Theory-Specific Proof Steps Witnessing Correctness of SMT Executions

Rodrigo Otoni¹, Martin Blicha^{1,2}, Patrick Eugster^{1,3,4}, Antti E. J. Hyvärinen¹, and Natasha Sharygina¹

¹ Università della Svizzera italiana, Lugano, Switzerland
 ² Charles University, Prague, Czech Republic
 ³ Technische Universität Darmstadt, Darmstadt, Germany
 ⁴ Purdue University, West Lafayette, USA

18th July 2021

• Software verification often relies on SMT solvers

• Software verification often relies on SMT solvers

- Despite use in verification, SMT solvers have bugs
- At SMT-COMP'20, solvers disagreed on 149 instances with unknown status
- Guarantees are needed to trust solvers' results

- Despite use in verification, SMT solvers have bugs
- At SMT-COMP'20, solvers disagreed on 149 instances with unknown status
- Guarantees are needed to trust solvers' results

Proofs of unsatisfiability

- The de facto standard for SAT proofs is the DRAT proof format
- No standard for SMT proofs, with many competing formats available

Proofs of unsatisfiability

- The *de facto* standard for SAT proofs is the DRAT proof format
- No standard for SMT proofs, with many competing formats available

Existing solver support

- Proofs validating SMT solvers' executions vary by implementation
 - Proof-producing solvers include CVC4, veriT, and Z3
- A commonality is the focus on integration with interactive theorem provers
 - $\circ~$ SMT proofs can be consumed by Isabelle/HOL and Coq
- Current proof formats unsuitable to automation
 - Integration to automated tools such as model checkers is not available

Lightweight witnesses validating SMT solvers' executions

- Witnesses checkable by simple automated checkers
- Checkers simple enough to support manual inspection
- A user can write a checker in a few hours/days

Lightweight witnesses validating SMT solvers' executions

- Witnesses checkable by simple automated checkers
- Checkers simple enough to support manual inspection
- A user can write a checker in a few hours/days

Validation based on the foundations of SMT algorithms

- DRAT proofs for propositional logic
- Theory-specific witnesses for each supported SMT theory

 $\begin{array}{c} x1 = 1 \land\\ (\textit{condition} \rightarrow x4 = x2) \land x2 = x1 - 1 \land\\ (\neg\textit{condition} \rightarrow x4 = x3) \land x3 = x1 + 1 \land\\ \neg(x4 \ge 0) \end{array}$

 $\begin{aligned} x1 &= 1 \land \\ (\textit{condition} \rightarrow x4 = x2) \land x2 = x1 - 1 \land \\ (\neg\textit{condition} \rightarrow x4 = x3) \land x3 = x1 + 1 \land \\ \neg(x4 \ge 0) \land \\ (x4 \ge 0 \lor x4 < 2) \end{aligned}$

Learned clause $x4 \ge 0 \lor x4 < 2$

1 float
$$x = 1$$
;
2 if (condition) {
3 $x = x - 1$;
4 } else {
5 $x = x + 1$;
6 }
7 assert ($x \ge 0$);

 $\begin{array}{l} x1 = 1 \ \land \\ (\textit{condition} \rightarrow x4 = x2) \land x2 = x1 - 1 \ \land \\ (\neg\textit{condition} \rightarrow x4 = x3) \land x3 = x1 + 1 \ \land \\ \neg(x4 \ge 0) \ \land \\ (x4 \ge 0 \lor x4 < 2) \end{array}$

Learned clause	
$x4 \ge 0 \lor x4 < 2$	

Witness $x4 < 0 \land x4 \ge 2$

1 float
$$x = 1$$
;
2 if (condition) {
3 $x = x - 1$;
4 } else {
5 $x = x + 1$;
6 }
7 assert ($x \ge 0$);

$$\begin{array}{l} x1 = 1 \ \land \\ (\textit{condition} \rightarrow x4 = x2) \land x2 = x1 - 1 \ \land \\ (\neg\textit{condition} \rightarrow x4 = x3) \land x3 = x1 + 1 \ \land \\ \neg(x4 \ge 0) \ \land \\ (x4 \ge 0 \lor x4 < 2) \end{array}$$

Learned clause		Witness		Validation
$x4 \ge 0 \lor x4 < 2$	J	$x4 < 0 \land x4 \ge 2$	J	(1x) -x4 > 0
				$(1x)$ $x4 \ge 2$
				0 > 2

Rodrigo Otoni (USI)

Our tools

 \bullet Witness production implemented in the <code>OpenSMT</code> solver

• New Theory-Specific Witness Checker (TSWC)

Our tools

• Witness production implemented in the OpenSMT solver

• New Theory-Specific Witness Checker (TSWC)

Evaluation setup

- All non-incremental SMT-LIB instances for the QF_LRA, QF_LIA, and QF_UF theories
- Witness-production comparison against CVC4, veriT, Z3
- Witness-checking comparison against CVC4's LFSC checker

		UNSAT retention (%)	Avg. runtime (s)	Avg. witness size (MB)
	OpenSMT	99.5%	3.91/4.31	3.9
QF_LRA	CVC4	97.7%	5.73/6.61	13.6
(1648 instances)	VERIT	96.7%	4.12/5.22	69.4
	Z3	97.8%	5.17/5.30	3.5
	OpenSMT	75%	10.07/9.99	13.0
QF_LIA	CVC4	66.3%	6.30/ 1.30	18.8
(6947 instances)	VERIT	95.1%	1.82 /4.05	165.9
	Z3	104.5%	5.17/6.62	24.8
	OpenSMT	99.6%	0.95/1.14	6.7
QF_UF	CVC4	97.6%	0.39/1.83	6.8
(7457 instances)	VERIT	96.0%	0.10/0.79	20.1
	Z3	97.5%	0.22/1.26	12.6

Rodrigo Otoni (USI)

		UNSAT retention	Avg. runtime	Avg. witness size
		(%)	(s)	(MB)
	OpenSMT	99.5%	3.91/4.31	3.9
QF _LRA	CVC4	97.7%	5.73/6.61	13.6
(1648 instances)	VERIT	96.7%	4.12/5.22	69.4
· · · · ·	Z3	97.8%	5.17/5.30	3.5
	OpenSMT	75%	10.07/9.99	13.0
QF_LIA	CVC4	66.3%	6.30/ 1.30	18.8
(6947 instances)	VERIT	95.1%	1.82 /4.05	165.9
·	Z3	104.5%	5.17/6.62	24.8
	OpenSMT	99.6%	0.95/1.14	6.7
QF_UF	CVC4	97.6%	0.39/1.83	6.8
(7457 instances)	VERIT	96.0%	0.10/0.79	20.1
	Z3	97.5%	0.22/1.26	12.6

Rodrigo Otoni (USI)

		UNSAT retention	Avg. runtime	Avg. witness size (MB)
		(/0)	(0)	(2)
	OpenSMT	99.5%	3.91/4.31	3.9
QF _ LRA	CVC4	97.7%	5.73/6.61	13.6
(1648 instances)	VERIT	96.7%	4.12/5.22	69.4
· · · · · ·	Z3	97.8%	5.17/5.30	3.5
	OpenSMT	75%	10.07/9.99	13.0
QF_LIA	CVC4	66.3%	6.30/ 1.30	18.8
(6947 instances)	VERIT	95.1%	1.82 /4.05	165.9
· · · · · ·	Z3	104.5%	5.17/6.62	24.8
	OpenSMT	99.6%	0.95/1.14	6.7
QF_UF	CVC4	97.6%	0.39/1.83	6.8
(7457 instances)	VERIT	96.0%	0.10/0.79	20.1
· ·	Z3	97.5%	0.22/1.26	12.6

Rodrigo Otoni (USI)

		UNSAT retention (%)	Avg. runtime (s)	Avg. witness size (MB)
	OpenSMT	99.5%	3.91/4.31	3.9
QF_LRA	CVC4	97.7%	5.73/6.61	13.6
(1648 instances)	VERIT	96.7%	4.12/5.22	69.4
	Z3	97.8%	5.17/5.30	3.5
	OpenSMT	75%	10.07/9.99	13.0
QF_LIA	CVC4	66.3%	6.30/ 1.30	18.8
(6947 instances)	VERIT	95.1%	1.82 /4.05	165.9
	Z3	104.5%	5.17/6.62	24.8
	OpenSMT	99.6%	0.95/1.14	6.7
QF_UF	CVC4	97.6%	0.39/1.83	6.8
(7457 instances)	VERIT	96.0%	0.10/0.79	20.1
	Z3	97.5%	0.22/1.26	12.6

Rodrigo Otoni (USI)

.

		Verified	Timeout	Error	Avg. runtime (s)
QF_LRA	OPENSMT + TSWC	564	3	0	3.15
(567 instances)	CVC4 + LFSC	471	8	88	2.85
QF_LIA	OPENSMT + TSWC	903	10	0	1.37
(913 instances)	CVC4 + LFSC	128	0	785	0.12
QF_UF	OPENSMT + TSWC	4217	1	0	1.44
(4218 instances)	CVC4 + LFSC	4157	50	11	4.01

		Verified	Timeout	Error	Avg. runtime (s)
QF_LRA	OPENSMT + TSWC	564	3	0	3.15
(567 instances)	CVC4 + LFSC	471	8	88	2.85
QF_LIA	OPENSMT + TSWC	903	10	0	1.37
(913 instances)	CVC4 + LFSC	128	0	785	0.12
QF_UF	OPENSMT + TSWC	4217	1	0	1.44
(4218 instances)	CVC4 + LFSC	4157	50	11	4.01

		Verified	Timeout	Error	Avg. runtime (s)
QF_LRA	OPENSMT + TSWC	564	3	0	3.15
(567 instances)	CVC4 + LFSC	471	8	88	2.85
QF_LIA	OPENSMT + TSWC	903	10	0	1.37
(913 instances)	CVC4 + LFSC	128	0	785	0.12
QF_UF	OPENSMT + TSWC	4217	1	0	1.44
(4218 instances)	CVC4 + LFSC	4157	50	11	4.01

.

.

		Verified	Timeout	Error	Avg. runtime (s)
QF_LRA	OPENSMT + TSWC	564	3	0	3.15
(567 instances)	CVC4 + LFSC	471	8	88	2.85
QF_LIA	OPENSMT + TSWC	903	10	0	1.37
(913 instances)	CVC4 + LFSC	128	0	785	0.12
QF_UF	OPENSMT + TSWC	4217	1	0	1.44
(4218 instances)	CVC4 + LFSC	4157	50	11	4.01

.

.

		Verified	Timeout	Error	Avg. runtime (s)
QF_LRA	OPENSMT + TSWC	564	3	0	3.15
(567 instances)	CVC4 + LFSC	471	8	88	2.85
QF_LIA	OPENSMT + TSWC	903	10	0	1.37
(913 instances)	CVC4 + LFSC	128	0	785	0.12
QF_UF	OPENSMT + TSWC	4217	1	0	1.44
(4218 instances)	CVC4 + LFSC	4157	50	11	4.01

Future Work

- Witnesses for additional theories and theory combinations
- Witnesses for parallel SMT solving
- Certify interaction between solvers and verification tools

Future Work

- Witnesses for additional theories and theory combinations
- Witnesses for parallel SMT solving
- Certify interaction between solvers and verification tools

- Lightweight witnesses that validate unsatisfiable results of SMT solvers
- Implementation of production and checking for three SMT theories
- Evaluation results indicate the compactness and easy checking of our format

- Lightweight witnesses that validate unsatisfiable results of SMT solvers
- Implementation of production and checking for three SMT theories
- Evaluation results indicate the compactness and easy checking of our format
 - Details about this work can be found on our DAC'21 paper
 - Check our group's website for future updates

verify.inf.usi.ch/research/cevt

