
The OpenSMT Solver

Roberto Bruttomesso1 Edgar Pek2 Natasha Sharygina1 Aliaksei Tsitovich1

1 Università della Svizzera Italiana, Formal Verification Group, Lugano, Switzerland
2 University of Illinois at Urbana-Champaign, Department of Computer Science, USA

Abstract. This paper describes OpenSMT, an incremental, efficient,
and open-source SMT-Solver. OpenSMT has been specifically designed
to be easily extended with new theory-solvers, in order to be accessible for
non-experts for the development of customized algorithms. We sketch the
solver’s architecture and interface. We discuss its distinguishing features
w.r.t. other state-of-the-art solvers.

1 Introduction

Satisfiability Modulo Theories [2] (SMT) is commonly understood as the problem
of checking the satisfiability of a quantifier-free formula, usually defined in a
decidable fragment of first order logic (e.g., linear arithmetic, bit-vectors, arrays).

In the context of formal verification, SMT-Solvers are every day gaining more
importance as robust proof engines. They allow a more expressive language than
propositional logic by supporting a set of decision procedures for arithmetic, bit-
vectors, arrays, and they are faster then generic first-order theorem provers on
quantifier-free formulæ.

Most verification frameworks are integrating SMT-Solvers as the main de-
cision engine. With most off-the-shelf SMT-Solvers, the integration can be per-
formed either via file or with a set of APIs, supported on the SMT-Solver’s side,
in such a way that it can be used as a black box by the calling environment.

OpenSMT is an attempt of providing an incremental, open-source SMT-
Solver1 that is easy to extend and, at the same time, efficient in performance.
Our philosophy is to provide an open and comprehensive framework for the
community, in the hope that it will facilitate the use and understanding of SMT-
Solvers, in the same way as it was done for SAT-solvers and theorem provers.

OpenSMT participated in the last two SMTCOMP [1], the annual compe-
tition for SMT-Solvers, and it was the fastest open-source solver for the cat-
egories QF UF (2008 and 2009), QF IDL, QF RDL, QF LRA (2009). It also
supports QF BV, QF UFIDL, and QF UFLRA logics (the reader may refer to
www.smtlib.org for more details about SMT logics and theories).

1 OpenSMT is written in C++ and released under the GNU GPL license. It is avail-
able at http://verify.inf.usi.ch/opensmt.

www.smtlib.org
http://verify.inf.usi.ch/opensmt

2 Tool Architecture

2.1 Overview

The architecture of OpenSMT implements the well-consolidated lazy or DPLL(T)
approach [2], where a SAT-Solver is used as a Boolean enumerator, while a
T -solver, a decision procedure for the background theory T , is used to check
the consistency of the conjunction of the enumerated atoms. The architecture of
OpenSMT is depicted in Figure 1, and it can be divided into three main blocks.

DL BVLRA

EUF
Preprocessor

SMT-Level

SAT-Solver T -solvers

Enumerator

Boolean

ϕ

Simplifications

Parser

Preprocessor

sat (model) / unsat (proof)

Fig. 1. OpenSMT functional architecture. EUF , DL, LRA, and BV are the
solvers for equality with uninterpreted functions, difference logic, linear real
arithmetic, and bit-vectors respectively.

Preprocessor. The formula is parsed2 and stored inside the Egraph [6], a DAG-
like data structure whose vertexes, the Enodes, represent (sub)terms. Some static
rewriting steps are then applied, in order to simplify and prepare the formula
for solving. A commonly used and effective technique is, for instance, the elim-
ination of variables by exploiting equalities appearing as top-level conjuncts of
the formula.
SAT-Solver. The simplified formula is converted into CNF by means of the
Tseitin encoding, and then given to the SAT-Solver. OpenSMT is built on top
of the MiniSAT2 incremental solver [7]. SATelite preprocessing is applied to
Boolean atoms only. We adapted the solver to include some recent optimizations,
such as frequent restarts and phase caching.
T -solvers. The organization of the theory solvers is the same proposed by the
Simplify prover [6] (see Figure 1). The EUF-solver acts as a layer and dispatcher
for the T -solvers for the other theories. T -solvers communicates conflicts, deduc-
tions, and hints for guiding the search back to the SAT-solver.
2 OpenSMT supports both SMT-LIB and Yices input formats.

2.2 The T -solver interface class TSolver
{

void inform (Enode *);
bool assertLit (Enode *);
bool check (bool);
void pushBktPoint ();
void popBktPoint ();
bool belongsToT (Enode *);
void computeModel ();

vector< Enode * > & explanation;
vector< Enode * > & deductions;
vector< Enode * > & suggestions;
}

Fig. 2. The T -solver interface.

Figure 2 shows the minimalistic
interface API that a T -solver is
required to implement. inform is
used to communicate the existence
of a new T -atom to the T -solver.
assertLit asserts a (previously in-
formed) T -atom in the T -solver
with the right polarity; it may also
perform some cheap form of consis-
tency check. check determines the
T -satisfiability of the current set
of asserted T -atoms. pushBktPoint
and popBktPoint are used respec-
tively to save and to restore the
state of the T -solver, in order to
cope with backtracking within the
SAT-Solver. belongsToT is used to determine if a given T -atom belongs to the
theory solved by the T -solver. Finally computeModel forces T -solver to save the
model (if any) inside Enode’s field.

Three vectors, explanation, deductions, suggestions, are shared among the
T -solvers, and they are used to simplify the communication of conflicts, T -atoms
to be deduced and “suggested” T -atoms. Suggestions are atoms consistent with
the current state of the T -solver, but that they cannot be directly deduced.
Suggestions are used to perform decisions in the SAT-Solver.

Explanations for deductions are computed on demand. When an explana-
tion for a deduction l is required, the literal ¬l is pushed in the T -solver3, and
the explanation is computed by calling check. This process is completely trans-
parent for the T -solver thus avoiding any burden for generating and tracking
explanations for deductions on the T -solver side.

2.3 Customizing T -solvers

SMT-Solvers are commonly used as black-box tools, either by passing a formula
in a file, or by means of calls to an interface API. In some cases, however,
the domain knowledge on the particular problem under consideration can be
exploited to derive a more efficient procedure by customizing an existing one, or
by deriving a new one from scratch.

This is for instance the case for the recent approach of [8], where properties
of the execution of concurrent threads in a program are encoded as Boolean
combinations of precedence relations of the form x < y. The problem can be
encoded as QF IDL formulæ, (i.e., by means of T -atoms of the form x−y <= c,
c being an integer constant), since x < y and ¬(x < y) can be encoded as

3 After having restored an appropriate T -solver context.

x− y <= −1 and y− x <= 0 respectively. A graph-based encoding, such as the
one described in [5], allows to solve the problem in O(nlog(n) + m), n being the
number of vertices and m being the number of edges of the graph.

However, it is possible to devise a specialized procedure that deals directly
with “precedence” atoms: instead of looking for an arbitrary negative cycle as
in [5], it is enough to look for a cycle that contains at least an edge with constant
−1. The complexity of the T -solver decreases to O(n + m)4.

OpenSMT provides an easy infrastructure for the addition of T -solvers by
means of an automatic script.

3 Other Features

Word-Level decision procedure for BV. OpenSMT implements a word-level
decision procedure for bit-vector extraction and concatenation and equalities [4].
The procedure is embedded in a congruence closure algorithm by means of an
incremental and backtrackable data structure (CBE) that represents bit-vector
slices modulo equivalence classes.
SMT-based preprocessor for linear arithmetic. Preprocessing is a crucial
preliminary step to improve the solver performance. Traditional approaches tend
to consider only top-level atoms to trigger simplifications. OpenSMT supports
a preprocessing technique for linear arithmetic at the clause level, by means of
a mixed Boolean-theory resolution rule [3].
Incremental solving support. OpenSMT, as well as other state-of-the-art
solvers, supports a rich C API, which allows the incremental addition and re-
moval of constraints in a stack-based manner.
Models and proofs. OpenSMT is able to generate a model if the formula is
satisfiable and to construct a proof of unsatisfiability otherwise.

References

1. SMT-COMP. http://www.smtcomp.org.
2. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Handbook on Satisfiability,

volume 185, chapter Satisfiability Modulo Theories. IO Press, 2009.
3. R. Bruttomesso. An Extension of the Davis-Putnam Procedure and its Application

to Preprocessing in SMT. In SMT, 2009.
4. R. Bruttomesso and N. Sharygina. A Scalable Decision Procedure for Fixed-Width

Bit-Vectors. In ICCAD, 2009.
5. S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for

DPLL(T). In SAT’06, pages 170–183, 2006.
6. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program

checking. Journal of ACM, 52(3):365–473, 2005.
7. N. Eén and N. Sörensson. An Extensible SAT-Solver. In Theory and Applications

of Satisfiability Testing (SAT2003), pages 502–518, 2003.
8. Chao Wang, Swarat Chaudhuri, Aarti Gupta, and Yu Yang. Symbolic pruning of

concurrent program executions. In ESEC/FSE, pages 23–32, 2009.

4 The problem reduces to finding strongly connected components in a graph.

http://www.smtcomp.org

	The OpenSMT Solver
	 Roberto Bruttomesso Edgar Pek Natasha Sharygina Aliaksei Tsitovich

