branch-and-bound: given a feasible rational
region R for ~d = (d1, . . . , dn), and a non-integer point ~c ∈ R for ~d, then one step of
branch-and-bound generates the two subproblems R∪{di ≤ bcic} and R∪{di ≥ dcie}.
These are again recursively explored until an integer point ~c is found.

Note that the splitting on the bounds can be delegated to the propositional engine
by adding the lemma ((di ≤ bcic)∨ (di ≥ dcie)). In order to obtain a faster conver-
gence of the algorithm, it is possible to split on cuts, i.e. linear constraints, rather

171 5.4 Proof Transformation for Interpolation

Id Clauses Prop. abstract.
1 c = wr(d, i, e) p1

2 rd(c, j) 6= rd(d, j) p2

3 rd(c, k) 6= rd(d, k) p3

4 j 6= k p4

5 (i = j ∨ rd(wr(d, i, e), j) = rd(d, j)) p5 p6

6 (i = k ∨ rd(wr(d, i, e), k) = rd(d, k)) p7 p8

7 (c 6= wr(d, i, e)∨ rd(c, j) = rd(d, j)∨ rd(wr(d, i, e), j) 6= rd(d, j)) p1 p2 p6

8 (c 6= wr(d, i, e)∨ rd(c, k) = rd(d, k)∨ rd(wr(d, i, e), k) 6= rd(d, k)) p1 p3 p8

9 (j = k ∨ i 6= j ∨ i 6= k) p4 p5 p7

p7p8 p1p3p8

p1p3p7 p4p5p7

p1p3p4p5 p4p4
p1p3p5

p5p6 p1p2p6

p1p2p5p5
p1p2p3 p3

p1p2 p1
p2 p2

⊥

(a)

p7p8 p1p3p8

p1p3p7 p4p5p7

p1p3p4p5

p5p6 p1p2p6

p1p2p5p5
p1p2p3p4 p4p4

p1p2p3 p3

p1p2 p1
p2 p2

⊥

(b)

Figure 5.12. Clauses from Example 5.4.1. ϕ = {1, 2,3, 4}, ψ = {5,6}. Clauses 7-9
are theory lemmata discovered by the EU F solver. (a) is a possible proof obtained by
the SMT solver (for EU F) on ϕ∧ψ. (b) is a proof after swapping p4 and p5 by means
of rule S2; in the resulting proof all mixed literals (p5-p8) appear in the upper part of
the proof in an AB-mixed proof subtree. The root of the AB-mixed subtree p1p2p3p4 is
a valid theory lemma in AX .

172 5.4 Proof Transformation for Interpolation

than on simple bounds. However cuts may add AB-mixed predicates if A-local and
B-local variables are mixed into the same cut.

Example 5.4.2. Let ϕ = A∧B in LIA, where A is 5d−e ≤ 1∧e−5d ≤−1, and B is
5b− e ≤−2∧ e−5b ≤ 3. Settingψ as the axiom (d− b ≤ 0)∨ (d− b ≥ 1) (which
contains two AB-mixed literals) is sufficient for ϕ ∧ψ to be proven unsatisfiable
by a solver for LRA, by discovering two additional theory lemmata ((5d − e 6≤
1)∨(e−5b 6≤ 3)∨(d− b ≤ 0)) and ((5d− e 6≤ −1)∨(e−5z 6≤ −2)∨(d− b ≥ 1)).

Ackermann’s Expansion. WhenT j is a combination of theories of the form EU F∪
Tk, Ackermann’s expansion [Ack54] can be used to reduce the reasoning from T j

to Tk. The idea is to use as ψ the exhaustive instantiation of the congruence axiom
∀x , y (x = y → f (x) = f (y)) for all pairs of uninterpreted constants appearing
in uninterpreted functional symbols and all uninterpreted functional symbols f in
ϕ. This instantiation generates AB-mixed predicates when x is instantiated with an
A-local symbol and y with a B-local one.

Example 5.4.3. Let Tk = LRA. Let ϕ = A∧ B, where A is (a = j + k ∧ f (a) = c),
and B is (b = j+ k∧ f (b) = d ∧ c 6= d). Setting ψ as the axiom (a 6= b)∨ (f (a) =
f (b) is sufficient for LRA to detect the unsatisfiability of ϕ ∧ψ, by discovering two
additional theory lemmata ((f (a) 6= f (b)) ∨ (f (a) 6= c) ∨ (f (b) 6= d) ∨ (c 6= d))
and ((a 6= j+ k)∨ (b 6= j+ k)∨ (a = b)).

5.4.2.2 Theory Combination via DTC

A generic framework for theory combination was introduced by Nelson and Oppen
in [NO79]. We recall it briefly as follows.

Given two signature-disjoint and stably-infinite theories T1 and T2, a decision
procedure for a conjunction of constraints in the combined theory T1 ∪ T2 can be
obtained from the decision procedures for T1 and T2. First, the formula ϕ is flat-
tened, i.e. auxiliary uninterpreted constants are introduced to separate terms that
contain both symbols of T1 and T2. Then the idea is that the two theory solvers for
T1 and T2 are forced to exhaustively exchange interface equalities i.e. equalities
between the constants that appear both in constraints of T1 and T2 after flattening3.

Delayed theory combination (DTC) implements a non-deterministic version of
the Nelson-Oppen framework, in which interface equalities are not exchanged by the
deciders directly, but they are guessed by the SAT solver. With DTC it is possible to

3Note that in practice flattening can be avoided. For instance in Example 5.4.4 we do not perform
any flattening.

173 5.4 Proof Transformation for Interpolation

achieve a higher level of modularity w.r.t. the classical Nelson-Oppen framework.
DTC is currently implemented (with some variations) in most state-of-the-art SMT
solvers.

If no AB-mixed interface equality is generated, an interpolant can be derived with
the methods already present in the literature; otherwise our method can be applied to
reorder the proof, as an alternative to the techniques described in [CGS08, GKT09].

Example 5.4.4. Consider again ϕ of Example 5.4.3. Since a, b, f (a), f (b) appear
in constraints of both theories, we need to generate two interface equalities a = b
and f (a) = f (b). The guessing of their polarity is delegated to the SAT solver. The
SMT solver will detect unsatisfiability after the EU F solver discovers the two theory
lemmata ((a 6= b) ∨ (f (a) = f (b)) and ((f (a) 6= f (b)) ∨ (f (a) 6= c) ∨ (f (b) 6=
d) ∨ (c 6= d)) and the LRA solver discovers the theory lemma ((a 6= j + k) ∨ (b 6=
j+ k)∨ (a = b)).

5.4.3 Experiments on SMT Benchmarks

For the purpose of this experimentation we chose to focus on one particular appli-
cation among those of §5.4.2, namely Ackermann’s Expansion for Theory Combi-
nation.

We evaluated the proof transformation technique on the set of QF_UFIDL for-
mulae from the SMT-LIB [RT06] (QF_UFIDL refers to the combined theory EU F∪
I DL). The suite contains 319 unsatisfiable instances. Each formula was split in half
to obtain an artificial interpolation problem (in the same fashion as [CGS08]).

The pivot reordering algorithm Algorithm 18 was realized by means of the Lo-
cal Transformation Framework and implemented in OpenSMT [BPST10]. Proof
manipulation was applied when the proof contained AB-mixed predicates, in order
to lift them up inside AB-maximal subproofs and replace them with their roots.

We ran the experiments on a 32-bit Ubuntu server equipped with Dual-Core
2GHz Opteron 2212 CPU and 4GB of memory. The benchmarks were executed
with a timeout of 60 minutes and a memory threshold of 2GB (whatever was reached
first): 172 instances, of which 82 proofs contained AB-mixed predicates4, were suc-
cessfully handled within these limits. We have reported the cost of the transfor-
mation and its effect on the proofs; the results are summarized in Table 5.5. We
grouped benchmarks together following the original classification used in SMT-LIB
and provided average values for each group5.

4Note that in some cases AB-mixed predicates were produced during the search, but they did not
appear in the proof.

5The full experimental data is available at http://verify.inf.usi.ch/sites/
default/files/Rollini-phddissertationmaterial.tar.gz

http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz
http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz

174 5.4 Proof Transformation for Interpolation

Table 5.5. The effect of proof transformation on QF_UFIDL benchmarks summarized
per group: #Bench is the number of benchmarks in a group, #AB is the average num-
ber of AB-mixed predicates in a proof, Time% is the average time overhead induced
by transformation, Nodes% and Edges% represent the average difference in the proof
size as a result of transformation.

Group #Bench #AB Time% Nodes% Edges%

RDS 2 7 84 -16 -19
EufLaArithmetic 2 74 18 187 193
pete 15 20 16 66 68
pete2 52 13 6 73 80
uclid 11 12 29 87 90

Overall 82 16 13 74 79

The results in Table 5.5 demonstrate that our proof transformation technique in-
duces, on average, about 13% overhead with respect to plain solving time. The av-
erage increase in size is around 74%, but not all the instances experienced a growth;
we observed in fact that in 42 out of 82 benchmarks the transformed proof was
smaller than the original one both in the number of nodes and edges. Overall it is
important to point out that the creation of new nodes due to the application of the
S rules did not entail any exponential blow-up in the size of the proofs during the
transformation process.

Another interesting result to report is the fact that only 45% of the proofs con-
tained AB-mixed predicates and, consequently, required transformation. This is an-
other motivation for using off-the-shelf algorithms for SMT solvers and have the
proof transformed in a second stage, rather than tweaking (and potentially slowing
down) the solver to generate clean proofs upfront.

5.4.4 Pivot Reordering for Propositional Interpolation

This section concludes our discussion on interpolation by moving back from the
context of SMT to that of SAT. We complete the analysis begun by the authors
of [JM05] and illustrate how, in the case of purely propositional refutations, a trans-
formation technique can be devised to generate interpolants directly in conjunctive
or disjunctive normal form.

The table below recalls McMillan’s interpolation system I t pM for propositional
logic, introduced in §3.3.4.1. Algorithm 18, PivotReordering2, can be employed to
restructure a refutation so that I t pM generates an interpolant in CNF. It is sufficient

175 5.4 Proof Transformation for Interpolation

McMillan’s interpolation system I t pM .

Leaf: C [I]

I =

¨

C |AB if C ∈ A
> if C ∈ B

Inner node:
C+ ∨ p [I+] C− ∨ p [I−]

C+ ∨ C− [I]

I =

¨

I+ ∨ I− if p ∈ A
I+ ∧ I− if p ∈ B or p ∈ AB

in fact to modify the definition of light and heavy predicates given in §5.4, so that
a context is considered unordered whenever v(t) is local to A (light) and v(s) is a
propositional variable in B or in AB (heavy). Effect of the refutation transformation
is to push up light variables, so that, along every path from the leaves to the root,
light variables appear before heavy variables.

We need to show that this condition is sufficient in order for I t pM to produce an
interpolant in CNF.

Theorem 5.4.1. Assume a refutation Π without unordered contexts. I t pM generates
an interpolant in CNF from Π.

Proof by structural induction. Base case. The partial interpolant for a leaf labeled
by a clause C is either > or C |AB, so it is in CNF.

Inductive step. Given an inner node n and the associated pivot p = piv(n), assume
the partial interpolants I+ and I− for C(n+) = C1 ∨ p and C(n−) = C2 ∨ p are in
CNF. We have four possibilities:

• Case 1: I+ and I− are both in clausal form; then either n+, n− are leaves or
they are inner nodes with light pivot variables. p can be either light or heavy:
in the first case I is itself a clause, in the second case I is a conjunction of
clauses, so it is in CNF.

• Case 2: I+ is a clause, I− is a conjunction of at least two clauses; then n+ can
be either a leaf or an inner node with a light pivot, but I− must be an inner
node with a heavy pivot (due to ∧ being the main connective of I−). Since Π
does not have unordered contexts, p must be a heavy variable, thus I = I+∧ I−

is in CNF.

• Case 3: I+ is a conjunction of at least two clauses, I− is a clause. Symmetric
to Case 2.

176 5.5 Heuristics for the Proof Transformation Algorithms

• Case 4: Both I+ and I− are a conjunction of at least two clauses. As for Case
2 and Case 3.

A similar argumentation holds for the generation of interpolants in disjunctive
normal form. Let us consider the interpolation system dual to McMillan’s, I t pM ′:

McMillan′’s interpolation system I t pM ′ .

Leaf: C [I]

I =

¨

⊥ if C ∈ A
¬C |AB if C ∈ B

Inner node:
C+ ∨ p [I+] C− ∨ p [I−]

C+ ∨ C− [I]

I =

¨

I+ ∨ I− if p ∈ A or p ∈ AB
I+ ∧ I− if p ∈ B

Algorithm 18 can be employed to transform the refutation; in this case a context
is unordered if v(t) is a variable local to B (light) and v(s) is a variable local to
A or common (heavy). The effect of pushing up light variables is that, during the
construction of the interpolant, the connective ∧ will be introduced before ∨ along
each path, so that the resulting interpolant will be in disjunctive normal form (note
that the partial interpolant of a leaf is already in DNF, being a conjunction of literals).

We can thus state the following theorem:

Theorem 5.4.2. Assume a refutationΠ without unordered contexts. I t pM ′ generates
an interpolant in DNF from Π.

As already pointed out in [JM05], the price to pay for a complete transformation
might be an exponential increase of the refutation size, due to the node duplications
necessary to apply rules S1, S2, R2 to contexts where C4 has multiple children (see
Figure 5.5). A feasible compromise consists in performing a partial CNFization or
DNFization by limiting the application of such rules to when C4 has a single child;
in this case, the refutation growth depends only on the application of rule S1, and
the increase is maintained linear.

5.5 Heuristics for the Proof Transformation Algorithms

In this section we discuss some of the heuristics implemented in OpenSMT and
PeRIPLO to guide the application of the Local Transformation Framework rules

177 5.5 Heuristics for the Proof Transformation Algorithms

and the reconstruction of proofs, with reference to compression (§5.3) and pivot
reordering for interpolation (§5.4).

Some of the algorithms presented so far (Algorithms 6,7,12) need to handle the
presence of resolution steps which are not valid anymore since the pivot is missing
from both antecedents; in that case, the resolvent node n must be replaced by either
parent. A heuristics which has been proven useful for determining the replacing
parent is the following. If one of the parents (let us say n+) has only n as child,
then n is replaced by n−; since n+ loses its only child, then (part of) the subproof
rooted in n+ gets detached from the global proof, yielding a simplification of the
proof itself. If both parents have more than one child, then the parent labeled by
the smaller clause is the one that replaces n, aiming at increasing the amount of
simplifications performed while moving down to the global root.

As far as the heuristics for the application of rewriting rules are concerned, the
ApplyRule method adheres to some general lines. Whenever a choice is possible
between a left and a right context, a precedence order is respected: (X > Y means:
the application of X is preferred over that of Y):

R3> {R2′, R1}> R2> S1′ > S2> S1

The compression rules R have always priority over the shuffling rules S, R3 being the
favorite, followed by R2′ and R1. Among the S rules, S1′ is able to perform a local
simplification, which makes it preferred to S2 and especially to S1, which increases
the size of the proof; between equal S rules, the one which does not involve a node
duplication (see Figure 5.5) is chosen.

Additional constraints depend on the actual goal of the transformation. If the
aim is pivot reordering, the constraints are as illustrated in Algorithm 18, with ties
broken according to the general lines given above. If the aim is compression, then
S1 is never applied, since it increases the size of the proof and it is not apparent at
the time of its application whether it would bring benefits in a second moment, nei-
ther are applied R2, S1′, S2 if they involve a duplication. A strategy which proved
successful in the application of S rules is to push up nodes with multiple resolvents
whenever possible, with the aim of improving the effect of RecyclePivots and Re-
cyclePivotsWithIntersection; interestingly, this technique shows as a side effect the
disclosure of redundancies which can effectively be taken care of by StructuralHash-
ing.

These heuristics have been discovered through experimentation and have been
adopted due to their practical usefulness for compression, in a setting where the
large size of proofs allows only a few traversals (and thus a limited application of
rules) by means of ReduceAndExpose, and where the creation of new nodes should
be avoided; it is thus unlikely that, arbitrarily increasing the number of traversals,

178 5.6 Related Work

they would expose and remove all pivots redundancies. A more thorough, although
practically infeasible, approach could rely on keeping track of all contexts and asso-
ciated rules in a proof Π. Since the S rules are revertible, an equivalence relation =S

could be defined among proofs so that Π =S Π′ if Π′ can be obtained from Π (and
vice versa) by means of a sequence of applications of S rules. A backtracking-based
algorithm could be employed to systematically visit equivalence classes of proofs,
and to move from an equivalence class to another thanks to the application of an R
rule.

5.6 Related Work

Various proof manipulation techniques have been developed in the last years, the
main goal being compression.

[Amj07] proposes an algorithm based on heuristically reordering the resolution
steps that form a proof, trying to identify a subset of the resolution steps that is
still sufficient to derive the empty clause. The approach relies on using an addi-
tional graph-like data structure to keep track of how literals of opposite polarity are
propagated from the leaves through the proof and then resolved upon.

[Sin07] explicitly assumes a CDCL context, where a resolution-based SAT solver
generates a sequence of derivations called proof chains, combined in a second mo-
ment to create the overall proof. The author presents an algorithm that works at
the level of proof chains, aiming at identifying and merging shared substructures to
generate a smaller proof.

[Amj08] further develops this approach, adopting a representation of resolution
proofs that allows the use of efficient algorithms and data structures for substring
matching; this feature is exploited to perform memoization of proofs by detecting
and reusing common subproofs.

[Cot10] introduces two compression methods. The first one is based on a form of
structural hashing, where each inner node in a proof graph is associated with its pair
of antecedents in a hash map. The compression algorithm traverses the sequence of
proof chains while updating the hash map, and adds a resolution step to the overall
proof only if it does not already exist. The second one consists of a rewriting pro-
cedure that, given in input a proof and a heuristically chosen propositional variable
p, transforms the proof so that the last resolution step is on p; this might result in a
smaller proof.

[BIFH+08] presents a technique that exploits learned unit clauses to rewrite sub-
proofs that were derived before learning them. The authors also propose a compres-
sion algorithm (RecyclePivots) that searches for resolution steps on the same pivot

179 5.6 Related Work

along paths from leaves to the root in a proof. If a pivot is resolved upon more than
once on a path (which implies that the pivot variable is introduced and then removed
multiple times), the resolution step closest to the root is kept, while the others are
simplified away. The algorithm is effective on resolution proof trees, but can be ap-
plied only in a limited form to resolution proof DAGs, due to the possible presence
of multiple paths from a node to the root.

This restriction is relaxed in the work of [FMP11], that extends the algorithm
of [BIFH+08] into RecyclePivotsWithIntersection to keep track, for each node, of the
literals which get resolved upon along all paths from the node to the root. [FMP11]
also presents an algorithm that traverses a proof, collecting unit clauses and rein-
serting them at the level of the global root, thus removing redundancies due to mul-
tiple resolution steps on the same unit clauses; this technique is later generalized
in [BP13] to lowering subproofs rooted in non-unit clauses.

[Gup12] builds upon [BIFH+08] in developing three variants of RecyclePivots
tailored to resolution proof DAGs. The first one is based on the observation that the
set of literals which get resolved in a proof upon along all paths from the node to the
root must be a superset of the clause associated to the node, if the root corresponds to
the empty clause. The second and third ones actually correspond respectively to Re-
cyclePivotsWithIntersection and to a parametric version of it where the computation
of the set of literals is limited to nodes with up to a certain amount of children.

Our set of compression techniques has been illustrated with reference to [Sin07],
[BIFH+08] and [FMP11] in §5.3.

Besides compression, a second area of application of proof manipulation has
been interpolation, both in the propositional and in the first order settings.

[DKPW08] introduces a global transformation framework for interpolation to
reorder the resolution steps in a proof with respect to a given partial order among
pivots; compression is shown to be a side effect for some benchmarks. Compared
to [DKPW08], our approach works locally, and leaves more freedom in choosing
the strategies for rule applications. Also our target is not directly computing inter-
polants, but rather rewriting the proof in such a way that existing techniques can be
applied.

The same authors focus in [DKPW10] on the concept of strength of an inter-
polant. They present an analysis of existing propositional interpolation algorithms,
together with a method to combine them in order to obtain weaker or stronger in-
terpolants from a same proof of unsatisfiability. They also address the use and the
limitations of the local transformation rules of [JM05]. The rewriting rules corre-
sponding to S1 and S2 in the Local Transformation Framework (§5.2) were first in-
troduced in [JM05] and further examined in [DKPW10] as a way to modify a proof
to obtain stronger or weaker interpolants, once fixed the interpolation algorithm; we

180 5.7 Summary and Future Developments

devised the remaining rules after an exhaustive analysis of the possible proof con-
texts. [JM05] also discusses the application of S1 and S2 to generate interpolants in
conjunctive normal form; however, not all the contexts are taken into account, and,
as pointed out in [DKPW10], the contexts for S1 and S2 are not correctly identified.

Note that S1 and S2 have also a counterpart in Gentzen’s sequent calculus sys-
tem LK [Gen35]: S1 corresponds to swapping applications of the structural cut and
contraction rules, while S2 is one of the rank reduction rules.

Interpolation for first order theories in presence of AB-mixed predicates is ad-
dressed in [CGS08], only for the case of DTC, by tweaking the decision heuristics
of the solver, in such a way that it guarantees that the produced proof can be handled
with known methods. In particular the authors define a notion of ie-local proofs, and
they show how to compute interpolants for this class of proofs, and how to adapt an
SMT solver to produce only ie-local proofs. [GKT09] the relaxes the constraint on
generating ie-local proofs by introducing the notion of almost-colorable proofs. We
argue that our technique is simpler and more flexible, as different strategies can be
derived with different applications of our local transformation rules. Our method
is also more general, since it applies not only to theory combination but to any ap-
proach that requires the addition of AB-mixed predicates (see §5.4.2).

More recently, a tailored interpolation algorithm has been proposed in [CHN13]
for the combined theory of linear arithmetic and uninterpreted functions; it has the
notable feature of allowing the presence of mixed predicates, thus making proof
manipulation not necessary anymore.

5.7 Summary and Future Developments

In this chapter we have presented a proof transformation framework based on a
set of local rewriting rules and shown how it can be applied to the tasks of proof
compression and pivot reordering.

As for compression, we discussed how rules that effectively simplify the proof
can be interleaved with rules that locally perturbate the topology, in order to cre-
ate new opportunities for compression. We identified two kinds of redundancies
in proofs, related to the notions of regularity and compactness, and presented and
compared a number of algorithms to address them, moving from existing techniques
in the literature. Individual algorithms, as well as their combinations, were imple-
mented and tested over a collection of benchmarks both from SAT and SMT li-
braries, showing remarkable levels of compression in the proof size.

As for pivot reordering, we described how to employ the rewriting rules to iso-
late and remove AB-mixed predicates, in such a way that standard procedures for

181 5.7 Summary and Future Developments

interpolation in SMT can be applied. The approach enables the use of off-the-shelf
techniques for SMT solvers that are likely to introduce AB-mixed predicates, such
as Ackermann’s expansion, lemma on demand, splitting on demand and DTC. We
showed by means of experiments that our rules can effectively transform the proofs
without generating any exponential growth in their size. Finally, we explored a
form of interaction between LISs and proof manipulation by providing algorithms
to reorder resolution steps in a propositional proof to guarantee the generation of
interpolants in conjunctive or disjunctive normal form.

Future work on proof compression can concern, on the theoretical side, the iden-
tification of new types of redundancies and the development of algorithms aimed at
removing them; on the practical side, their implementation in PeRIPLO and experi-
mentation on families of benchmarks of different origin.

An interesting topic to investigate is the relationship and the mutual dependence
between proof manipulation and interpolation systems. We have shown for exam-
ple how to perform ad-hoc transformations to allow I t pM and I t pM ′ to respec-
tively yield interpolants in CNF and DNF. The rules S1 and S2 can be employed
to strengthen or weaken an interpolant, given a LIS I t pL and a refutation Π; it might
be thus possible to formally extend the lattice of labeled interpolation systems by
examining the family of interpolants that can be generated from a I t pL by system-
atically using S1, S2 on Π.

Another aspect to consider is the applicability of proof manipulation to collec-
tives. In Chapter 4 we discussed how to generate a family of interpolants satisfying
a certain property from the same proof; it remains to understand whether and how
the results presented hold if the proof undergoes changes, even just local ones due
to a restricted application of S1, S2.

182 5.7 Summary and Future Developments

Chapter 6

Conclusions

Symbolic model checking has been considerably enhanced with the introduction
of Craig interpolation as a means for overapproximation. Interpolants can be effi-
ciently computed from proofs of unsatisfiability; multiple interpolants can be gener-
ated from the same proof, and proof themselves can be transformed, thus allowing
additional interpolants.

Interpolants are not unique, and it is a fundamental problem to determine what
features determine their quality, and how these features are connected with the ef-
fectiveness in the verification.

This thesis addresses the problem by characterizing aspects that make inter-
polants good, and by developing new techniques that guide the generation of in-
terpolants in order to improve the performance of model checking approaches. The
main research contributions are summarized in the following.

A DPLL-Stochastic Algorithm for Satisfiability. In §2.2 we addressed the chal-
lenge of developing new, effective, DPLL-stochastic algorithms by presenting an
approach to the satisfiability problem based on the stochastic technique known as
cross-entropy method. In our framework the propositional model is extended to a
multi-valued setting, a probability space is induced over the enlarged search space
and a performance function is defined that correlates with the likelihood of the input
formula to be satisfiable. We implemented our variant of the cross-entropy method
in a C++ tool named CROiSSANT. CROiSSANT is employed as a preprocessor to a
DPLL-based solver, to identify the areas of the space of all possible assignments that
are more likely to contain a satisfying assignment; this information is in turn given
to the solver to suggest variables assignments during the search. We conducted ex-
periments on different sets of benchmarks, using CROiSSANT in combination with
the state-of-the-art solver MiniSAT 2.2.0; the results show an improvement both in

183

184

running times and number of solved instances, providing evidence that our frame-
work is a sound basis for further research on cross-entropy based SAT solvers.

Systematic Generation of Interpolants of Different Strength and Structure. In
§3.2 we discussed and justified the adoption of logical strength and structure as pa-
rameters with respect to which the quality of interpolants can be evaluated. Based
on that, we contributed to a theoretical formalization of a generic interpolation ap-
proach, introducing a new parametric interpolation framework for arbitrary theories
and inference systems, which is able to compute interpolants of different structure
and strength, with or without quantifiers, from the same proof. We described the
framework in relation with well-known interpolation algorithms, that respectively
address local proofs in first order logic and the propositional hyper-resolution sys-
tem, and showed that they can be regarded as instantiations of our method.

Impact of Interpolants Size and Strength in Model Checking. In §3.6 we ad-
dressed the key problem of generating effective interpolants in verification, by as-
sessing the impact of size and logical strength in SAT-based bounded model check-
ing. We took into account two BMC applications which use interpolation to gener-
ate function summaries: (i) verification of a C program incrementally with respect
to different properties, and (ii) incremental verification of different versions of a
C program with respect to a fixed set of properties. We integrated the PeRIPLO
framework with the model checkers FunFrog and eVolCheck, which respectively
implement (i) and (ii), to drive interpolation by manipulating the proofs from which
the interpolants are computed and by generating interpolants of different strength.
We provided solid experimental evidence that compact interpolants improve the ver-
ification performance in the two applications. We also carried out a first systematic
evaluation of the impact of strength in a specific verification domain, showing that
different applications can benefit from interpolants of different strength: specifically,
stronger and weaker interpolants are respectively desirable in (i) and (ii).

Formal Analysis of Interpolation Properties. In Chapter 4 we discussed how
many verification techniques require the generation of collections of interdependent
interpolants, which need to satisfy particular properties in order to make verification
possible. We identified and uniformly presented the most common among these
properties, systematically analyzing the relationships among them and showing that
they form a hierarchy. In doing so, we extended the traditional setting of a single
interpolation system to families of systems, thus giving the flexibility to choose dif-
ferent systems for computing different interpolants in a collection. The generality of

185

these results derives from their being independent of the concrete systems adopted
to generate the interpolants.

Interpolation Properties and Interpolant Strength. The propositional labeled in-
terpolation systems are a suitable instrument for our research on the strength of inter-
polants, since they consist of a parametric framework which allows to systematically
generate interpolants of different strength from the same proof. For this reason, in
§4.3 we addressed the interpolation properties and the relationships among them
in the context of LISs, formally proving both sufficient and necessary conditions
for a family of LISs and for a single LIS (including the well-known McMillan and
Pudlák’s interpolation systems) to enjoy each property. These results allow for the
systematic study of how interpolants strength affects state-of-the-art model checking
techniques, while preserving their soundness.

Extension of the Labeled Interpolation Systems to SMT. In order to extend the
applicability of our results from SAT- to SMT-based verification, we investigated
in §3.4 and in §4.4 the interpolation properties in the ambit of satisfiability mod-
ulo theories; we presented the theory labeled interpolation systems, an extension
of the labeled interpolation systems to first order theories that generalizes standard
approaches to SMT interpolation, and analyzed how the constraints for some of the
properties change in presence of a first order theory.

Proof Compression Framework. In §5.3 we acknowledged the impact the size
of resolution proofs can have on the techniques that rely on them, for example in
interpolation-based verification, and the convenience of compressing them. We gave
our contribution to the area of proof compression by developing an approach based
on local transformation rules; it is a post-processing method, with the benefit of
being independent from the way the resolution proofs are produced. We discussed
how rules that directly perform simplifications can be interleaved with rules that
locally perturbate the topology, in order to create new opportunities for compression.
We identified two kinds of redundancies, related to the notions of regularity and
compactness, and presented and compared a number of algorithms to address them,
moving from existing techniques in the literature. Individual algorithms, as well
as their combinations, were implemented in the tools OpenSMT and PeRIPLO and
tested over a collection of benchmarks both from the SAT and SMT world, showing
remarkable levels of compression in the proofs size.

186

Proof Manipulation to Enable Interpolation in SMT. Standard approaches to SMT
interpolation suffer from a significant limitation, since they need to assume the ab-
sence of mixed predicates in the resolution proofs, while there is in fact a number
of techniques used in SMT solvers (Ackermann’s expansion, lemma on demand,
splitting on demand, delayed theory combination) that might require the addition of
mixed predicates to the input formula before or during solving time. The solution
we presented in §5.4 is to rewrite the proof of unsatisfiability by means of local
rules, in such a way that mixed predicates are isolated and then removed from the
proof. Our approach makes interpolation flexible and modular: first, off-the-shelf
SMT solvers are run on the input formula; then, the proof is transformed to get rid of
the mixed predicates; finally, standard interpolation algorithm for SMT are applied.
We demonstrated that our method is sound and showed by means of experiments,
carried out within the OpenSMT framework, that it is also practically efficient.

Tools for Proof Manipulation And Interpolation. A first contribution consists in
the realization within the SMT solver OpenSMT, developed by our Formal Verifica-
tion Group at USI, of a framework for proof compression and interpolation, which
implements the labeled interpolation systems and a partial extension to satisfiability
modulo theories.

The main tool contribution is the creation of PeRIPLO, Proof tRansformer and
Interpolator for Propositional LOgic, built on the state-of-the-art SAT solver Min-
iSAT 2.2.0. PeRIPLO contains a more efficient implementation of the labeled inter-
polation systems and of the compression techniques of OpenSMT, as well as new
algorithms for proof compression and manipulation, both from the literature and
novel. PeRIPLO is also able to produce individual interpolants and collections of
interpolants, with reference to various interpolation properties and in accordance
with the constraints imposed by the properties on the labeled interpolation systems.

PeRIPLO is illustrated in §3.6.1 and in Chapter 5, and it is available at:

http://verify.inf.usi.ch/content/periplo

The tools executables, as well as the full data related to the experiments reported
in this thesis, can be found at:

http://verify.inf.usi.ch/sites/default/files/
Rollini-phddissertationmaterial.tar.gz

http://verify.inf.usi.ch/content/periplo
http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz
http://verify.inf.usi.ch/sites/default/files/Rollini-phddissertationmaterial.tar.gz

Bibliography

[ABE00] P.A. Abdulla, P. Bjesse, and N. Eén. Symbolic Reachability Analysis
Based on SAT-Solvers. In TACAS, pages 411–425, 2000.

[Ack54] W. Ackermann. Solvable Cases of the Decision Problem, volume 12 of
Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1954.

[ACKS02] G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded
Model Checking for Timed Systems. In FORTE, pages 243–259.
Springer, 2002.

[AGC12] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An
Interpolation-Based Algorithm for Inter-procedural Verification. In
VMCAI, pages 39–55. Springer, 2012.

[AKRR05] G. Alon, D.P. Kroese, T. Raviv, and R.Y. Rubinstein. Application
of the Cross-Entropy Method to the Buffer Allocation Problem in
a Simulation-Based Environment. Annals of Operations Research,
134(1):137–151, 2005.

[ALMS09a] G. Audemard, J.M. Lagniez, B. Mazure, and L. Sais. Integrating Con-
flict Driven Clause Learning to Local Search. In LSCS, pages 55–68,
2009.

[ALMS09b] G. Audemard, J.M. Lagniez, B. Mazure, and L. Sais. Learning in
Local Search. In ICTAI, pages 417–424, 2009.

[AM03] N. Amla and K.L. McMillan. Automatic Abstraction Without Coun-
terexamples. In TACAS, pages 2–17. Springer, 2003.

[AM05] E. Amir and S. McIlraith. Partition-Based Logical Reasoning for First-
Order and Propositional Theories. Artificial Intelligence, 162(1-2):49–
88, 2005.

187

188 Bibliography

[AM13] A. Albarghouthi and K. L. McMillan. Beautiful Interpolants. In CAV,
pages 313–329. Springer, 2013.

[Amj07] H. Amjad. Compressing Propositional Refutations. Electronic Notes
in Theoretical Computer Science, 185:3–15, 2007.

[Amj08] H. Amjad. Data Compression for Proof Replay. Journal of Automated
Reasoning, 41(3-4):193–218, 2008.

[AMP09] A. Armando, J. Mantovani, and L. Platania. Bounded Model Checking
of Software Using SMT Solvers instead of SAT Solvers. International
Journal on Software Tools for Technology Transfer, 11(1):69–83, 2009.

[AS09] G. Audemard and L. Simon. Predicting Learnt Clauses Quality in Mod-
ern SAT Solvers. In IJCAI, pages 399–404, 2009.

[BB08] R. Brummayer and A. Biere. Lemmas on Demand for the Extensional
Theory of Arrays. SMT/BPR, pages 6–11, 2008.

[BBC+05a] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,
S. Schulz, and R. Sebastiani. MathSAT: Tight Integration of SAT and
Mathematical Decision Procedures. Journal of Automated Reasoning,
35(1-3):265–293, 2005.

[BBC+05b] M. Bozzano, R. Bruttomesso, A. Cimatti, T.A. Junttila, S. Ranise,
P. van Rossum, and R. Sebastiani. Efficient Satisfiability Modulo
Theories via Delayed Theory Combination. In CAV, pages 335–349.
Springer, 2005.

[BCC+99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic
Model Checking Using SAT Procedures instead of BDDs. In DAC,
pages 317–320, 1999.

[BCC+03] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded
Model Checking. Advances in Computers, 58:117–148, 2003.

[BCCZ99] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In TACAS, pages 193–207. Springer, 1999.

[BCF+07] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, Z. Hanna,
A. Nadel, A. Palti, and R. Sebastiani. A Lazy and Layered SMT(BV)
Solver for Hard Industrial Verification Problems. In CAV, pages 547–
560. Springer, 2007.

189 Bibliography

[BCF+08] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
The MathSAT 4 SMT Solver. In CAV, pages 299–303. Springer, 2008.

[BCF+09] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, and R. Sebas-
tiani. Delayed Theory Combination vs. Nelson-Oppen for Satisfiabil-
ity Modulo Theories: a Comparative Analysis. Annals of Mathematics
and Artificial Intelligence, 55(1-2):63–99, 2009.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic Model Checking: 1020 States and Beyond. Information and
Computation, 98(2):142–170, 1992.

[BFG+05] C.W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. Zuck.
TVOC: A Translation Validator for Optimizing Compilers. In CAV,
pages 291–295. Springer, 2005.

[BHG09] A. Balint, M. Henn, and O. Gableske. A Novel Approach to Combine a
SLS- and a DPLL-Solver for the Satisfiability Problem. In SAT, pages
284–297. Springer, 2009.

[BHMW09] A. Biere, M. Heule, H. Van Maaren, and T. Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[Bie13] A. Biere. Lingeling, Plingeling and Treengeling Entering the SAT
Competition 2013. In SAT Competition, page 51, 2013.

[BIFH+08] O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman.
Linear-Time Reductions of Resolution Proofs. In HVC, pages 114–
128. Springer, 2008.

[Bjø10] Nikolaj Bjørner. Linear Quantifier Elimination as an Abstract Decision
Procedure. In IJCAR, pages 316–330, 2010.

[BKK11] J. Brauer, A. King, and J. Kriener. Existential Quantification as Incre-
mental SAT. In CAV, pages 191–207, 2011.

[BKRW11] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An Interpolating
Sequent Calculus for Quantifier-Free Presburger Arithmetic. Journal
of Automated Reasoning, 47(4):341–367, 2011.

190 Bibliography

[BKS04] P. Beame, H.A. Kautz, and A. Sabharwal. Towards Understanding
and Harnessing the Potential of Clause Learning. Journal of Artificial
Intelligence Research, 22(1):319–351, 2004.

[BLM01] P. Bjesse, T. Leonard, and A. Mokkedem. Finding Bugs in an Alpha
Microprocessor Using Satisfiability Solvers. In CAV, pages 454–464.
Springer, 2001.

[BNO+08] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and
A. Rubio. A Write-Based Solver for SAT Modulo the Theory of Ar-
rays. In FMCAD, pages 101–108, 2008.

[BNOT06] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on
Demand in SAT Modulo Theories. In LPAR, pages 512–526. Springer,
2006.

[BP13] J. Boudou and B.W. Paleo. Compression of Propositional Resolution
Proofs by Lowering Subproofs. In TABLEAUX, 2013.

[BPST10] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The
OpenSMT Solver. In TACAS, pages 150–153. Springer, 2010.

[BR13] J.D. Backes and M.D. Riedel. Using Cubes of Non-State Variables
with Property Directed Reachability. In DATE, pages 807–810, 2013.

[Bra11] A.R. Bradley. SAT-Based Model Checking without Unrolling. In VM-
CAI, pages 70–87. Springer, 2011.

[Bra12] A.R. Bradley. Understanding IC3. In SAT, pages 1–14. Springer, 2012.

[BRST10] R. Bruttomesso, S.F. Rollini, N. Sharygina, and A. Tsitovich. Flexi-
ble Interpolation with Local Proof Transformations. In ICCAD, pages
770–777, 2010.

[Bru03] R. Bruni. Approximating Minimal Unsatisfiable Subformulae by
Means of Adaptive Core Search. Discrete Applied Mathematics,
130(2):85–100, 2003.

[Bry86] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Transactions on Computers, 100(8):677–691, 1986.

[BS96] Max Böhm and Ewald Speckenmeyer. A Fast Parallel SAT-Solver -
Efficient Workload Balancing. Annals of Mathematics and Artificial
Intelligence, 17(2):381–400, 1996.

191 Bibliography

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In POPL, pages 238–252, 1977.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic. In Logic
of Programs, pages 52–71, 1981.

[CFGN07] H. Chockler, E. Farchi, B. Godlin, and S. Novikov. Cross-Entropy
Based Testing. In FMCAD, pages 101–108, 2007.

[CFGN09] H. Chockler, E. Farchi, B. Godlin, and S. Novikov. Cross-Entropy-
Based Replay of Concurrent Programs. In FASE, pages 201–215.
Springer, 2009.

[CG12] A. Cimatti and A. Griggio. Software Model Checking via IC3. In CAV,
pages 277–293, 2012.

[CGJ+00] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement. In CAV, pages 154–
169. Springer, 2000.

[CGS07] A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way
of Computing Small Unsatisfiable Cores in SAT Modulo Theories. In
SAT, pages 334–339. Springer, 2007.

[CGS08] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant Gen-
eration in Satisfiability Modulo Theories. In TACAS, pages 397–412.
Springer, 2008.

[CGS09] A. Cimatti, A. Griggio, and R. Sebastiani. Interpolant Generation for
UTVPI. In CADE, pages 167–182. Springer, 2009.

[CGS10] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Generation of Craig
Interpolants in Satisfiability Modulo Theories. ACM Transactions on
Computational Logic, 12(1):7, 2010.

[CHN13] J. Christ, J. Hoenicke, and A. Nutz. Proof Tree Preserving Interpola-
tion. In TACAS, pages 124–138. Springer, 2013.

[CIM12] H. Chockler, A. Ivrii, and A. Matsliah. Computing Interpolants without
Proofs. In HVC, 2012.

192 Bibliography

[CIM+13] H. Chockler, A. Ivrii, A. Matsliah, S.F. Rollini, and N. Sharygina. Us-
ing Cross-Entropy for Satisfiability. In SAC, pages 1196–1203, 2013.

[CJK07] A. Costa, O.D. Jones, and D. Kroese. Convergence Properties of
the Cross-Entropy Method for Discrete Optimization. Operations Re-
search Letters, 35(5):573–580, 2007.

[CLO07] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative
Algebra. Springer, 2007.

[CLV13] G. Cabodi, C. Lolacono, and D. Vendraminetto. Optimization Tech-
niques for Craig Interpolant Compaction in Unbounded Model Check-
ing. In DATE, pages 1417–1422, 2013.

[CMU] CMU BMC benchmarks. http://www.cs.cmu.edu/
~modelcheck/bmc/bmc-benchmarks.html.

[Col75] G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylin-
drical Algebraic Decomposition. In Automata Theory and Formal Lan-
guages, pages 134–183. Springer, 1975.

[Coo71] S.A. Cook. The Complexity of Theorem-Proving Procedures. In
STOC, pages 151–158. ACM Press, 1971.

[Coo72] D.C. Cooper. Theorem Proving in Arithmetic without Multiplication.
Machine Intelligence, 7(91-99):300, 1972.

[Cot10] S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT,
pages 306–312. Springer, 2010.

[Cra57a] W. Craig. Linear Reasoning. A New Form of the Herbrand-Gentzen
Theorem. Journal of Symbolic Logic, 22(3):250–268, 1957.

[Cra57b] W. Craig. Three Uses of the Herbrand-Gentzen Theorem in Relat-
ing Model Theory and Proof Theory. Journal of Symbolic Logic,
22(3):269–285, 1957.

[Cra93] J.M. Crawford. Solving Satisfiability Problems Using a Combination
of Systematic and Local Search. In 2nd DIMACS Challenge, pages
1–7, 1993.

[CVC] CVC4. http://cvc4.cs.nyu.edu/web/.

http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html
http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html
http://cvc4.cs.nyu.edu/web/

193 Bibliography

[DGS93] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical Support for Mod-
ularisation. In Logical Environments, pages 83–130, 1993.

[DHN06] N. Dershowitz, Z. Hanna, and A. Nadel. A Scalable Algorithm for
Minimal Unsatisfiable Core Extraction. In SAT, pages 36–41. Springer,
2006.

[DKPW08] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Re-
structuring Resolution Refutations for Interpolation. Technical report,
ETH, Zürich, 2008.

[DKPW10] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Inter-
polant Strength. In VMCAI, pages 129–145. Springer, 2010.

[DLL62] M. Davis, G. Logemann, and D.W. Loveland. A Machine Program for
Theorem-Proving. Communications of the ACM, 5(7):394–397, 1962.

[dMB08] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS,
pages 337–340. Springer, 2008.

[dMB09] L. de Moura and N. Bjørner. Generalized, Efficient Array Decision
Procedures. In FMCAD, pages 45–52, 2009.

[dMR02] L. de Moura and H. Rue. Lemmas on Demand for Satisfiability
Solvers. In SAT, pages 244–251, 2002.

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantification
Theory. Journal of the ACM, 7(3):201–215, 1960.

[Dub02] U. Dubin. The Cross-Entropy Method for Combinatorial Optimization
with Applications. Master Thesis, The Technion, Haifa, 2002.

[EKS08] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction Refinement with
Craig Interpolation and Symbolic Pushdown Systems. Journal on Sat-
isfiability, 5:27–56, 2008.

[ES04] N. Eén and N. Sörensson. An Extensible SAT-solver. In SAT, pages
502–518. Springer, 2004.

[FF04] B. Ferris and J. Froehlich. WalkSAT as an Informed Heuristic to DPLL
in SAT Solving. Technical report, University of Washington, Seattle,
2004.

194 Bibliography

[FGG+09] A. Fuchs, A. Goel, J. Grundy, S. Krstić, and C. Tinelli. Ground Interpo-
lation for the Theory of Equality. In TACAS, pages 413–427. Springer,
2009.

[FH07] L. Fang and M.S. Hsiao. A New Hybrid Solution to Boost SAT Solver
Performance. In DATE, pages 1307–1313, 2007.

[FMM+06] P. Fontaine, J.Y Marion, S. Merz, L.P. Nieto, and A. Tiu. Expressive-
ness + Automation + Soundness: Towards Combining SMT Solvers
and Interactive Proof Assistants. In TACAS, pages 167–181. Springer,
2006.

[FMP11] P. Fontaine, S. Merz, and B.W. Paleo. Compression of Propositional
Resolution Proofs via Partial Regularization. In CADE, pages 237–
251. Springer, 2011.

[FR75] J. Ferrante and C. Rackoff. A Decision Procedure for the First Order
Theory of Real Addition with Order. SIAM Journal on Computing,
4(1):69–76, 1975.

[FR04] H. Fang and W. Ruml. Complete Local Search for Propositional Satis-
fiability. In AAAI, pages 161–166, 2004.

[FSS13] G. Fedyukovich, O. Sery, and N. Sharygina. eVolCheck: Incremental
Upgrade Checker for C. In TACAS, pages 292–307. Springer, 2013.

[GD07] V. Ganesh and D.L. Dill. A Decision Procedure for Bit-Vectors and
Arrays. In CAV, pages 519–531. Springer, 2007.

[Gen35] G. Gentzen. Untersuchungen über das Logische Schließen. I. Mathe-
matische Zeitschrift, 39(1):176–210, 1935.

[GGA04] M.K. Ganai, A. Gupta, and P. Ashar. Efficient SAT-Based Unbounded
Symbolic Model Checking Using Circuit Cofactoring. In ICCAD,
pages 510–517, 2004.

[GKF08] A. Goel, S. Krstić, and A. Fuchs. Deciding Array Formulas with Frugal
Axiom Instantiation. In SMT/BPR, pages 12–17, 2008.

[GKSS08] C.P. Gomes, H.A. Kautz, A. Sabharwal, and B. Selman. Satisfiability
Solvers. Foundations of Artificial Intelligence, 3:89–134, 2008.

195 Bibliography

[GKT09] A. Goel, S. Krstić, and C. Tinelli. Ground Interpolation for Combined
Theories. In CADE, pages 183–198. Springer, 2009.

[GLS12] A. Griggio, T.T.H. Le, and R. Sebastiani. Efficient Interpolant Genera-
tion in Satisfiability Modulo Linear Integer Arithmetic. Logical Meth-
ods in Computer Science, 8(3):2–31, 2012.

[GLST05] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-Guided
Underapproximation-Widening for Multi-Process Systems. In POPL,
pages 122–131, 2005.

[GM12] E. Goldberg and P. Manolios. Quantifier Elimination by Dependency
Sequents. In FMCAD, pages 34–44, 2012.

[GMP07] E. Grégoire, B. Mazure, and C. Piette. Local-Search Extraction of
MUSes. Constraints, 12(3):325–344, 2007.

[GNZ05] S. Ghilardi, E. Nicolini, and D. Zucchelli. A Comprehensive Frame-
work for Combined Decision Procedures. In FroCoS, pages 1–30.
Springer, 2005.

[Gri11] A. Griggio. Effective Word-Level Interpolation for Software Verifica-
tion. In FMCAD, pages 28–36, 2011.

[GRS13] A. Gurfinkel, S.F. Rollini, and N. Sharygina. Interpolation Properties
and SAT-Based Model Checking. In ATVA, pages 255–271, 2013.

[GS97] S. Graf and H. Saïdi. Construction of Abstract State Graphs with PVS.
In CAV, pages 72–83. Springer, 1997.

[GSMT98] C.P. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomiza-
tion in Backtrack Search: Exploiting Heavy-Tailed Profiles for Solving
Hard Scheduling Problems. In AIPS, pages 208–213, 1998.

[Gup12] A. Gupta. Improved Single Pass Algorithms for Resolution Proof Re-
duction. In ATVA, pages 107–121. Springer, 2012.

[GW93] I.P. Gent and T. Walsh. Towards an Understanding of Hill-Climbing
Procedures for SAT. In AAAI, pages 28–33, 1993.

[HB12] K. Hoder and N. Bjørner. Generalized Property Directed Reachability.
In SAT, pages 157–171. Springer, 2012.

196 Bibliography

[HBS13] Z. Hassan, A.R. Bradley, and F. Somenzi. Better Generalization in IC3.
In FMCAD, pages 157–164, 2013.

[HHP10] M. Heizmann, J. Hoenicke, and A. Podelski. Nested Interpolants. In
POPL, pages 471–482, 2010.

[HJMM04] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstrac-
tions from Proofs. In POPL, pages 232–244, 2004.

[HJMS02] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstrac-
tion. In POPL, pages 58–70, 2002.

[HK05] E.A. Hirsch and A. Kojevnikov. UnitWalk: A New SAT Solver that
Uses Local Search Guided by Unit Clause Elimination. Annals of
Mathematics and Artificial Intelligence, 43:91–111, 2005.

[HKV12] K. Hoder, L. Kovács, and A. Voronkov. Playing in the Grey Area of
Proofs. In POPL, pages 259–272, 2012.

[HLDV06] D. Habet, C.M. Li, L. Devendeville, and M. Vasquez. A Hybrid Ap-
proach for SAT. In CP, pages 172–184. Springer, 2006.

[Hoo99] H.H. Hoos. On the Run-time Behaviour of Stochastic Local Search
Algorithms for SAT. In AAAI/IAAI, pages 661–666, 1999.

[HS05] H.H. Hoos and T. Stützle. Stochastic Local Search. Foundations and
Applications. Morgan Kaufmann, 2005.

[Hua95] G. Huang. Constructing Craig Interpolation Formulas. In COCOON,
pages 181–190. Springer, 1995.

[Hua05] J. Huang. MUP: a Minimal Unsatisfiability Prover. In ASP-DAC, pages
432–437, 2005.

[JC11] A.K. John and S. Chakraborty. A Quantifier Elimination Algorithm for
Linear Modular Equations and Disequations. In CAV, pages 486–503.
Springer, 2011.

[JC13] A.K. John and S. Chakraborty. Extending Quantifier Elimination to
Linear Inequalities on Bit-Vectors. In TACAS, pages 78–92. Springer,
2013.

197 Bibliography

[JCG08] H. Jain, E.M. Clarke, and O. Grumberg. Efficient Craig Interpolation
for Linear Diophantine (Dis)Equations and Linear Modular Equations.
In CAV, pages 254–267. Springer, 2008.

[JD08] T.A. Junttila and J. Dubrovin. Encoding Queues in Satisfiability Mod-
ulo Theories Based Bounded Model Checking. In LPAR, pages 290–
304, 2008.

[JM05] R. Jhala and K.L. McMillan. Interpolant-Based Transition Relation
Approximation. In CAV, pages 39–51. Springer, 2005.

[JM06] R. Jhala and K.L. McMillan. A Practical and Complete Approach to
Predicate Refinement. In TACAS, pages 459–473. Springer, 2006.

[JO02] N. Jussien and L. Olivier. Local Search with Constraint Propagation
and Conflict-Based Heuristics. Artificial Intelligence, 139(1):21–45,
2002.

[JS97] R.J. Bayardo Jr and R. Schrag. Using CSP Look-Back Techniques to
Solve Real-World SAT Instances. In AAAI/IAAI, pages 203–208, 1997.

[JS05] H. Jin and F. Somenzi. Prime Clauses for Fast Enumeration of Satisfy-
ing Assignments to Boolean Circuits. In DAC, pages 750–753, 2005.

[JW90] R.G. Jeroslow and J. Wang. Solving Propositional Satisfiability Prob-
lems. Annals of mathematics and Artificial Intelligence, 1(1-4):167–
187, 1990.

[KK02] J.M. Keith and D.P. Kroese. Rare Event Simulation and Combinato-
rial Optimization Using Cross Entropy: Sequence Alignment by Rare
Event Simulation. In WSC, pages 320–327. ACM, 2002.

[KL51] S. Kullback and R.A. Leibler. On Information and Sufficiency. Annals
of Mathematical Statistics, 22(1):79–86, 1951.

[KLR10] D. Kroening, J. Leroux, and P. Rümmer. Interpolating Quantifier-Free
Presburger Arithmetic. In LPAR, pages 489–503. Springer, 2010.

[KMZ06] D. Kapur, R. Majumdar, and C.G. Zarba. Interpolation for Data Struc-
tures. In SIGSOFT FSE, pages 105–116, 2006.

[Kra97] J. Krajíček. Interpolation Theorems, Lower Bounds for Proof Sys-
tems, and Independence Results for Bounded Arithmetic. Journal of
Symbolic Logic, 62(2):457–486, 1997.

198 Bibliography

[KRS13] L. Kovács, S.F. Rollini, and N. Sharygina. A Parametric Interpolation
Framework for First-Order Theories. In MICAI, pages 24–40, 2013.

[KS08] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic
Point of View. Theoretical Computer Science. Springer, 2008.

[KTB11] D.P. Kroese, T. Taimre, and Z.I. Botev. Handbook of Monte Carlo
Methods. Probability and Statistics. Wiley, 2011.

[KV09] L. Kovács and A. Voronkov. Interpolation and Symbol Elimination. In
CADE, pages 199–213. Springer, 2009.

[KW07] D. Kroening and G. Weissenbacher. Lifting Propositional Interpolants
to the Word-Level. In FMCAD, pages 85–89, 2007.

[KW09] D. Kroening and G. Weissenbacher. An Interpolating Decision Proce-
dure for Transitive Relations with Uninterpreted Functions. In HVC,
pages 150–168. Springer, 2009.

[LMS04] I. Lynce and J. Marques-Silva. On Computing Minimum Unsatisfiable
Cores. In SAT, pages 305–310, 2004.

[LMS08] F. Letombe and J. Marques-Silva. Improvements to Hybrid Incremen-
tal SAT Algorithms. In SAT, pages 168–181. Springer, 2008.

[LNO06] S.K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for
Fast Predicate Abstraction. In CAV, pages 424–437, 2006.

[LT08] C. Lynch and Y. Tang. Interpolants for Linear Arithmetic in SMT. In
ATVA, pages 156–170. Springer, 2008.

[LW93] R. Loos and V. Weispfenning. Applying Linear Quantifier Elimination.
The Computer Journal, 36(5):450–462, 1993.

[Mar02] L. Margolin. Cross-Entropy Method for Combinatorial Optimization.
Master Thesis, The Technion, Haifa, 2002.

[Mar05] L. Margolin. On the Convergence of the Cross-Entropy Method. An-
nals of Operations Research, 134(1):201–214, 2005.

[McM92] K.L. McMillan. Symbolic Model Checking. An Approach to the State
Explosion Problem. PhD thesis, Carnegie Mellon University, Pitts-
burgh, 1992.

199 Bibliography

[McM02] K. McMillan. Applying SAT Methods in Unbounded Symbolic Model
Checking. In CAV, pages 250–264, 2002.

[McM03] K.L. McMillan. Interpolation and SAT-Based Model Checking. In
CAV, pages 1–13. Springer, 2003.

[McM04a] K.L. McMillan. An Interpolating Theorem Prover. In TACAS, pages
16–30, 2004.

[McM04b] K.L. McMillan. Applications of Craig Interpolation to Model Check-
ing. In CSL, pages 22–23. Springer, 2004.

[McM06] K.L. McMillan. Lazy Abstraction with Interpolants. In CAV, pages
123–136. Springer, 2006.

[McM11] K.L. McMillan. Interpolants from Z3 proofs. In FMCAD, pages 19–27,
2011.

[MLA+05] M. Mneimneh, I. Lynce, Z. Andraus, J. Marques-Silva, and
K. Sakallah. A Branch-and-Bound Algorithm for Extracting Smallest
Minimal Unsatisfiable Formulas . In SAT, pages 467–474, 2005.

[MMZ+01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an Efficient SAT Solver. In DAC, pages 530–535,
2001.

[Mon10] D. Monniaux. Quantifier Elimination by Lazy Model Enumeration. In
CAV, pages 585–599. Springer, 2010.

[MR13] K.L. McMillan and A. Rybalchenko. Solving Constrained Horn
Clauses Using Interpolation. Technical Report MSR-TR-2013-6, Mi-
crosoft Research, 2013.

[MS99] J. Marques-Silva. The Impact of Branching Heuristics in Propositional
Satisfiability Algorithms. In EPIA, pages 62–74. Springer, 1999.

[MSG98] B. Mazure, L. Sais, and E. Grégoire. Boosting Complete Techniques
Thanks to Local Search Methods. Annals of Mathematics and Artificial
Intelligence, 22(3-4):319–331, 1998.

[MSK97] D.A. McAllester, B. Selman, and H.A. Kautz. Evidence for Invariants
in Local Search. In AAAI/IAAI, pages 321–326, 1997.

200 Bibliography

[MSS96] J. Marques-Silva and K.A. Sakallah. GRASP - A New Search Algo-
rithm for Satisfiability. In ICCAD, pages 220–227, 1996.

[MZ06] P. Manolios and Y. Zhang. Implementing Survey Propagation on
Graphics Processing Units. In SAT, pages 311–324. Springer, 2006.

[Nec97] G.C. Necula. Proof-Carrying Code. In POPL, pages 106–119, 1997.

[Nip08] T. Nipkow. Linear Quantifier Elimination. In IJCAR, pages 18–33,
2008.

[NO79] G. Nelson and D.C. Oppen. Simplification by Cooperating Decision
Procedures. ACM Transactions on Programming Languages and Sys-
tems, 1(2):245–57, 1979.

[NO80] G. Nelson and D.C. Oppen. Fast Decision Procedures Based on Con-
gruence Closure. Journal of the ACM, 27(2):356–364, 1980.

[OMA+04] Y. Oh, M.N. Mneimneh, Z.S. Andraus, K.A. Sakallah, and I.L. Markov.
AMUSE: A Minimally-Unsatisfiable Subformula Extractor. In DAC,
pages 518–523, 2004.

[Opp80] D.C. Oppen. Complexity, Convexity and Combinations of Theories.
Theoretical Computer Science, 12:291–302, 1980.

[PD07] K. Pipatsrisawat and A. Darwiche. A Lightweight Component Caching
Scheme for Satisfiability Solvers. In SAT, pages 294–299, 2007.

[PICW04] G. Parthasarathy, M.K. Iyer, K.T. Cheng, and L.C. Wang. An Efficient
Finite-Domain Constraint Solver for Circuits. In DAC, pages 212–217,
2004.

[Pud97] P. Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and
Monotone Computations. Journal of Symbolic Logic, 62(3):981–998,
1997.

[Pug91] W. Pugh. The Omega Test: a Fast and Practical Integer Programming
Algorithm for Dependence Analysis. In Supercomputing, pages 4–13,
1991.

[QS82] J. Queille and J. Sifakis. Specification and Verification of Concurrent
Systems in CESAR. In International Symposium on Programming,
pages 337–351, 1982.

201 Bibliography

[RAF+13] S.F. Rollini, L. Alt, G. Fedyukovich, A. Hyvärinen, and N. Sharygina.
PeRIPLO: A Framework for Producing Effective Interpolants in SAT-
Based Software Verification. In LPAR, pages 683–693, 2013.

[RBS10] S.F. Rollini, R. Bruttomesso, and N. Sharygina. An Efficient and Flexi-
ble Approach to Resolution Proof Reduction. In HVC, pages 182–196,
2010.

[RBST] S.F. Rollini, R. Bruttomesso, N. Sharygina, and A. Tsitovich. Res-
olution Proof Transformation for Compression and Interpolation. In
http://arxiv.org/abs/1307.2028.

[RD03] S. Ranise and D. Déharbe. Applying Light-Weight Theorem Proving to
Debugging and Verifying Pointer Programs. ENTCS, 86(1):105–119,
2003.

[RK04] R.Y. Rubinstein and D.P. Kroese. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Monte-Carlo Sim-
ulation and Machine Learning. Information Science and Statistics.
Springer, 2004.

[RN10] S.J. Russell and P. Norvig. Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.

[Rol] S.F. Rollini. Proof tRansformer and Interpolator for Proposi-
tional LOgic (PeRIPLO). http://verify.inf.usi.ch/
content/periplo.

[RSS07] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for
Interpolation. In VMCAI, pages 346–362. Springer, 2007.

[RSS12] S.F. Rollini, O. Sery, and N. Sharygina. Leveraging Interpolant
Strength in Model Checking. In CAV, pages 193–209. Springer, 2012.

[RT06] S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). http://www.smtlib.org, 2006.

[Rub97] R.Y. Rubinstein. Optimization of Computer Simulation Models with
Rare Events. European Journal on Operations Research, 99(1):89–
112, 1997.

http://verify.inf.usi.ch/content/periplo
http://verify.inf.usi.ch/content/periplo
http://www.smtlib.org

202 Bibliography

[Rub02] R.Y. Rubinstein. The Cross-Entropy Method and Rare-Events for Max-
imal Cut and Bipartition Problems. ACM Transactions on Modeling
and Computer Simulation, 12(1):27–53, 2002.

[SATa] SAT Challenge 2012. http://baldur.iti.kit.edu/
SAT-Challenge-2012/.

[SATb] SAT Competitions. http://www.satcompetition.org/.

[SATc] SATLIB benchmarks. http://www.cs.ubc.ca/~hoos/
SATLIB/benchm.html.

[SB11] F. Somenzi and A.R. Bradley. IC3: Where Monolithic and Incremental
Meet. In FMCAD, pages 3–8, 2011.

[Seb07] R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satis-
fiability, 3:144–224, 2007.

[SFS11] O. Sery, G. Fedyukovich, and N. Sharygina. Interpolation-Based Func-
tion Summaries in Bounded Model Checking. In HVC, pages 160–175.
Springer, 2011.

[SFS12a] O. Sery, G. Fedyukovich, and N. Sharygina. FunFrog: Bounded Model
Checking with Interpolation-Based Function Summarization. In ATVA,
pages 203–207. Springer, 2012.

[SFS12b] O. Sery, G. Fedyukovich, and N. Sharygina. Incremental Upgrade
Checking by Means of Interpolation-Based Function Summaries. In
FMCAD, pages 114–121, 2012.

[Sho84] R.E. Shostak. Deciding Combinations of Theories. Journal of the
ACM, 31(1):1–12, 1984.

[Sin07] C. Sinz. Compressing Propositional Proofs by Common Subproof Ex-
traction. In EUROCAST, pages 547–555, 2007.

[SKC94] B. Selman, H.A. Kautz, and B. Cohen. Noise Strategies for Improving
Local Search. In AAAI, pages 337–343, 1994.

[SKC95] B. Selman, H.A. Kautz, and B. Cohen. Local Search Strategies for
Satisfiability Testing. In Dimacs Series in Discrete Mathematics and
Theoretical Computer Science, pages 521–532, 1995.

http://baldur.iti.kit.edu/SAT-Challenge-2012/
http://baldur.iti.kit.edu/SAT-Challenge-2012/
http://www.satcompetition.org/
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

203 Bibliography

[ske] Skeptic proof theory library. https://github.com/
Paradoxika/Skeptik.

[SKK03] C. Sinz, A. Kaiser, and W. Küchlin. Formal Methods for the Validation
of Automotive Product Configuration Data. AI EDAM, 17(1):75–97,
2003.

[SKM97] B. Selman, H.A. Kautz, and D.A. McAllester. Ten Challenges in
Propositional Reasoning and Search. In IJCAI, volume 1, pages 50–54,
1997.

[SLM92] B. Selman, H.J. Levesque, and D.G. Mitchell. A New Method for
Solving Hard Satisfiability Problems. In AAAI, pages 440–446, 1992.

[SNA12] R. Sharma, A.V. Nori, and A. Aiken. Interpolants as Classifiers. In
CAV, pages 71–87. Springer, 2012.

[SS77] R.M. Stallman and G.J. Sussman. Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-Aided
Circuit Analysis. Artificial Intelligence, 9(2):135–196, 1977.

[SS01] D. Schuurmans and F. Southey. Local Search Characteristics of Incom-
plete SAT Procedures. Artificial Intelligence, 132(2):121–150, 2001.

[SSJ+03] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdir.
Debugging Overconstrained Declarative Models Using Unsatisfiable
Cores. In ASE, pages 94–105, 2003.

[Tse68] G.S. Tseitin. On the Complexity of Derivation in Propositional Cal-
culus. Studies in Constructive Mathematics and Mathematical Logic,
2(115-125):10–13, 1968.

[VG09] Y. Vizel and O. Grumberg. Interpolation-Sequence Based Model
Checking. In FMCAD, pages 1–8, 2009.

[WA09] T. Weber and H. Amjad. Efficiently Checking Propositional Refuta-
tions in HOL Theorem Provers. Journal of Applied Logic, 7(1):26–40,
2009.

[WBCG00] P.F. Williams, A. Biere, E.M. Clarke, and A. Gupta. Combining De-
cision Diagrams and SAT Procedures for Efficient Symbolic Model
Checking. In CAV, pages 124–138, 2000.

https://github.com/Paradoxika/Skeptik
https://github.com/Paradoxika/Skeptik

204 Bibliography

[Wei12] G. Weissenbacher. Interpolant Strength Revisited. In SAT, pages 312–
326. Springer, 2012.

[YM05] G. Yorsh and M. Musuvathi. A Combination Method for Generating
Interpolants. In CADE, pages 353–368. Springer, 2005.

[Zad88] L.A. Zadeh. Fuzzy Logic. IEEE Computer, 21(4):83–93, 1988.

[ZM03a] L. Zhang and S. Malik. Extracting Small Unsatisfiable Cores from
Unsatisfiable Boolean Formulas. In SAT, pages 239–249, 2003.

[ZM03b] L. Zhang and S. Malik. Validating SAT Solvers Using an Indepen-
dent Resolution-Based Checker: Practical Implementations and Other
Applications. In DATE, pages 880–885, 2003.

	Contents
	Introduction
	Symbolic Model Checking
	SAT and SMT Solving
	Stochastic Techniques for Satisfiability

	Interpolation-Based Model Checking
	Interpolants Quality: Strength and Structure
	Interpolation Properties in Model Checking

	Resolution Proof Manipulation
	Proof Compression
	Enabling Interpolation in SMT

	Thesis Outline

	Hybrid Propositional Satisfiability
	Satisfiability and SAT Solving
	DPLL and SLS

	A Cross-Entropy Based Approach to Satisfiability
	Cross-Entropy for Optimization
	The CROiSSANT Approach
	Experimental Results
	Related Work
	Summary and Future Developments

	Craig Interpolation in Model Checking
	Interpolation in Symbolic Model Checking
	Interpolation, BMC and IC3

	Interpolants Quality
	Generation of Interpolants
	Craig Interpolation
	Interpolation Systems
	Interpolation in Arbitrary First Order Theories
	Interpolation in SAT
	Interpolation in SMT

	Theory Labeled Interpolation Systems
	Interpolant Strength in SMT
	Interpolation in Difference Logic
	Summary and Future Developments

	A Parametric Interpolation Framework for First Order Theories
	A Parametric Interpolation Framework
	Interpolation in First Order Systems
	Interpolation in the Hyper-Resolution System
	Related Work
	Summary and Future Developments

	Impact of Interpolant Strength and Structure
	PeRIPLO
	Function Summaries in Bounded Model Checking
	Experimental Evaluation
	Summary and Future Developments

	Interpolation Properties in Model Checking
	Interpolation Systems
	Collectives

	Collectives of Interpolation Systems
	Collectives of Single Systems
	Collectives of Families of Systems

	Collectives of Labeled Interpolation Systems
	Collectives of Families of LISs
	Collectives of Single LISs

	Collectives of Theory Labeled Interpolation Systems
	Collectives of Families and of Single T-LISs

	Summary and Future Developments

	Proof Manipulation
	Resolution Proofs
	The Local Transformation Framework
	Extension to Resolution Proof DAGs
	Soundness of the Local Transformation Framework
	A Transformation Meta-Algorithm

	Proof Compression
	Proof Redundancies
	Proof Regularity
	Proof Compactness
	Experiments on SMT Benchmarks
	Experiments on SAT Benchmarks

	Proof Transformation for Interpolation
	Pivot Reordering Algorithms
	SMT Solving and AB-Mixed Predicates
	Experiments on SMT Benchmarks
	Pivot Reordering for Propositional Interpolation

	Heuristics for the Proof Transformation Algorithms
	Related Work
	Summary and Future Developments

	Conclusions
	Bibliography

