
Decision Procedures for Flat Array Properties∗

Francesco Alberti1, Silvio Ghilardi2, Natasha Sharygina1

1 University of Lugano, Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy

Abstract. We present new decidability results for quantified fragments
of theories of arrays. Our decision procedures are fully declarative, para-
metric in the theories of indexes and elements and orthogonal with re-
spect to known results. We also discuss applications to the analysis of
programs handling arrays.

1 Introduction

Decision procedures constitute, nowadays, one of the fundamental components of
tools and algorithms developed for the formal analysis of systems. Results about
the decidability of fragments of (first-order) theories representing the semantics
of real system operations deeply influenced, in the last decade, many research
areas, from verification to synthesis. In particular, the demand for procedures
dealing with quantified fragments of such theories fast increased. Quantified
formulas arise from several static analysis and verification tasks, like modeling
properties of the heap, asserting frame axioms, checking user-defined assertions
in the code and reasoning about parameterized systems.

In this paper we are interested in studying the decidability of quantified
fragments of theories of arrays. Quantification is required over the indexes of
the arrays in order to express significant properties like “the array has been ini-
tialized to 0” or “there exist two different positions of the array containing an
element c”, for example. From a logical point of view, array variables are inter-
preted as functions. However, adding free function symbols to a theory T (with
the goal of modeling array variables) may yield to undecidable extensions of
widely used theories like Presburger arithmetic [17]. It is, therefore, mandatory
to identify fragments of the quantified theory of arrays which are on one side still
decidable and on the other side sufficiently expressive. In this paper, we show
that by combining restrictions on quantifier prefixes with ‘flatness’ limitations on
dereferencing (only positions named by variables are allowed in dereferencing),
one can restore decidability. We call the fragments so obtained Flat Array Prop-
erties; such fragments are orthogonal to the fragments already proven decidable
in the literature [8, 15, 16] (we shall defer the technical comparison with these
contributions to Section 5). Here we explain the modularity character of our

∗The work of the first author was supported by Swiss National Science Foundation
under grant no. P1TIP2 152261.

results and their applications to concrete decision problems for array programs
annotated with assertions or postconditions.

We examine Flat Array Properties in two different settings. In one case, we
consider Flat Array Properties over the theory of arrays generated by adding
free function symbols to a given theory T modeling both indexes and elements
of the arrays. In the other one, we take into account Flat Array Properties over
a theory of arrays built by connecting two theories TI and TE describing the
structure of indexes and elements. Our decidability results are fully declarative
and parametric in the theories T, TI , TE . For both settings, we provide suffi-
cient conditions on T and TI , TE for achieving the decidability of Flat Array
Properties. Such hypotheses are widely met by theories of interest in practice,
like Presburger arithmetic. We also provide suitable decision procedures for Flat
Array Properties of both settings. Such procedures reduce the decidability of
Flat Array Properties to the decidability of T -formulæ in one case and TI - and
TE-formulæ in the other case.

We further show, as an application of our decidability results, that the safety
of an interesting class of programs handling arrays or strings of unknown length is
decidable. We call this class of programs simple0

A-programs: this class covers non-
recursive programs implementing for instance searching, copying, comparing,
initializing, replacing and testing functions. The method we use for showing
these safety results is similar to a classical method adopted in the model-checking
literature for programs manipulating integer variables (see for instance [7,9,12]):
we first assume flatness conditions on the control flow graph of the program and
then we assume that transitions labeling cycles are “acceleratable”. However,
since we are dealing with array manipulating programs, acceleration requires
specific results that we borrow from [3]. The key point is that the shape of
most accelerated transitions from [3] matches the definition of our Flat Array
Properties (in fact, Flat Array Properties were designed precisely in order to
encompass such accelerated transitions for arrays).

From the practical point of view, we tested the effectiveness of state of the
art SMT-solvers in checking the satisfiability of some Flat Array Properties aris-
ing from the verification of simple0

A-programs. Results show that such tools fail
or timeout on some Flat Array Properties. The implementation of our decision
procedures, once instantiated with the theories of interests for practical applica-
tions, will likely lead, therefore, to further improvements in the areas of practical
solutions for the rigorous analysis of software and hardware systems.

Plan of the paper The paper starts by recalling in Section 2 required background
notions. Section 3 is dedicated to the definition of Flat Array Properties. Sec-
tion 3.1 introduces a decision procedure for Flat Array Properties in the case of
a mono-sorted theory ARR1(T) generated by adding free function symbols to a
theory T . Section 3.2 discusses a decision procedure for Flat Array Properties in
the case of the multi-sorted array theory ARR2(TI , TE) built over two theories TI
and TE for the indexes and elements (we supply also full lower and upper com-
plexity bounds for the case in which TI and TE are both Presburger arithmetic).
In Section 4 we recall and adapt required notions from [3], define the class of

flat0-programs and establish the requirements for achieving the decidability of
reachability analysis on some flat0-programs. Such requirements are instantiated
in Section 4.1 in the case of simple0

A-programs, array programs with flat control-
flow graph admitting definable accelerations for every loop. In Section 4.2 we
position the fragment of Flat Array Properties with respect to the actual prac-
tical capabilities of state-of-the-art SMT-solvers. Section 5 compares our results
with the state of the art, in particular with the approaches of [8, 15].

2 Background

We use lower-case latin letters x, i, c, d, e, . . . for variables; for tuples of vari-
ables we use bold face letters like x, i, c,d, e The n-th component of a tuple
c is indicated with cn and | − | may indicate tuples length (so that we have
c = c1, . . . , c|c|). Occasionally, we may use free variables and free constants in-
terchangeably. For terms, we use letters t, u, . . . , with the same conventions as
above; t,u are used for tuples of terms (however, tuples of variables are assumed
to be distinct, whereas the same is not assumed for tuples of terms - this is useful
for substitutions notation, see below). When we use u = v, we assume that two
tuples have equal length, say n (i.e. n := |u| = |v|) and that u = v abbreviates
the formula

∧n
i=1 ui = vi.

With E(x) we denote that the syntactic expression (term, formula, tuple
of terms or of formulæ) E contains at most the free variables taken from the
tuple x. We use lower-case Greek letters φ, ϕ, ψ, . . . for quantifier-free formulæ
and α, β, . . . for arbitrary formulæ. The notation φ(t) identifies a quantifier-free
formula φ obtained from φ(x) by substituting the tuple of variables x with the
tuple of terms t.

A prenex formula is a formula of the form Q1x1 . . . Qnxnϕ(x1, . . . , xn), where
Qi ∈ {∃,∀} and x1, . . . , xn are pairwise different variables. Q1x1 · · ·Qnxn is the
prefix of the formula. Let R be a regular expression over the alphabet {∃,∀}.
The R-class of formulæ comprises all and only those prenex formulæ whose prefix
generates a string Q1 · · ·Qn matched by R.

According to the SMT-LIB standard [22], a theory T is a pair (Σ, C), where
Σ is a signature and C is a class of Σ-structures; the structures in C are called
the models of T . Given a Σ-structure M, we denote by SM, fM, PM, . . . the
interpretation inM of the sort S, the function symbol f , the predicate symbol P ,
etc. A Σ-formula α is T -satisfiable if there exists a Σ-structureM in C such that
α is true inM under a suitable assignment to the free variables of α (in symbols,
M |= α); it is T -valid (in symbols, T |= α) if its negation is T -unsatisfiable. Two
formulæ α1 and α2 are T -equivalent if α1 ↔ α2 is T -valid; α1 T -entails α2 (in
symbols, α1 |=T α2) iff α1 → α2 is T -valid. The satisfiability modulo the theory
T (SMT (T)) problem amounts to establishing the T -satisfiability of quantifier-
free Σ-formulæ. All theories T we consider in this paper have decidable
SMT (T)-problem (we recall that this property is preserved when adding free
function symbols, see [13,26]).

A theory T = (Σ, C) admits quantifier elimination iff for any arbitrary Σ-
formula α(x) it is always possible to compute a quantifier-free formula ϕ(x) such
that T |= ∀x.(α(x) ↔ ϕ(x)). Thus, in view of the above assumption on decid-
ability of SMT (T)-problem, a theory having quantifier elimination is decidable
(i.e. T -satisfiability of every formula is decidable). Our favorite example of a the-
ory with quantifier elimination is Presburger Arithmetic, hereafter denoted with
P; this is the theory in the signature {0, 1,+,−,=, <} augmented with infinitely
many unary predicates Dk (for each integer k greater than 1). Semantically, the
intended class of models for P contains just the structure whose support is the
set of the natural numbers, where {0, 1,+,−,=, <} have the natural interpreta-
tion and Dk is interpreted as the sets of natural numbers divisible by k (these
extra predicates are needed to get quantifier elimination [21]).

3 Monic-flat array property fragments

Although P represents the fragment of arithmetic mostly used in formal ap-
proaches for the static analysis of systems, we underline that there are many
other fragments that have quantifier elimination and can be quite useful; these
fragments can be both weaker (like Integer Difference Logic [20]) and stronger
(like the exponentiation extension of Semënov theorem [24]) than P. Thus, the
modular approach proposed in this Section to model arrays is not motivated just
by generalization purposes, but can have practical impact.

There exist two ways of introducing arrays in a declarative setting, the mono-
sorted and the multi-sorted ways. The former is more expressive because (roughly
speaking) it allows to consider indexes also as elements3, but might be computa-
tionally more difficult to handle. We discuss decidability results for both cases,
starting from the mono-sorted case.

3.1 The mono-sorted case

Let T = (Σ, C) be a theory; the theory ARR1(T) of arrays over T is obtained from
T by adding to it infinitely many (fresh) free unary function symbols. This means
that the signature of ARR1(T) is obtained from Σ by adding to it unary function
symbols (we use the letters a, a1, a2, . . . for them) and that a structure M is a
model of ARR1(T) iff (once the interpretations of the extra function symbols are
disregarded) it is a structure belonging to the original class C.

For array theories it is useful to introduce the following notation. We use a for
a tuple a = a1, . . . , a|a| of distinct ‘array constants’ (i.e. free function symbols);
if t = t1, . . . , t|t| is a tuple of terms, the notation a(t) represents the tuple (of
length |a| · |t|) of terms a1(t1), . . . , a1(t|t|), . . . , a|a|(t1), . . . , a|a|(t|t|).

ARR1(T) may be highly undecidable, even when T itself is decidable (see [17]),
thus it is mandatory to limit the shape of the formulæ we want to try to decide.

3This is useful in the analysis of programs, when pointers to the memory (modeled
as an array) are stored into array variables.

A prenex formula or a term in the signature of ARR1(T) are said to be flat iff for
every term of the kind a(t) occurring in them (here a is any array constant), the
sub-term t is always a variable. Notice that every formula is logically equivalent
to a flat one; however the flattening transformations are based on rewriting as

φ(a(t), ...) ∃x(x = t ∧ φ(a(x), ...) or φ(a(t), ...) ∀x(x = t→ φ(a(x), ...)

and consequently they may alter the quantifiers prefix of a formula. Thus it must
be kept in mind (when understanding the results below), that flattening trans-
formation cannot be operated on any occurrence of a term without exiting from
the class that is claimed to be decidable. When we indicate a flat quantifier-free
formula with the notation ψ(x,a(x)), we mean that such a formula is obtained
from a Σ-formula of the kind ψ(x, z) (i.e. from a quantifier-free Σ-formula where
at most the free variables x, z can occur) by replacing z by a(x).

Theorem 1. If the T -satisfiability of ∃∗∀∃∗ sentences is decidable, then the
ARR1(T)-satisfiability of ∃∗∀-flat sentences is decidable.

Proof. We present an algorithm, SATMONO, for deciding the satisfiability of the
∃∗∀-flat fragment of ARR1(T) (we let T be (Σ, C)). Subsequently, we show that
SATMONO is sound and complete. From the complexity viewpoint, notice that
SATMONO produces a quadratic instance of a ∃∗∀∃∗-satisfiability problem.

The decision procedure SATMONO.

Step I. Let
F := ∃c ∀i.ψ(i,a(i), c,a(c))

be a ∃∗∀-flat ARR1(T)-sentence, where ψ is a quantifier-free Σ-formula. Sup-
pose that s is the length of a and t is the length of c (that is, a = a1, . . . , as
and c = c1, . . . , ct). Let e = 〈el,m〉 (1 ≤ l ≤ s, 1 ≤ m ≤ t) be a tuple of
length s · t of fresh variables and consider the ARR1(T)-formula:

F1 := ∃c∃e∀i.ψ(i,a(i), c, e) ∧
∧

1≤l≤t

∧
1≤m≤s

am(cl) = el,m

Step II. From F1 build the formula

F2 := ∃c∃e ∀i.

ψ(i,a(i), c, e) ∧
∧

1≤l≤t

(i = cl →
∧

1≤m≤s

am(i) = el,m)


Step III. Let d be a fresh tuple of variables of length s; check the T -satisfiabi-

lity of

F3 := ∃c ∃e∀i ∃d.

ψ(i,d, c, e) ∧
∧

1≤l≤t

(i = cl →
∧

1≤m≤s

dm = el,m)



Correctness and completeness of SATMONO. SATMONO transforms an ARR1(T)-
formula F into an equisatisfiable T -formula F3 belonging to the ∃∗∀∃∗ fragment.
More precisely, it holds that F, F1 and F2 are equivalent formulæ, because∧

1≤l≤t

∀i.(i = cl →
∧

1≤m≤s

am(i) = el,m) ≡
∧

1≤l≤t

∧
1≤m≤s

am(cl) = el,m

From F2 to F3 and back, satisfiability is preserved because F2 is the Skolem-
ization of F3, where the existentially quantified variables d = d1, . . . , ds are
substituted with the free unary function symbols a = a1, . . . as. a

Since Presburger Arithmetic is decidable (via quantifier elimination), we get
in particular that

Corollary 1. The ARR1(P)-satisfiability of ∃∗∀-flat sentences is decidable.

As another example matching the hypothesis of Theorem 1 (i.e. as an example
of a T such that T -satisfiability of ∃∗∀∃∗-sentences is decidable) consider pure
first order logic with equality in a signature with predicate symbols of any arity
but with only unary function symbols [6].

3.2 The multi-sorted case

We are now considering a theory of arrays parametric in the theories specifying
constraints over indexes and elements of the arrays. Formally, we need two in-
gredient theories, TI = (ΣI , CI) and TE = (ΣE , CE). We can freely assume that
ΣI and ΣE are disjoint (otherwise we can rename some symbols); for simplicity,
we let both signatures be mono-sorted (but extending our results to many-sorted
TE is quite straightforward): let us call INDEX the unique sort of TI and ELEM

the unique sort of TE .
The theory ARR2(TI , TE) of arrays over TI and TE is obtained from the

union of ΣI ∪ ΣE by adding to it infinitely many (fresh) free unary function
symbols (these new function symbols will have domain sort INDEX and codomain
sort ELEM). The models of ARR2(TI , TE) are the structures whose reducts to the
symbols of sorts INDEX and ELEM are models of TI and TE , respectively.

Consider now an atomic formula P (t1, . . . , tn) in the language of ARR2(TI , TE)
(in the typical situation, P is the equality predicate). Since the predicate symbols
of ARR2(TI , TE) are from ΣI ∪ΣE and ΣI ∩ΣE = ∅, P belongs either to ΣI or
to ΣE ; in the latter case, all terms ti have sort ELEM and in the former case all
terms ti are ΣI -terms. We say that P (t1, . . . , tn) is an INDEX-atom in the former
case and that it is an ELEM-atom in the latter case.

When dealing with ARR2(TI , TE), we shall limit ourselves to quantified vari-
ables of sort INDEX: this limitation is justified by the benchmarks arising in
applications (see Section 4).4 A sentence in the language of ARR2(TI , TE) is said
to be monic iff it is in prenex form and every INDEX atom occurring in it contains
at most one variable falling within the scope of a universal quantifier.

4 Topmost existentially quantified variables of sort ELEM can be modeled by enrich-
ing TE with free constants.

Example 1. Consider the following sentences:

(I) ∀i. a(i) = i; (II) ∀i1∀i2. (i1 ≤ i2 → a(i1) ≤ a(i2));

(III) ∃i1∃i2. (i1 ≤ i2 ∧ a(i1) 6≤ a(i2)); (IV) ∀i1∀i2. a(i1) = a(i2);

(V) ∀i. (D2(i)→ a(i) = 0); (V I) ∃i ∀j. (a1(j) < a2(3i)).

The flat formula (I) is not well-typed, hence it is not allowed in ARR2(P,P); however,
it is allowed in ARR1(P). Formula (II) expresses the fact that the array a is sorted: it is
flat but not monic (because of the atom i1 ≤ i2). On the contrary, its negation (III) is
flat and monic (because i1, i2 are now existentially quantified). Formula (IV) expresses
that the array a is constant; it is flat and monic (notice that the universally quantified
variables i1, i2 both occur in a(i1) = a(i2) but the latter is an ELEM atom). Formula
(V) expresses that a is initialized so to have all even positions equal to 0: it is monic
and flat. Formula (VI) is monic but not flat because of the term a2(3i) occurring in it;
however, in 3i no universally quantified variable occurs, so it is possible to produce by
flattening the following sentence

∃i ∃i′ ∀j (i′ = 3i ∧ a1(j) < a2(i′))

which is logically equivalent to (VI), it is flat and still lies in the ∃∗∀-class. Finally, as
a more complicated example, notice that the following sentence

∃k ∀i. (D2(k) ∧ a(k) = ‘\0‘ ∧ (D2(i) ∧ i < k → a(i) = ‘b‘) ∧ (¬D2(i) ∧ i < k → a(i) = ‘c‘))

is monic and flat: it says that a represents a string of the kind (bc)∗.

Theorem 2. If TI-satisfiability of ∃∗∀-sentences is decidable, then ARR2(TI , TE)-
satisfiability of ∃∗∀∗-monic-flat sentences is decidable.

Proof. As we did for SATMONO, we give a decision procedure, SATMULTI, for
the ∃∗∀∗-monic-flat fragment of ARR2(TI , TE); for space reasons, we give here
just some informal justifications, the reader is referred to [2] for proofs. First
(Step I), the procedure guesses the sets (called ‘types’) of relevant INDEX atoms
satisfied in a model to be built. Subsequently (Step II) it introduces a repre-
sentative variable for each type together with the constraint that guessed types
are exhaustive. Finally (Step III, IV and V) the procedure applies combination
techniques for purification. a

The decision procedure SATMULTI. The algorithm is non-deterministic: the
input formula is satisfiable iff we can guess suitable data T ,B so that the formulæ
FI , FE below are satisfiable.

Step I. Let F be a ∃∗∀∗-monic-flat formula; let it be

F := ∃c∀i.ψ(i,a(i), c,a(c)),

(where as usual ψ is a TI∪TE-quantifier-free formula). Suppose a = a1, . . . , as,
i = i1, . . . , in and c = c1, . . . , ct. Consider the set (notice that all atoms in
K are ΣI -atoms and have just one free variable because F is monic)

K = {A(x, c) | A(ik, c) is an INDEX atom of F}1≤k≤n ∪ {x = cl}1≤l≤t

Let us call type a set of literals M such that: (i) each literal of M is an
atom in K or its negation; (ii) for all A(x, c) ∈ K, either A(x, c) ∈ M or
¬A(x, c) ∈M . Guess a set T = {M1, . . . ,Mq} of types.

Step II. Let b = b1, . . . , bq be a tuple of new variables of sort INDEX and let

F1 := ∃b ∃c



∀x.

 q∨
j=1

∧
L∈Mj

L(x, c)

 ∧
q∧
j=1

∧
L∈Mj

L(bj , c) ∧

∧
σ:i→b

ψ(iσ,a(iσ), c,a(c))


where iσ is the tuple of terms σ(i1), . . . , σ(in).

Step III. Let e = 〈el,m〉 (1 ≤ l ≤ s, 1 ≤ m ≤ t+q) be a tuple of length s ·(t+q)
of free constants of sort ELEM. Consider the formula

F2 := ∃b∃c



∀x.

 q∨
j=1

∧
L∈Mj

L(x, c)

 ∧
q∧
j=1

∧
L∈Mj

L(bj , c) ∧

ψ̄(b, c, e) ∧∧
dm,dn∈b∗c

s∧
l=1

(dm = dn → el,m = el,n)


where b ∗ c := d1, . . . , dq+t is the concatenation of the tuples b and c and
ψ̄(b, c, e) is obtained from∧

σ:i→b

ψ(iσ,a(iσ), c,a(c))

by substituting each term in the tuple a(b)∗a(c) with the constant occupying
the corresponding position in the tuple e.

Step IV. Let B a full Boolean satisfying assignment for the atoms of the formula

F3 := ψ̄(b, c, e) ∧
∧

dm,dn∈b∗c

s∧
l=1

(dm = dn → el,m = el,n)

and let ψ̄I(b, c), ψ̄E(e) be the (conjunction of the) sets of literals of sort
INDEX and ELEM, respectively, induced by B.

Step V. Check the TI -satisfiability of

FI := ∃b∃c.

∀x.
 q∨
j=1

∧
L∈Mj

L(x, c)

 ∧ q∧
j=1

∧
L∈Mj

L(bj , c) ∧ ψ̄I(b, c)



and the TE-satisfiability of
FE := ψ̄E(e)

Notice that FI is an ∃∗∀-sentence; FE is ground and the TE-satisfiability of FE
(considering the e as variables instead of as free constants) is decidable because
we assumed that all the theories we consider (hence our TE too) have quantifier-
free fragments decidable for satisfiability.

Theorem 2 applies to ARR2(P,P) because P admits quantifier elimination. For
this theory, we can determine complexity upper and lower bounds:

Theorem 3. ARR2(P,P)-satisfiability of ∃∗∀∗-monic-flat sentences is NExpTime-
complete.

Proof. We use exponentially bounded domino systems for reduction [6,19], see [2]
for details. a

4 A decidability result for the reachability analysis of flat
array programs

Based on the decidability results described in the previous section, we can now
achieve important decidability results in the context of reachability analysis for
programs handling arrays of unbounded length. As a reference theory, we shall
use ARR1(P+) or ARR2(P+,P+), where P+ is P enriched with free constant sym-
bols and with definable predicate and function symbols. We do not enter into
more details concerning what a definable symbol is (see, e.g., [25]), we just un-
derline that definable symbols are nothing but useful macros that can be used to
formalize case-defined functions and SMT-LIB commands like if-then-else. The
addition of definable symbols does not compromise quantifier elimination, hence
decidability of P+. Below, we let T be ARR1(P+) or ARR2(P+,P+).

Henceforth v will denote, in the following, the variables of the programs we
will analyze. Formally, v = a, c where, according to our conventions, a is a tuple
of array variables (modeled as free unary function symbols of T in our frame-
work) and c a tuple of scalar variables; the latter can be modeled as variables
in the logical sense - in ARR2(P+,P+) we can model them either as variables of
sort INDEX or as free constants of sort ELEM.

A state-formula is a formula α(v) of T representing a (possibly infinite) set of
configurations of the program under analysis. A transition formula is a formula
of T of the kind τ(v,v′) where v′ is obtained from copying the variables in v
and adding a prime to each of them. For the purpose of this work, programs will
be represented by their control-flow automaton.

Definition 1 (Programs). Given a set of variables v, a program is a triple
P = (L,Λ,E), where (i) L = {l1, . . . , ln} is a set of program locations among
which we distinguish an initial location linit and an error location lerror; (ii) Λ is a
finite set of transition formulæ {τ1(v,v′), . . . , τr(v,v

′)} and (iii) E ⊆ L×Λ×L
is a set of actions.

procedure initEven (a[N] , v) :

l1 for (i = 0; i < N ; i = i+ 2) a[i] = v;

l2 for (i = 0; i < N ; i = i+ 2) assert(a[i] = v);

(a)

linit

l1

l2

l3 lerror

τ1

τ2

τ3

τ4

τ5 τE

(b)

Fig. 1. The initEven procedure (a) and its control-flow graph (b).

We indicate by src,L, trg the three projection functions on E; that is, for
e = (li, τj , lk) ∈ E, we have src(e) = li (this is called the ‘source’ location of
e), L(e) = τj (this is called the ‘label’ of e) and trg(e) = lk (this is called the
‘target’ location of e).

Example 2. Consider the procedure initEven in Fig. 1. For this procedure, a = a,
c = i, v. N is a constant of the background theory. Λ is the set of formulæ (we omit
identical updates):

τ1 := i′ = 0

τ2 := i < N ∧ a′ = λj.if (j = i) then v else a(j) ∧ i′ = i+ 2

τ3 := i ≥ N ∧ i′ = 0

τ4 := i < N ∧ a(i) = v ∧ i′ = i+ 2

τ5 := i ≥ N
τE := i < N ∧ a(i) 6= v

The procedure initEven can be formalized as the control-flow graph depicted in Fig. 1(b),

where L = {linit, l1, l2, l3, lerror}.

Definition 2 (Program paths). A program path (in short, path) of P =
(L,Λ,E) is a sequence ρ ∈ En, i.e., ρ = e1, e2, . . . , en, such that for every
ei, ei+1, trg(ei) = src(ei+1). We denote with |ρ| the length of the path. An error
path is a path ρ with src(e1) = linit and trg(e|ρ|) = lerror. A path ρ is a feasible

path if
∧|ρ|
j=1 L(ej)

(j) is T -satisfiable, where L(ej)
(j) represents τij (v(j−1),v(j)),

with L(ej) = τij .

The (unbounded) reachability problem for a program P is to detect if P
admits a feasible error path. Proving the safety of P, therefore, means solving
the reachability problem for P. This problem, given well known limiting results,
is not decidable for an arbitrary program P. The consequence is that, in general,
reachability analysis is sound, but not complete, and its incompleteness manifests
itself in (possible) divergence of the verification algorithm (see, e.g., [1]).

To gain decidability, we must first impose restrictions on the shape of the
transition formulæ, for instance we can constrain the analysis to formulæ falling
within decidable classes like those we analyzed in the previous section. This is

not sufficient however, due to the presence of loops in the control flow. Hence
we assume flatness conditions on such control flow and “accelerability” of the
transitions labeling self-loops. This is similar to what is done in [7, 9, 12] for
integer variable programs, but since we handle array variables we need specific
restrictions for acceleration. Our result for the decidability of the safety of an-
notated array programs builds upon the results presented in Section 3 and the
acceleration procedure presented in [3].

We first give the definition of flat0-program, i.e., programs with only self-
loops for which each location belongs to at most one loop. Subsequently we will
identify sufficient conditions for achieving the full decidability of the reachability
problem for flat0-programs.

Definition 3 (flat0-program). A program P is a flat0-program if for every
path ρ = e1, . . . , en of P it holds that for every j < k (j, k ∈ {1, . . . , n}), if
src(ej) = trg(ek) then ej = ej+1 = · · · = ek.

We now turn our attention to transition formulæ. Acceleration is a well-
known formalism in the area of model-checking. It has been integrated in several
frameworks and constitutes a fundamental technology for the scalability and
efficiency of modern model checkers (e.g., [5]). Given a loop, represented as a
transition relation τ , the accelerated transition τ+ allows to compute in one
shot the precise set of states reachable after n unwindings of that loop, for any
n. This prevents divergence of the reachability analysis along τ , caused by its
unwinding. What prevents the applicability of acceleration in the domain we
are targeting is that accelerations are not always definable. By definition, the
acceleration of a transition τ(v,v′) is the union of the n-th compositions of τ
with itself, i.e. it is τ+ :=

∨
n>0 τ

n, where

τ1(v,v′) := τ(v,v′), τn+1(v,v′) := ∃v′′.(τ(v,v′′) ∧ τn(v′′,v′)) .

τ+ can be practically exploited only if there exists a formula ϕ(v,v′) equivalent,
modulo the considered background theory, to

∨
n>0 τ

n. Based on this observa-
tion on definability of accelerations, we are now ready to state a general result
about the decidability of the reachability problem for programs with arrays. The
theorem we give is, as we did for results in Section 3, modular and general. We
will show an instance of this result in the following section. Notationally, let us
extend the projection function L by denoting L+(e) := L(e)+ if src(e) = trg(e)
and L+(e) := L(e) otherwise, where L(e)+ denotes the acceleration of the tran-
sition labeling the edge e.

Theorem 4. Let F be a class of formulæ decidable for T -satisfiability. The
unbounded reachability problem for a flat0-program P is decidable if (i) F is
closed under conjunctions and (ii) for each e ∈ E one can compute α(v,v′) ∈ F
such that T |= L+(e)↔ α(v,v′),

Proof. Let ρ = e1, . . . , en be an error path of P; when testing its feasibility,
according to Definition 3, we can limit ourselves to the case in which e1, . . . , en

are all distinct, provided we replace the labels L(ek)(k) with L+(ek)(k) in the
formula

∧n
j=1 L(ej)

(j) from Definition 2.5 Thus P is unsafe iff, for some path
e1, . . . , en whose edges are all distinct, the formula

L+(e1)(1) ∧ · · · ∧ L+(en)(n) (1)

is T -satisfiable. Since the involved paths are finitely many and T -satisfiability
of formulæ like (1) is decidable, the safety of P can be decided. a

4.1 A class of array programs with decidable reachability problem

We now produce a class of programs with arrays – we call it simple0
A-programs–

for which requirements of Theorem 4 are met. The class of simple0
A-programs

contains non recursive programs implementing searching, copying, comparing,
initializing, replacing and testing procedures. As an example, the initEven pro-
gram reported in Fig. 1 is a simple0

A-program. Formally, a simple0
A-program

P = (L,Λ,E) is a flat0-program such that (i) every τ ∈ Λ is a formula be-
longing to one of the decidable classes covered by Corollary 1 or Theorem 3; (ii)
if e ∈ E is a self-loop, then L(e) is a simplek-assignment.

Simplek-assignments are transitions (defined below) for which the accelera-
tion is first-order definable and is a Flat Array Property. For a natural number
k, we denote by k̄ the term 1 + · · ·+ 1 (k-times) and by k̄ · t the term t+ · · ·+ t
(k-times).

Definition 4 (simplek-assignment). Let k ≥ 0; a simplek-assignment is a
transition τ(v,v′) of the kind

φL(c,a[d]) ∧ d′ = d+ k̄ ∧ d′ = d ∧ a′ = λj.if (j = d) then t(c,a(d)) else a(j)

where (i) c = d,d and (ii) the formula φL(c,a[d]) and the terms t(c,a[d]) are
flat.

The following Lemma (which is an instance of a more general result from [3])
gives the template for the accelerated counterpart of a simplek-assignment.

Lemma 1. Let τ(v,v′) be a simplek-assignment. Then τ+(v,v′) is T -equivalent
to the formula

∃y > 0

(
∀z.
((
d ≤ z < d+ k̄ · y ∧Dk̄(z − d)

)
→ φL(z,d,a(d))

)
∧

a′ = λj.U(j, y,v) ∧ d′ = d+ k̄ · y ∧ d′ = d

)

where the definable functions Uh(j, y,v), 1 ≤ h ≤ s of the tuple U are

if (d ≤ j < d+ k̄ · y ∧Dk̄(j − d)) then th(j,d,a(j)) else ah(j) .

5 Notice that by these replacements we can represent in one shot infinitely many
paths, namely those executing self-loops any given number of times.

Example 3. Consider transition τ2 from the formalization of our running exam-
ple of Fig. 1. The acceleration τ+

2 of such formula is (we omit identical updates)

∃y > 0.

(
∀z.(i ≤ z < i+ 2y ∧D2(z − i)→ z < N) ∧ i′ = i+ 2y ∧
a′ = λj. (if (i ≤ j < 2y + i ∧D2(j − i)) then v else a[j])

)

We can now formally show that the reachability problem for simple0
A-programs

is decidable, by instantiating Theorem 4 with the results obtained so far.

Theorem 5. The unbounded reachability problem for simple0
A-programs is de-

cidable.

Proof. By prenex transformations, distributions of universal quantifiers over con-
junctions, etc., it is easy to see that the decidable classes covered by Corollary 1
or Theorem 3 are closed under conjunctions. Since the acceleration of a simplek-
assignment fits inside these classes (just eliminate definitions via λ-abstractions
by using universal quantifiers), Theorem 4 applies. a

4.2 Experimental observations

We evaluated the capabilities of available SMT-Solvers on checking the satisfia-
bility of Flat Array Properties and for that we selected some simple0

A-programs,
both safe and unsafe. Following the procedure identified in the proof of Theo-
rem 4 we generated 200 SMT-LIB2-compliant files with Flat Array Properties6.
The simple0

A-programs we selected perform some simple manipulations on ar-
rays of unknown length, like searching for a given element, initializing the array,
swapping the arrays, copying one array into another, etc. We tested cvc4 [4]
(version 1.2) and Z3 [10] (version 4.3.1) on the generated SMT-LIB2 files. Exper-
imentation has been performed on a machine equipped with a 2.66 GHz CPU
and 4GB of RAM running Mac OSX 10.8.5. From our evaluation, both tools
timeout on some proof-obligations7. These results suggest that the fragment of
Flat Array Properties definitely identifies fragments of theories which are decid-
able, but their satisfiability is still not entirely covered by modern and highly
engineered tools.

5 Conclusions and related work

In this paper we identified a class of Flat Array Properties, a quantified fragment
of theories of arrays, admitting decision procedures. Our results are parameter-
ized in the theories used to model indexes and elements of the array; in this sense,
there is some similarity with [18], although (contrary to [18]) we consider purely
syntactically specified classes of formulæ. We provided a complexity analysis
of our decision procedures. We also showed that the decidability of Flat Array

6Such files have been generated automatically with our prototype tool which we
make available at www.inf.usi.ch/phd/alberti/prj/booster.

7See the discussion in [2] for more information on the experiments.

http://www.inf.usi.ch/phd/alberti/prj/booster

Properties, combined with acceleration results, allows to depict a sound and
complete procedure for checking the safety of a class of programs with arrays.

The modular nature of our solution makes our contributions orthogonal with
respect to the state of the art: we can enrich P with various definable or even
not definable symbols [24] and get from our Theorems 1,2 decidable classes
which are far from the scope of existing results. Still, it is interesting to notice
that also the special cases of the decidable classes covered by Corollary 1 and
Theorem 3 are orthogonal to the results from the literature. To this aim, we
make a closer comparison with [8,15]. The two fragments considered in [8,15] are
characterized by rather restrictive syntactic constraints. In [15] it is considered
a subclass of the ∃∗∀-fragment of ARR1(T) called SIL, Single Index Logic. In
this class, formulæ are built according to a grammar allowing (i) as atoms only
difference logic constraints and some equations modulo a fixed integer and (ii) as
universally quantified subformulæ only formulæ of the kind ∀i.φ(i)→ ψ(i,a(i +
k̄)) (here k is a tuple of integers) where φ, ψ are conjunctions of atoms (in
particular, no disjunction is allowed in ψ). On the other side, SIL includes some
non-flat formulæ, due to the presence of constant increment terms i + k̄ in the
consequents of the above universally quantified implications. Similar restrictions
are in [16]. The Array Property Fragment described in [8] is basically a subclass
of the ∃∗∀∗-fragment of ARR2(P,P); however universally quantified subformulæ
are constrained to be of the kind ∀i.φ(i)→ ψ(a(i)), where in addition the INDEX

part φ(i) must be a conjunction of atoms of the kind i ≤ j, i ≤ t, t ≤ i (with
i, j ∈ i and where t does not contain occurrences of the universally quantified
variables i). These formulæ are flat but not monic because of the atoms i ≤ j.

From a computational point of view, a complexity bound for SATMONO has
been shown in the proof of Theorem 1, while the complexity of the decision pro-
cedure proposed in [15] is unknown. On the other side, both SATMULTI and the
decision procedure described in [8] run in NExpTime (the decision procedure
in [8] is in NP only if the number of universally quantified index variables is
bounded by a constant N). Our decision procedures for quantified formulæ are
also partially different, in spirit, from those presented so far in the SMT commu-
nity. While the vast majority of SMT-Solvers address the problem of checking
the satisfiability of quantified formulæ via instantiation (see, e.g., [8,11,14,23]),
our procedures – in particular SATMULTI – are still based on instantiation, but the
instantiation refers to a set of terms enlarged with the free constants witnessing
the guessed set of realized types.

From the point of view of the applications, providing a full decidability result
for the unbounded reachability analysis of a class of array programs is what
differentiates our work with other contributions like [1, 3].

References

1. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy ab-
straction with interpolants for arrays. In LPAR, pages 46–61, 2012.

2. F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array prop-
erties. Technical Report 2013/04, University of Lugano, oct 2013. Available at
http://www.inf.usi.ch/research_publication.htm?id=77.

http://www.inf.usi.ch/research_publication.htm?id=77

3. F. Alberti, S. Ghilardi, and N. Sharygina. Definability of accelerated relations in
a theory of arrays and its applications. In FroCoS, pages 23–39, 2013.

4. C. Barrett, C.L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In CAV, pages 171–177, 2011.

5. G. Behrmann, J. Bengtsson, A. David, K.G. Larsen, P. Pettersson, and W. Yi.
UPPAAL implementation secrets. In FTRTFT, pages 3–22, 2002.

6. E. Börger, E. Grädel, and Y. Gurevich. The classical decision problem. Perspectives
in Mathematical Logic. Springer-Verlag, Berlin, 1997.

7. M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. Funda-
menta Informaticae, (91):275–303, 2009.

8. A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays? In
VMCAI, pages 427–442, 2006.

9. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and pres-
burger arithmetic. In CAV, volume 1427 of LNCS, pages 268–279. Springer, 1998.

10. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

11. D.L. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, 2003.

12. A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications
to broadcast protocols. In FSTTCS, pages 145–156, 2002.

13. H. Ganzinger. Shostak light. In Automated deduction—CADE-18, volume 2392 of
Lecture Notes in Comput. Sci., pages 332–346. Springer, Berlin, 2002.

14. Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In CAV, pages 306–320, 2009.

15. P. Habermehl, R. Iosif, and T. Vojnar. A logic of singly indexed arrays. In LPAR,
pages 558–573, 2008.

16. P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer arrays?
In FOSSACS, 2008.

17. J.Y. Halpern. Presburger arithmetic with unary predicates is Π1
1 complete. J.

Symbolic Logic, 56(2):637–642, 1991.
18. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in veri-

fication. In TACAS, pages 265–281. Springer, 2008.
19. H.B. Lewis. Complexity of solvable cases of the decision problem for the predicate

calculus. In 19th Ann. Symp. on Found. of Comp. Sci., pages 35–47. IEEE, 1978.
20. R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation

and Its Application to Difference Logic. In CAV’05, pages 321–334, 2005.
21. D.C. Oppen. A superexponential upper bound on the complexity of Presburger

arithmetic. J. Comput. System Sci., 16(3):323–332, 1978.
22. S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).

www.SMT-LIB.org, 2006.
23. A. Reynolds, C. Tinelli, A. Goel, S. Krstic, M. Deters, and C. Barrett. Quantifier

instantiation techniques for finite model finding in SMT. In CADE, pages 377–391,
2013.

24. A.L. Semënov. Logical theories of one-place functions on the set of natural num-
bers. Izvestiya: Mathematics, 22:587–618, 1984.

25. J.R. Shoenfield. Mathematical logic. Association for Symbolic Logic, Urbana, IL,
2001. Reprint of the 1973 second printing.

26. C. Tinelli and C.G. Zarba. Combining nonstably infinite theories. J. Automat.
Reason., 34(3):209–238, 2005.

http://www.smt-lib.org

	Decision Procedures for Flat Array Properties
	 Francesco Alberti, Silvio Ghilardi, Natasha Sharygina

