
Interpolation Properties and
SAT-based Model Checking

Arie Gurfinkel1, Simone Fulvio Rollini2, and Natasha Sharygina2

1 Software Engineering Institute, CMU
arie@cmu.edu

2 Formal Verification Lab, University of Lugano
{simone.fulvio.rollini, natasha.sharygina}@usi.ch

Abstract Craig interpolation is a widespread method in verification,
with important applications such as Predicate Abstraction, CounterEx-
ample Guided Abstraction Refinement and Lazy Abstraction With In-
terpolants. Most state-of-the-art model checking techniques based on in-
terpolation require collections of interpolants to satisfy particular prop-
erties, to which we refer as “collectives”; they do not hold in general
for all interpolation systems and have to be established for each par-
ticular system and verification environment. Nevertheless, no systematic
approach exists that correlates the individual interpolation systems and
compares the necessary collectives. This paper proposes a uniform frame-
work, which encompasses (and generalizes) the most common collectives
exploited in verification. We use it for a systematic study of the col-
lectives and of the constraints they pose on propositional interpolation
systems used in SAT-based model checking. Our results have practical
applications to verification and provide a better theoretical overview of
collectives in interpolation-based model checking.

1 Introduction

Craig interpolation is a popular approach in verification [13,12] with notable
applications such as Predicate Abstraction [9], CounterExample Guided Ab-
straction Refinement (CEGAR) [6], and Lazy Abstraction With Interpolants
(LAWI) [14].

Formally, given two formulae A and B such that A ∧ B is unsatisfiable, a
Craig interpolant is a formula I such that A implies I, I is inconsistent with B
and I is defined over the atoms (i.e., propositional variables) common to A and
B. It can be seen as an over-approximation of A that is still inconsistent with
B3. In model checking applications, A typically encodes some finite program
traces, and B denotes error locations. In this case, an interpolant I represents a
set of safe states that over-approximate the states reachable in A.

In most verification tasks, a single interpolant, i.e., a single subdivision of
constraints into two groups A and B, is not sufficient. For example, consider
3 We write Itp(A | B) for an interpolant of A and B, and IA when B is clear from the
context.

the refinement problem in CEGAR: given a spurious error trace π = τ1, . . . , τn,
where τi is a program statement, find a set of formulae X0, . . . , Xn such that
X0 = >, Xn = ⊥, and for 1 ≤ i ≤ n, the Hoare triples {Xi−1} τi {Xi} are
valid. The sequence {Xi} justifies that the error trace is infeasible and is used
to refine the abstraction. The solution is a sequence of interpolants {Ii}ni=1 such
that: Ii = Itp(τ1 . . . τi | τi+1 . . . τn) and Ii−1 ∧ τi =⇒ Ii. That is, in addition
to requiring that each Ii is an interpolant between the prefix (statements up
to position i in the trace) and the suffix (statements following position i), the
sequence {Ii} of interpolants must be inductive: this property is known as the
path interpolation property [17].

Other properties (e.g., simultaneous abstraction, interpolation sequence, path-
, symmetric-, and tree-interpolation) are used in existing verification frameworks
such as IMPACT [14], Whale [1], FunFrog [19] and eVolCheck [20], which im-
plement instances of Predicate Abstraction [8], Lazy Abstraction with Inter-
polation [14], Interpolation-based Function Summarization [19] and Upgrade
Checking [20]. These properties, to which we refer as collectives since they con-
cern collections of interpolants, are not satisfied by arbitrary sequences of Craig
interpolants and must be established for each interpolation algorithm and veri-
fication technique.

This paper performs a systematic study of collectives in verification and iden-
tifies the particular constraints they pose on propositional interpolation systems
used in SAT-based model checking. The SAT-based approach provides bit-precise
reasoning which is essential both in software and hardware applications, e.g.,
when dealing with pointer arithmetic and overflow. To-date, there exist success-
ful tools which perform SAT-based model checking (such as CBMC4 and SA-
TABS5), and which integrate it with interpolation (for example, eVolCheck and
FunFrog). However, there is no a framework which would correlate the existing
interpolation systems and compare the various collectives. This work addresses
the problem and contributes as follows:

Contribution 1: This paper, for the first time, collects, identifies, and uni-
formly presents the most common collectives imposed on interpolation by exist-
ing verification approaches (see §2).

In addition to the issues related to a diversity of interpolation properties, it is
often desirable to have flexibility in choosing different algorithms for computing
different interpolants in a sequence {Ii}, rather than using a single interpolation
algorithm (or interpolation system) ItpS , as assumed in the path interpolation
example above. To guarantee such a flexibility, this paper presents a framework
which generalizes the traditional setting consisting of a single interpolation sys-
tem to allow for sequences, or families, of interpolation systems. For example,
given a family of systems F = {ItpSi}ni=1, let Ii = ItpSi(τ1, . . . τi | τi+1 . . . τn).
If the resulting sequence of interpolants {Ii} satisfies the condition of path in-
terpolation, we say that the family F has the path interpolation property.

4 http://www.cprover.org/cbmc
5 http://www.cprover.org/satabs

Families find practical applicability in several contexts6. One example is
LAWI-style verification, where it is desirable to obtain a path interpolant {Ii}
with weak interpolants at the beginning (i.e., I1, I2, . . .) and strong interpolants
at the end (i.e., . . . , In−1, In). This would increase the likelihood of the sequence
to be inductive and can be achieved by using a family of systems of different
strength. Another example is software Upgrade Checking, where function sum-
maries are computed by interpolation. Different functions in a program could
require different levels of abstraction by means of interpolation. A system that
generates stronger interpolants can yield a tighter abstraction, more closely re-
flecting the behavior of the corresponding function. On the other hand, a system
that generates weaker interpolants would give an abstraction which is more “tol-
erant” and is more likely to remain valid when the function is updated.

Contribution 2: This paper systematically studies the collectives and the
relationships among them; in particular, it shows that for families of interpolation
systems the collectives form a hierarchy, whereas for a single system all but two
(i.e., path interpolation and simultaneous abstraction) are equivalent (see §3).

Another issue which this paper deals with is the fact that there exist different
approaches for generating interpolants. One is to use specialized algorithms:
examples are procedures based on constraint solving (e.g., [18]), machine learning
(e.g., [21]), and, even, pure verification algorithms like IC3 [2] and PDR [4]
that can be viewed as computing a path interpolation sequence. A second, well-
known approach is to extract an interpolant of A ∧ B from a resolution proof
of unsatisfiability of A ∧ B. Examples are the algorithm by Pudlák [16] (also
independently proposed by Huang [7] and by Krajíček [10]), the algorithm by
McMillan [11], and the Labeled Interpolation Systems (LISs) of D’Silva et al. [3],
the latter being the most general version of this approach.

The variety of interpolation algorithms makes it difficult to reason about their
properties in a systematic manner. At a low level of representation, the challenge
is determined by the complexity of individual algorithms and by the diversity
among them, which makes it hard to study them uniformly. On the other hand,
at a high level, where the details are hidden, not many interesting results can be
obtained. For this reason, this paper adopts a twofold approach, working both
at a high and at a low level of representation: at the high level, we give a global
view of the entire collection of properties and of their relationships and hierarchy;
at the low level, we obtain additional stronger results for concrete interpolation
systems. In particular, we first investigate the properties of interpolation systems
treating them as black boxes, and then focus on the propositional LISs. In the
paper, the results of §3 apply to arbitrary interpolation algorithms, while those
of §4 apply to LISs.

Contribution 3: For the first time, this paper gives both sufficient and nec-
essary conditions for a family of LISs and for a single LIS to enjoy each of the
collectives. In particular, we show that in case of a single system path interpo-

6 The notion of families is additionally a useful technical tool to make the discussion
and the results more general and easier to compare with the prior work of CAV’12
[17] (which formally defined families for the first time).

lation is common to all LISs, while simultaneous abstraction is as strong as all
other properties. Concrete applications of our results are also discussed (see §4).

Contribution 4. We developed an interpolating prover, PeRIPLO7, imple-
menting the proposed framework as discussed in §5; PeRIPLO is currently em-
ployed for solving and interpolation by the FunFrog and eVolcheck tools.
Related Work. To our knowledge, despite interpolation being an important
component of verification, no systematic investigation of verification-related re-
quirements for interpolants has been done prior to this paper. One exception is
the work by the first two authors [17], that studies a subset of the properties in
the context of LISs. This paper significantly extends the results of that work by
considering the most common collectives used in verification, at the same time
addressing a wider class of interpolation systems. Moreover, for LISs, it provides
both the necessary and sufficient conditions for each property.

2 Interpolation Systems
In this section we introduce the basic notions of interpolation, and then proceed
to discuss the collectives. Among several possible styles of presentation, we chose
the one that highlights te use of collectives in the context of model checking. We
employ the standard convention of identifying conjunctions of formulae with
sets of formulae and concatenation with conjunction, whenever convenient. For
example, we interchangeably use {φ1, . . . , φn} and φ1 · · ·φn for φ1 ∧ . . . ∧ φn.
Interpolation System. An interpolation system ItpS is a function that, given
an inconsistent Φ = {φ1, φ2}, returns a Craig’s interpolant, that is a formula
Iφ1,S = ItpS(φ1 | φ2) such that:

φ1 =⇒ Iφ1,S Iφ1,S ∧ φ2 =⇒ ⊥ LIφ1,S
⊆ Lφ1 ∩ Lφ2

where Lφ denotes the atoms of a formula φ. That is, Iφ1,S is implied by φ1, is
inconsistent with φ2 and is defined over the common language of φ1 and φ2.

For Φ = {φ1, . . . , φn}, we write Iφ1···φi,S to denote ItpS(φ1 · · ·φi | φi+1 · · ·φn).
W.l.o.g., we assume that, for any ItpS and any formula φ, ItpS(> | φ) = > and
ItpS(φ | >) = ⊥, where we equate the constant true > with the empty formula.
We omit S whenever clear from the context.

An interpolation system Itp is called symmetric if for any inconsistent
Φ = {φ1, φ2}: Itp(φ1 | φ2) ⇐⇒ Itp(φ2 | φ1) (we use the notation φ for the
negation of a formula φ).

A sequence F = {ItpS1 , . . . , ItpSn} of interpolation systems is called a family.
Collectives. In the following, we formulate the properties of interpolation sys-
tems that are required by existing verification algorithms. Furthermore, we gen-
eralize the collectives by presenting them over families of interpolation systems
(i.e., we allow the use different systems to generate different interpolants in a
sequence). Later, we restrict the properties to the more traditional setting of the
singleton families.
n-Path Interpolation (PI) was first defined in [8], where it is employed in the
refinement phase of CEGAR-based predicate abstraction. It has also appeared
7 http://verify.inf.usi.ch/periplo.html

in [22] under the name interpolation-sequence, where it is used for a specialized
interpolation-based hardware verification algorithm.

Formally, a family of n+ 1 interpolation systems {ItpS0 , . . . , ItpSn} has the
n-path interpolation property (n-PI) iff for any inconsistent Φ = {φ1, . . . , φn}
and for 0 ≤ i ≤ n− 1 (recall that I> = > and IΦ = ⊥):

(Iφ1...φi,Si ∧ φi+1) =⇒ Iφ1...φi+1,Si+1

n-Generalized Simultaneous Abstraction (GSA) is the generalization of
simultaneous abstraction, a property that first appeared, under the name sym-
metric interpolation, in [9], where it is used for approximation of a transition
relation for predicate abstraction. We changed the name to avoid confusion with
the notion of symmetric interpolation system (see above). The reason for gener-
alizing the property will be apparent later.

Formally, a family of n+ 1 interpolation systems {ItpS1 , . . . , ItpSn+1} has the
n-generalized simultaneous abstraction property (n-GSA) iff for any inconsistent
Φ = {φ1, . . . , φn+1}:

n∧
i=1

Iφi,Si =⇒ Iφ1...φn,Sn+1

The case n = 2 is called Binary GSA (BGSA): Iφ1,S1 ∧ Iφ2,S2 =⇒ Iφ1φ2,S3 .
If φn+1 = >, the property is called n-simultaneous abstraction (n-SA):∧n
i=1 Iφi,Si =⇒ ⊥(= Iφ1...φn,Sn+1) and, if n = 2, binary SA (BSA). In n-SA

ItpSn+1 is irrelevant and is often omitted.
n-State-Transition Interpolation (STI) is defined as a combination of PI
and SA in a single family of systems. It was introduced in [1] as part of the inter-
procedural verification algorithm Whale. Intuitively, the “state” interpolants
over-approximate the set of reachable states, and the “transition” interpolants
summarize the transition relations (or function bodies). The STI requirement
ensures that state over-approximation is “compatible” with the summarization.
That is, {Iφ1···φi,Si}Iφi+1,Ti+1{Iφ1···φi+1,Si+1} is a valid Hoare triple for each i.

Formally, a family of interpolation systems {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn}
has the n-state-transition interpolation property (n-STI) iff for any inconsistent
Φ = {φ1, . . . , φn} and for 0 ≤ i ≤ n− 1:

(Iφ1...φi,Si ∧ Iφi+1,Ti+1) =⇒ Iφ1...φi+1,Si+1

T -Tree Interpolation (TI) is a generalization of classical interpolation used
in model checking applications, in which partitions of an unsatisfiable formula
naturally correspond to a tree structure such as call tree or program unwinding.
The collective was first introduced by McMillan and Rybalchenko for computing
post-fixpoints of a system of Horn clauses (e.g., used in analysis of recursive
programs) [15], and is equivalent to the nested-interpolants of [5].

Formally, let T = (V,E) be a tree with n nodes V = [1, . . . , n]. A family of
n interpolation systems {ItpS1 , . . . , ItpSn} has the T -tree interpolation property
(T -TI) iff for any inconsistent Φ = {φ1, . . . , φn}:∧

(i,j)∈E

IFj ,Sj ∧ φi =⇒ IFi,Si

where Fi = {φj | i v j}, and i v j iff node j is a descendant of node i in T .
Notice that for the root i of T , Fi = Φ and IFi,Si = ⊥.

An interpolation system ItpS is said to have a property P (or, simply, to
have P), where P is one of the properties defined above, if every family in-
duced by ItpS has P . For example, ItpS has GSA iff for every k the family
{ItpS1 , . . . , ItpSk}, where ItpSi = ItpS for all i, has k-GSA.

3 Collectives of Interpolation Systems

In this section, we study collectives of general interpolation systems, that is, we
treat interpolation systems as black-boxes. In section §4 we will extend the study
to the implementation-level details of the LISs.
Collectives of Single Systems. We begin by studying the relationships among
the various collectives of single interpolation systems.

Theorem 1. Let ItpS be an interpolation system. The following are equivalent:
ItpS has BGSA (1), ItpS has GSA (2), ItpS has TI (3), ItpS has STI (4).

Proof. We show that 1→ 2, 2→ 3, 3→ 4, 4→ 1.
(1→ 2) Assume ItpS has BGSA. Take any inconsistent Φ = {φ1, . . . , φn+1}.

Then, for 2 ≤ i ≤ n: (Iφ1···φi−1∧Iφi)⇒ Iφ1···φi , which together yield (
∧n
i=1 Iφi)⇒

Iφ1...φn . Hence, ItpS has GSA.
(2 → 3) Let T = ([1, . . . , n], E), take any inconsistent Φ = {φ1, . . . , φn}.

Since ItpS has GSA: (
∧

(i,j)∈E IFj ∧Iφi)⇒ IFi , and, from the definition of Craig
interpolation, φi ⇒ Iφi . Hence, ItpS has T -TI.

(3 → 4) Take any inconsistent Φ = {φ1, . . . , φn} and extend it to a Φ′ by
adding n copies of > at the end. Define a tree TSTI = ([1, . . . , 2n], E) s.t.:
E = {(n+ i, i) | 1 ≤ i ≤ n}∪{(n+ i, n+ i−1) | 1 ≤ i ≤ n}. Then, for 1 ≤ i ≤ n,
Fi = {φi} and Fn+i = {φ1, . . . , φi}, where Fi is as in the definition of T -TI. By
the T -TI property: (IFn+i ∧ IFi+1 ∧ >)⇒ IFn+i+1 , which is equivalent to STI.

(4→ 1) Follows from STI being syntactically equivalent to BGSA for i = 1.

Theorem 1 has a few simple extensions. First, GSA implies SA directly from
the definitions. Similarly, since φ ⇒ Iφ, STI implies PI. Finally, we conjecture
that both SA and PI are strictly weaker than the rest. In §4 (Theorem 16), we
show that for LISs, PI is strictly weaker than SA. As for SA, we show that it
is equivalent to BGSA in symmetric interpolation systems (Proposition 1 in the
appendix). But, in the general case, the conjecture remains open.

These results define a hierarchy of collectives which is summarized in Fig. 1,
where the edges indicate implications among the collectives. Note that SA →
GSA holds only for symmetric systems.

In summary, the main contribution in the setting of a single system is the
proof that almost all collectives are equivalent and the hierarchy of the collectives
collapses. From a practical perspective, this means that McMillan’s interpolation
system (implemented by most interpolating SMT-solvers) has all of the collec-
tive properties, including the recently introduced TI.

Collectives of Families of Systems. Here, we study collectives of families
of interpolation systems. We first show that the collectives introduced in §2
directly extend from families to sub-families. Second, we examine the hierarchy
of the relationships among the properties. Finally, we conclude by discussing the
practical implications of these results.
Collectives of Sub-families. If a family of interpolation systems F has a
property P , then sub-families of F have P as well. We state this formally for
k-STI (since we use it in the proof of Theorem 11); similar statements for the
other collectives are discussed in the appendix8.

Theorem 2. A family {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI iff for all
k ≤ n the sub-family {ItpS0 , . . . , ItpSk} ∪ {ItpT1 , . . . , ItpTk} has k-STI.

Relationships Among Collectives. We now show the relationships among
collectives. First, we note that n-SA and BGSA are equivalent for symmet-
ric interpolation systems. Whenever a family F = {ItpS1 , . . . , ItpSn+1} has
(n+ 1)-SA and ItpSn+1 is symmetric, then F has n-GSA (Proposition 2 in the
appendix, which is the analogue of Proposition 1 for single systems).

In the rest of the section, we delineate the hierarchy of collectives. In par-
ticular, we show that T -TI is the most general collective, immediately followed
by n-GSA, which is followed by BGSA and n-STI, which are equivalent, and at
last by n-SA and n-PI. The first result is that the n-STI property implies both
the n-PI and n-SA properties separately:

Theorem 3. If a family F = {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI
then (1) {ItpS0 , . . . , ItpSn} has n-PI and (2) {ItpT1 , . . . , ItpTn} has n-SA.

A natural question to ask is whether the converse of Theorem 3 is true. That
is, whether the family F1 ∪ F2 that combines two arbitrary families F1 and F2
that independently enjoy n-PI and n-SA, respectively, has n-STI. We show in
§4, Theorem 11, that this is not the case.

As for BGSA, the n-STI property is closely related to it: deciding whether
a family F has n-STI is in fact reducible to deciding whether a collection of
sub-families of F has BGSA.

Theorem 4. A family F = {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI iff
{ItpSi , ItpTi+1 , ItpSi+1} has BGSA for all 0 ≤ i ≤ n− 1.

From Theorem 4 and Theorem 3 we derive:

Corollary 1. If there exists a family {ItpS0 , . . . , ItpSn} ∪ {ItpT1 , . . . , ItpTn}
s.t. {ItpSi , ItpTi+1 , ItpSi+1} has BGSA for all 0 ≤ i ≤ n− 1, then {ItpT1 , . . . , ItpTn}
has n-SA.

We now relate T -TI and n-GSA. Note that the need for two theorems with
different statements arises from the asymmetry between the two properties: all
φi are abstracted by interpolation in n-GSA, whereas in T -TI a formula is not
abstracted, when considering the correspondent parent together with its children.
8 All proofs can be found in the appendix.

Theorem 5. Given a tree T = (V,E) if a family F = {ItpSi}i∈V has T -TI,
then, for every parent ik+1 and its children i1, . . . , ik:

1. If ik+1 is the root, {ItpSi1 , . . . , ItpSik } has k-SA.
2. Otherwise, {ItpSi1 , . . . , ItpSik , ItpSik+1

} has k-GSA.

Theorem 6. Given a tree T = (V,E), a family F = {ItpSi}i∈V has T -TI if,
for every node ik+1 and its children i1, . . . , ik, there exists Tik+1 such that:

1. If ik+1 is the root, {ItpSi1 , . . . , ItpSik , ItpTik+1
} has (k + 1)-SA.

2. Otherwise, {ItpSi1 , . . . , ItpTik+1
, ItpSik+1

} has (k + 1)-GSA.

An important observation is that the T -TI property is the most general, in the
sense that it realizes any of the other properties, given an appropriate choice
of the tree T . We state here (and prove in the appendix) that n-GSA and n-
STI can be implemented by T -TI for some TnGSA and TnSTI ; the remaining cases
can be derived in a similar manner. Note that the converse implications are not
necessarily true in general, since the tree interpolation requirement is stronger.

Theorem 7. If a family F = {ItpSn+1 , ItpS1 , . . . , ItpSn+1} has TnGSA-TI, then
{ItpS1 , . . . , ItpSn+1} has n-GSA.

Theorem 8. If a family F = {ItpS0 , . . . , ItpSn}∪ {ItpT1 , . . . , ItpTn} has TnSTI-
TI, then it has n-STI.

The results of so far (including Theorem 11 of §4) define a hierarchy of collec-
tives which is summarized in Fig. 2. The solid edges indicate direct implication
between properties; SA → GSA requires symmetry, while GSA → TI requires
the existence of an additional set of interpolation systems. The dashed edges
represent the ability of TI to realize all the other properties for an appropriate
tree; only the edges to STI and GSA are shown, the other ones are implicit.
The dash-dotted edges represent the sub-family properties.

An immediate application of our results is that they show how to overcome
limitations of existing implementations. For example, they enable the trivial
construction of tree interpolants in MathSat9 (currently only available in iZ3)
– thus enabling its usability for Upgrade Checking [20] – by reusing existing
BGSA-interpolation implementation of MathSat. Similarly, our results enable
construction of BGSA and GSA interpolants in iZ3 (currently only available in
MathSat) – thus enabling the use of iZ3 in Whale.

BGSA

GSA

TI

STI

PISA
symm

Figure 1: Single systems collectives.

TI

GSA STI

BGSA SA PI

*

symm

Figure 2: Families of systems collectives.
9 http://mathsat.fbk.eu/

4 Collectives of Labeled Interpolation Systems
In this section, we move from the abstract level of general interpolation systems
to the implementation level of the propositional Labeled Interpolation Systems.
After introducing and defining LISs, we study collectives of families, then sum-
marize the results for single LISs, also answering the questions left open in §3.
The key results are in Lemmas 1− 4. Unfortunately, the proofs are quite techni-
cal. For readability, we focus on the main results and their significance and refer
the reader to the appendix for full details.
There are several state-of-the art approaches for automatically computing inter-
polants. The most successful techniques derive an interpolant for A ∧ B from
a resolution proof of the unsatisfiability of the conjunction. Noteworthy exam-
ples are the algorithm independently developed by Pudlák [16], Huang [7] and
Krajíček [10], and the one by McMillan [11]. These algorithms are implemented
recursively by initially computing partial interpolants for the axioms (leaves of
the proof), and, then, following the proof structure, by computing a partial in-
terpolant for each conclusion from those of the premises. The partial interpolant
of the root of the proof is the interpolant for the formula. In this section, we
review these algorithms following the framework of D’Silva et al. [3].
Resolution Proofs. We assume a countable set of propositional variables. A
literal is a variable, either with positive (p) or negative (p) polarity. A clause C is
a finite disjunction of literals; a formula Φ in conjunctive normal form (CNF) is a
finite conjunction of clauses. A resolution proof of unsatisfiability (or refutation)
of a formula Φ in CNF is a tree such that the leaves are the clauses of Φ, the
root is the empty clause ⊥ and the inner nodes are clauses generated via the
resolution rule (where C+ ∨ p and C− ∨ p are the antecedents, C+ ∨ C− the
resolvent, and p is the pivot):

C+ ∨ p C− ∨ p
C+ ∨ C−

Labelings and Interpolant Strength. D’Silva et al. [3] generalize the algo-
rithms by Pudlák [16] and McMillan [11] for propositional resolution systems by
introducing the notion of Labeled Interpolation System (LIS), focusing on the
concept of interpolant strength (a formula φ is stronger than ψ when φ=⇒ψ).

Given a refutation of a formula A ∧ B, a variable p can appear as a literal
only in A, only in B or in both; p is respectively said to have class A, B or AB.
A labeling L is a mapping that assigns a label among {a, b, ab} independently
to each variable in each clause; we assume that no clause has both a literal and
its negation, so assigning a label to variables or literals is equivalent. The set
of possible labelings is restricted by ensuring that class A variables have label a
and class B variables label b; AB variables can be labeled either a, b or ab.

In [3], a Labeled Interpolation System (LIS) is defined as a procedure ItpL
(shown in Fig. 3) that, given A, B, a refutation R of A ∧ B and a labeling L,
outputs a partial interpolant IA,L(C) = ItpL(A | B)(C) for any clause C in
R; this depends on the clause being in A or B (if leaf) and on the label of the
pivot associated with the resolution step (if inner node). IA,L = ItpL(A | B)
represents the interpolant for A ∧ B, that is ItpL(A | B)(⊥). We omit the
parameters whenever clear from the context.

Leaf: C [I] Inner node: C+ ∨ p : α [I+] C− ∨ p : β [I−]
C+ ∨ C− [I]

I =
{
C� b if C ∈ A
¬(C� a) if C ∈ B I =

{
I+ ∨ I− if α t β = a
I+ ∧ I− if α t β = b
(I+ ∨ p) ∧ (I− ∨ p) if α t β = ab

Figure 3: Labeled Interpolation System ItpL.
In Fig. 3, C � α denotes the restriction of a clause C to the variables with

label α. p : α indicates that variable p has label α ∈ {a, b, ab}. By C[I] we
represent that clause C has a partial interpolant I. I+, I− and I are the partial
interpolants respectively associated with the two antecedents and the resolvent
of a resolution step: I+ = ItpL(C+∨p), I− = ItpL(C−∨p), I = ItpL(C+∨C−).

A join operator t allows to determine the label of a pivot p, taking into
account that p might have different labels α and β in the two antecedents: t is
defined by a t b = ab, a t ab = ab, b t ab = ab.

The systems corresponding to McMillan and Pudlák’s interpolation algo-
rithms are referred to as ItpM and ItpP ; the system dual to McMillan’s is ItpM ′ .
ItpM , ItpP and ItpM ′ are obtained as special cases of ItpL by labeling all the
occurrences of AB variables with b, ab and a, respectively (see [3] and [17]).

A total order � is defined over labels as b � ab � a, and pointwise extended
to a partial order over labelings: L � L′ if, for every clause C and variable p
in C, L(p, C) � L′(p, C). This allows to directly compare the logical strength
of the interpolants produced by two systems. In fact, for any refutation R of a
formula A∧B and labelings L,L′ such that L � L′, we have ItpL(A,B,R) =⇒
ItpL′(A,B,R) and we say that ItpL is stronger than ItpL′ [3].

Since a labeled system ItpL is uniquely determined by the labeling L, when
discussing a family of LISs {ItpL1 , . . . , ItpLn} we will refer to the correspondent
family of labelings as {L1, . . . , Ln}.
Labeling Notation. In the previous sections, we saw how the various collectives
involve the generation of multiple interpolants from a single inconsistent formula
Φ = {φ1, . . . , φn} for different subdivisions of Φ into an A and a B parts; we
refer to these ways of splitting Φ as configurations. Remember that a labeling
L has freedom in assigning labels only to occurrences of variables of class AB;
each configuration identifies these variables.

Since we deal with several configurations at a time, it is useful to separate the
variables into partitions of Φ depending on whether the variables are local to a
φi or shared, taking into account all possible combinations. For example, Table 1
is the labeling table that characterizes 3-SA. Recall that in 3-SA we are given an
inconsistent Φ = {φ1, φ2, φ3} and a family of labelings {L1, L2, L3} and generate
three interpolants Iφ1,L1 , Iφ2,L2 , Iφ3,L3 . The labeling Li is associated with the
ith configuration. For example, the table shows that L1 can independently assign
a label from {a, b, ab} to each occurrence of each variable shared between φ1 and
φ2, φ1 and φ3 or φ1, φ2 and φ3 (as indicated by the presence of α1, γ1, δ1).

When talking about an occurrence of a variable p in a certain partition
φi1 · · ·φik , it is convenient to associate to p and the partition a labeling vector
(ηi1 , . . . , ηik), representing the labels assigned to p by Li1 , . . . , Lik in configura-
tion i1, . . . , ik (all other labels are fixed). Strength of labeling vectors is compared
pointwise, extending the linear order b � ab � a as described earlier.

We reduce the problem of deciding whether a family F = {ItpL1 , . . . , ItpLn}
has an interpolation property P to showing that all labeling vectors of {L1, . . . , Ln}

p in ? Variable class, label
φ1 | φ2φ3 φ2 | φ1φ3 φ3 | φ1φ2

φ1 A, a B, b B, b
φ2 B, b A, a B, b
φ3 B, b B, b A, a
φ1φ2 AB,α1 AB,α2 B, b
φ2φ3 B, b AB, β2 AB, β3
φ1φ3 AB, γ1 B, b AB, γ3
φ1φ2φ3 AB, δ1 AB, δ2 AB, δ3

Table 1: 3-SA.

p in ? Variable class, label
φ1 | φ2φ3 φ2 | φ1φ3 φ1φ2|φ3

φ1 A, a B, b A, a
φ2 B, b A, a A, a
φ3 B, b B, b B, b
φ1φ2 AB,α1 AB,α2 A, a
φ2φ3 B, b AB, β2 AB, β3
φ1φ3 AB, γ1 B, b AB, γ3
φ1φ2φ3 AB, δ1 AB, δ2 AB, δ3

Table 2: BGSA.

satisfy a certain set of labeling constraints. For simplicity of presentation, in the
rest of the paper we assume that all occurrences of a variable are labeled uni-
formly. The extension to differently labeled occurrences is straightforward.

Collectives of LISs Families. We derive in the following both necessary and
sufficient conditions for the collectives to hold in the context of LISs families.
The practical significance of our results is to identify which LISs satisfy which
collectives. In particular, for the first time, we show that not all LISs identified
by D’Silva et al. satisfy all collectives. This work provides an essential guide
for using interpolant strength results when collectives are required (such as in
Upgrade Checking).

We proceed as follows. First, we identify necessary and sufficient labeling
constraints to characterize BGSA. Second, we extend them to n-GSA and to
n-SA. Third, we exploit the connections between BGSA and n-GSA on one side,
and n-STI and T -TI on the other (Theorem 4, Lemma 5, Lemma 6) to derive
the labeling constraints both for n-STI and T -TI, thus completing the picture.
BGSA. Let Φ = {φ1, φ2, φ3} be an unsatisfiable formula in CNF, and F =
{ItpL1 , ItpL2 , ItpL3} a family of LISs. We want to identify the restrictions on the
labeling vectors of {L1, L2, L3} for which F has BGSA, i.e., Iφ1,L1 ∧ Iφ2,L2 =⇒
Iφ1φ2,L3 . We define a set of BGSA constraints CCBGSA on labelings as follows.
A family of labelings {L1, L2, L3} satisfies CCBGSA iff:

(α1, α2), (δ1, δ2) � {(ab, ab), (b, a), (a, b)}, β2 � β3, γ1 � γ3, δ1 � δ3, δ2 � δ3

hold for all variables, where αi, βi, γi and δi are as shown in Table 2, the labeling
table for BGSA. ∗ � {∗1, ∗2} denotes that ∗ � ∗1 or ∗ � ∗2 (both can be true).

We aim to prove that CCBGSA is necessary and sufficient for a family of LISs
to have BGSA. On one hand, we claim that, if {L1, L2, L3} satisfies CCBGSA,
then {ItpL1 , ItpL2 , ItpL3} has BGSA. It is sufficient to prove the thesis for a set
of restricted BGSA constraints CC∗BGSA, defined as follows:

(α1, α2), (δ1, δ2) ∈ {(ab, ab), (b, a), (a, b)}, β2 = β3, γ1 = γ3, δ3 = max{δ1, δ2}

Lemma 1. If {L1, L2, L3} satisfies CC∗BGSA, then {ItpL1 , ItpL2 , ItpL3} has BGSA.
The CC∗BGSA constraints can be relaxed to CCBGSA as shown in [17] (Theo-
rem 2, Lemma 3), due to the connection between partial order on labelings and
LISs and strength of the generated interpolants. For example, the constraint
δ3 = max(δ1, δ2) can be relaxed to δ3 � δ1, δ3 � δ2. This leads to:

Corollary 2. If {L1, L2, L3} satisfies CCBGSA, then {ItpL1 , ItpL2 , ItpL3} has BGSA.

On the other hand, it holds that the satisfaction of the CCBGSA constraints is
necessary for BGSA:
Lemma 2. If {ItpL1 , ItpL2 , ItpL3} has BGSA, then {L1, L2, L3} satisfies CCBGSA.
Having proved that CCBGSA is both sufficient and necessary, we conclude:
Theorem 9. A family {ItpL1 , ItpL2 , ItpL3} has BGSA if and only if {L1, L2, L3}
satisfies CCBGSA.
n-GSA. After addressing the binary case, we move to defining necessary and
sufficient conditions for n-GSA. A family of LISs {ItpL1 , . . . , ItpLn+1} has n-GSA
if, for any Φ = {φ1, . . . , φn+1}, IΦ1,L1 ∧ · · · ∧ Iφn,Ln =⇒ Iφ1...φn,Ln+1 , provided
Φ is inconsistent. As we defined a set of labeling constraints for BGSA, we now
introduce n-GSA constraints (CCnGSA) on a family of labelings {L1, . . . , Ln+1};
for every variable with labeling vector (αi1 , . . . , αik+1), 1 ≤ k ≤ n, letting m =
ik+1 if ik+1 6= n+ 1, m = ik otherwise:
(1) (∃j ∈ {i1, . . . , im} αj = a) =⇒ (∀h ∈ {i1, . . . , im} h 6= j =⇒ αh = b)
(2) Moreover, if ik+1 = n+ 1 : ∀j ∈ {i1, . . . , ik}, αj � αik+1

That is, if a variable is not shared with φn+1, then, if one of the labels is a,
all the others must be b; if the variable is shared with φn+1, condition (1) still
holds for (αi1 , . . . , αik−1), and all these labels must be stronger or equal than
αik+1 = αn+1. We can prove that these constraints are necessary and sufficient
for a family of LIS to have n-GSA:
Theorem 10. A family F = {ItpL1 , . . . , ItpLn+1} has n-GSA if and only if
{L1, . . . , Ln+1} satisfies CCnGSA.
In [17] (see Setting 1) it is proved that n-SA holds for any family of LISs stronger
than Pudlák. Theorem 10 is strictly more general, since it allows for tuples of
labels (e.g., (α1, α2) = (a, b) or (δ1, δ3, δ2) = (a, b, b)) that were not considered
in [17]. The constraints for n-SA follow as a special case of CCnGSA:
Corollary 3. A family F = {ItpL1 , . . . , ItpLn} has n-SA if and only if {L1, . . . , Ln}
satisfies the following constraints: for every variable with labeling vector (αi1 , . . . , αik),
for 2 ≤ k ≤ n: (∃j ∈ {i1, . . . , ik}αj = a) =⇒ (∀h ∈ {i1, . . . , ik}h 6= j =⇒ αh = b).
Moreover, a family that has (n+1)-SA also has n-GSA if the last member of the
family is Pudlák’s system. In fact, from Proposition 2 and Pudlák’s system being
symmetric (as shown in [7]), it follows that if a family {ItpL1 , . . . , ItpLn , ItpP }
has (n+ 1)-SA, then it has n-GSA.

After investigating n-GSA and n-SA, we address two questions which were
left open in §3: do n-SA and n-PI imply n-STI? Is the requirement of additional
interpolation systems necessary to obtain T -TI from n-GSA? We show here that
n-SA and n-PI do not necessarily imply n-STI, and that, for LISs, n-GSA and
T -TI are equivalent.

n-STI. Theorem 3 shows that if a family has n-STI, then it has both n-SA and
n-PI. We prove that the converse is not necessarily true. First, it is not difficult
to show that any family {ItpL0 , ItpL1 , ItpL2} has 2-PI (Proposition 3 in the
appendix); a second result is that:

Lemma 5. There exists a family {ItpL0 , ItpL1 , ItpL2} that has 2-PI and a fam-
ily {ItpL′1 , ItpL′2} that has 2-SA, but the family {ItpL0 , ItpL1 , ItpL2 , ItpL′1 , ItpL′2}
does not have 2-STI.
We obtain the main result applying the STI sub-family property (Theorem 2):
Theorem 11. There exists a family {ItpS0 , . . . , ItpSn} that has n-PI, and a
family {ItpT1 , . . . , ItpTn} that has n-SA, but the family {ItpS0 , . . . , ItpSn}∪
{ItpT1 , . . . , ItpTn} does not have n-STI.

T-TI. The last collective to be studied is T -TI. Theorem 6 shows how T -TI
can be obtained by multiple applications of GSA at the level of each parent
and its children, provided that we can find an appropriate labeling to generate
an interpolant for the parent. We prove here that, in the case of LISs, this
requirement is not needed, and derive explicit constraints on labelings for T -TI.

Let us define n-GSA strengthening any property derived from n-GSA by not
abstracting any of the subformulae φi, for example Iφ1,L1 ∧ . . . ∧ Iφn−1,Ln−1 ∧
φn =⇒ Iφ1...φn,Ln+1 ; it can be proved that:
Lemma 6. The set of labeling constraints of any n-GSA strengthening is a sub-
set of constraints of n-GSA.

From Theorem 6 and Lemma 6, it follows that:
Lemma 7. Given a tree T = (V,E) a family {ItpSi}i∈V has T -TI if, for every
parent ik+1 and its children i1, . . . , ik, the family of labelings of the (k+ 1)-GSA
strengthening obtained by non abstracting the parent satisfies the correspondent
subset of (k + 1)-GSA constraints.

Note that, in contrast to Theorem 6, in the case of LISs we do not need to
ensure the existence of an additional set of interpolation systems to abstract the
parents. The symmetry between the necessary and sufficient conditions given by
Theorem 6 and Theorem 5 is restored, and we establish:
Theorem 12. Given a tree T = (V,E) a family {ItpSi}i∈V has T -TI if and
only if for every parent ik+1 and its children i1, . . . , ik, the family of labelings of
the (k + 1)-GSA strengthening obtained by non abstracting the parent satisfies
the correspondent subset of (k + 1)-GSA constraints.

Alternatively, in the case of LISs, the additional interpolation systems can be
constructed explicitly:
Theorem 13. Any F = {ItpLi1 , . . . , ItpLik , ItpLn+1} s.t. k < n that has an
n-GSA strengthening property can be extended to a family that has n-GSA.

Collectives of Single LISs. In the following, we highlight the fundamental re-
sults in the context of single LISs, which represent the most common application
of the framework of D’Silva et al. to SAT-based model checking.

First, importantly for practical applications, any LIS satisfies PI:
Theorem 14. PI holds for all single LISs.

Second, recall that in §3 we proved that BGSA, STI, TI, GSA are equivalent
for single interpolation systems, and that SA → BGSA for symmetric ones. We
now show that for a single LIS, SA is equivalent to BGSA and that PI is not.

Theorem 15. If a LIS has SA, then it has BGSA.
Proof. We show that, for any L, the labeling constraints of SA imply those of
BGSA. Refer to Table 2, Table 1, Theorem 10 and Corollary 3. In case of a
family {L1, L2, L3}, the constraints for 3-SA are:

(α1, α2), (β2, β3), (γ1, γ3) � {(ab, ab), (b, a), (a, b)}
(δ1, δ2, δ3) � {(ab, ab, ab), (a, b, b), (b, a, b), (b, b, a)}

When L1 = L2 = L3, they simplify to α, β, γ, δ ∈ {ab, b}; this means that, in
case of a single LIS, only Pudlák’s or stronger systems are allowed. In case of a
family {L1, L2, L3}, the constraints for BGSA are:

(α1, α2), (δ1, δ2) � {(ab, ab), (b, a), (a, b)}, β2 � β3, γ1 � γ3, δ1 � δ3, δ2 � δ3

When L1 = L2 = L3, they simplify to α, δ ∈ {ab, b}; clearly, the constraints for
3-SA imply those for BGSA, but not vice versa.
Finally, Theorem 14 and Theorem 15 yield:

Theorem 16. The system ItpM ′ has PI but does not have BGSA.

Proof. From the proof of Theorem 15: a LIS has the BGSA property iff it is
stronger or equal than Pudlák’s system. ItpM ′ is strictly weaker than ItpP .
Thus, it does not have BGSA.

Note that the necessary and sufficient conditions for LISs to support each
of the collectives simplify implementing procedures with a given property, or,
more importantly from a practical perspective, determine which implementation
supports which property.

5 Implementation
We developed an interpolating prover, PeRIPLO10, which implements the pro-
posed framework. PeRIPLO is, to the best of our knowledge, the first SAT-
solver built on MiniSAT 2.2.0 that realizes the Labeled Interpolation Systems
of [3] and allows to perform interpolation, path interpolation, generalized simul-
taneous abstraction, state-transition interpolation and tree interpolation; it also
offers proof logging and manipulation routines. The tool has been integrated
within the FunFrog and eVolCheck verification frameworks, which make use of
its solving and interpolation features for SAT-based model checking. In theory,
using different partitions of the same formula and different labelings with each
partition does not change the algorithmic complexity of LISs (see appendix C).
In our experience, there is no overhead in practice as well.

6 Conclusions
Craig interpolation is a widely used approach in abstraction-based model check-
ing. This paper conducts a systematic investigation of the most common interpo-
lation properties exploited in verification, focusing on the constraints they pose
on propositional interpolation systems used in SAT-based model checking.
10 An executable of PeRIPLO is available to reviewers for experimentation at

http://www.inf.usi.ch/phd/rollini/ATVA2013.tar.gz

The paper makes the following contributions. It systematizes and unifies var-
ious properties imposed on interpolation by existing verification approaches and
proves that for families of interpolation systems the properties form a hierarchy,
whereas for a single system all properties except path interpolation and simulta-
neous abstraction are in fact equivalent. Additionally, it defines and proves both
sufficient and necessary conditions for a family of Labeled Interpolation Systems.
In particular, it demonstrates that in case of a single system path interpolation
is common to all LISs, while simultaneous abstraction is as strong as all other
more complex properties. Extending our framework to address interpolation in
first order theories is an interesting open problem, and is part of our future work.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An Interpolation-Based
Algorithm for Inter-procedural Verification. In VMCAI’12, pages 39–55.

2. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI’11.
3. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant

Strength. In VMCAI’10, pages 129–145.
4. N. Een, A. Mishchenko, and R. Brayton. Efficient Implementation of Property-

Directed Reachability. In FMCAD’11.
5. M. Heizmann, J. Hoenicke, and A. Podelski. Nested Interpolants. In POPL’10.
6. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions from Proofs.

In POPL’04, pages 232–244.
7. G. Huang. Constructing Craig Interpolation Formulas. In COCOON’95.
8. R. Jhala and K. McMillan. A Practical and Complete Approach to Predicate

Refinement. In TACAS’06, pages 459–473.
9. R. Jhala and K. McMillan. Interpolant-Based Transition Relation Approximation.

In CAV’05, pages 39–51.
10. J. Krajícek. Interpolation Theorems, Lower Bounds for Proof Systems, and Inde-

pendence Results for Bounded Arithmetic. J. Symb. Log., 62(2):457–486, 1997.
11. K. McMillan. An Interpolating Theorem Prover. In TACAS’04, pages 16–30.
12. K. McMillan. Applications of Craig Interpolation to Model Checking. In CSL’04.
13. K. McMillan. Interpolation and SAT-Based Model Checking. In CAV’03.
14. K. McMillan. Lazy Abstraction with Interpolants. In CAV’06, pages 123–136.
15. K. McMillan and A. Rybalchenko. Solving Constrained Horn Clauses Using Inter-

polation. Technical Report MSR-TR-2013-6, Microsoft Research, 2013.
16. P. Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone

Computations. J. Symb. Log., 62(3):981–998, 1997.
17. S. Rollini, O. Sery, and N. Sharygina. Leveraging Interpolant Strength in Model

Checking. In CAV’12.
18. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for Interpola-

tion. In VMCAI’07, pages 346–362.
19. O. Sery, G. Fedyukovich, and N. Sharygina. FunFrog: Bounded Model Checking

with Interpolation-based Function Summarization. In ATVA’12.
20. O. Sery, G. Fedyukovich, and N. Sharygina. Incremental Upgrade Checking by

Means of Interpolation-based Function Summaries. In FMCAD’12.
21. R. Sharma, A. V. Nori, and A. Aiken. Interpolants as Classifiers. In CAV’12.
22. Y. Vizel and O. Grumberg. Interpolation-Sequence Based Model Checking. In

FMCAD’09, pages 1–8.

A Properties of Sub-families

Theorem 2. A family {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI iff for all
k ≤ n the subfamily {ItpS0 , . . . , ItpSk} ∪ {ItpT1 , . . . , ItpTk} has k-STI.

Proof. →) Assume an inconsistent Φ , {φ1, . . . , φk}. We can extend it to a
Φ′ , {φ′1, . . . , φ′n} such that φ′i ≡ φi, by adding n − k empty formulae >. If F
has the n-STI property, for 0 ≤ j ≤ k − 1

Iφ1...φj ,Sj ∧ Iφj+1,Tj+1 → Iφ1...φj+1,Sj+1

←) Follows from k = n.

Theorem 17. A family F = {ItpS1 , . . . , ItpSn+1} has n-GSA iff for all k ≤ n
all the subfamilies {ItpSi1 , . . . , ItpSik+1

} have k-GSA.

Proof. (→) Let n be a natural number. Take any inconsistent Φ = {φ1, . . . , φk+1}
such that k ≤ n. Let {i1, . . . , ik+1} be a subset of {1, . . . , n+ 1}. Extend Φ to a
Φ′ = {φ′1, . . . , φ′n+1} by adding (n−k) copies of>, so that φ′i1 = φ1, . . . , φ

′
ik

= φk,
φ′ik+1

= φn+1. Since F has n-GSA:

n∧
j=1

Iφ′
j
,Sj =⇒ Iφ′1...φ′n,Sn+1

and, since φ′j = > for j 6∈ {i1, . . . , ik}:∧
j∈{i1...ik}

Iφj ,Sj =⇒ Iφi1...ik ,Sik+1

(←) Follows from k = n.

It is easy to see that the technique used in the proof of Theorem 17, i.e.,
extending an unsatisfiable formula with > conjuncts, applies to the other prop-
erties as well.

Theorem 18. A family {ItpS1 , . . . , ItpSn} has n-SA iff for all k ≤ n all the
subfamilies {ItpSi1 , . . . , ItpSik } have k-SA.

Proof. The proof works as in Theorem 17.

Theorem 19. A family {ItpS0 , . . . , ItpSn} has n-PI iff for all k ≤ n the sub-
family {ItpS0 , . . . , ItpSk} has k-PI.

Proof. The proof works as in Theorem 2.

Theorem 20. For a given tree T = (V,E), a family {ItpSi}i∈V has T -TI iff
for every subtree T ′ = (V ′, E′) of T , the family {ItpSj}j∈V ′ has T ′-TI.

Proof. →). Assume an inconsistent Φ , {φi1 , . . . , φik} decorating T ′. We can
extend Φ with |V ′| − |V | empty formulae > to Φ′ , {φ′1, . . . , φ′n} decorating T .
If {ItpSi}vi∈V has the T -TI property, for all v′i in V and in particular for all vi
in V ′ ∧

(vi,vj)∈E′
IFj ,Sj ∧ φi → IFi,Si

←). Follows from T ′ ≡ T .

B Other Proofs

Proposition 1. SA implies BGSA in symmetric interpolation systems.

Proof. Take any inconsistent Φ = {φ1, φ2, φ3}. If an interpolation system has
SA, then:

Iφ1 ∧ Iφ2 ∧ Iφ3 =⇒ ⊥

Equivalently,
Iφ1 ∧ Iφ2 =⇒ Iφ3

For a symmetric system, Iφ3 = Iφ1φ2 .

Proposition 2. If a family F = {ItpS1 , . . . , ItpSn+1} has (n+ 1)-SA and ItpSn+1

is symmetric, then F has n-GSA.

Proof. Take any inconsistent Φ = {φ1, . . . , φn}. Since F has (n + 1)-SA, then
Iφ1,S1 ∧ · · · ∧ Iφn+1,Sn+1 =⇒ ⊥. Assuming ItpSn+1 is symmetric, Iφn+1,Sn+1 =
Iφ1,...,φn,Sn+1 and the thesis is proved.

Theorem 3. If a family F = {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI
then (1) {ItpS0 , . . . , ItpSn} has n-PI and (2) {ItpT1 , . . . , ItpTn} has n-SA.

Proof. (1) It follows from φi =⇒ Iφi,Si for every i.

(2). Take any inconsistent Φ = {φ1, . . . , φn}. If F has n-STI, then, for 0 ≤ i ≤
n− 1:

Iφ1···φi,Si ∧ Iφi+1,Ti+1 =⇒ Iφ1···φi+1,Si+1

Since Iφ1···φn = ⊥, we get Iφ1,T1 ∧ · · · ∧ Iφn,Tn =⇒ ⊥.

Theorem 4. A family F = {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI iff
{ItpSi , ItpTi+1 , ItpSi+1} has BGSA for all 0 ≤ i ≤ n− 1.

Proof. (→). Take any inconsistent Φ = {φ1, φ2, φ3}. For 0 ≤ i ≤ n− 1, extend Φ
to a Φ′ = {φ′1, . . . , φ′n} by adding (n−3) copies of >, so that φ′i = φ1, φ′i+1 = φ2,
φ′i+2 = φ3. Since F has n-STI:

Iφ′1···φ′i,Si ∧ Iφ′i+1,Ti+1 =⇒ Iφ′1···φ′i+1,Si+1

Hence, by construction:

Iφ1,Si ∧ Iφ2,Ti+1 =⇒ Iφ1φ2,Si+1

(←) Take any inconsistent Φ = {φ1, . . . , φn}. Since {ItpSi , ItpTi+1 , ItpSi+1} has
BGSA, it follows that for {φ′1, φ′2, φ′3}, where φ′1 = φ1 ∧ · · · ∧ φi, φ′2 = φi+1,
φ′3 = φi+2 ∧ · · · ∧ φn:

Iφ′1,Si ∧ Iφ′2,Ti+1 =⇒ Iφ′1φ′2,Si+1

Hence, by construction:

Iφ1...φi,Si ∧ Iφi+1,Ti+1 =⇒ Iφ1...φi+1,Si+1

Theorem 5. Given a tree T = (V,E) if a family F = {ItpSi}i∈V has T -TI,
then, for every parent ik+1 and its children i1, . . . , ik:

1. If ik+1 is the root, {ItpSi1 , . . . , ItpSik } has k-SA.
2. Otherwise, {ItpSi1 , . . . , ItpSik , ItpSik+1

} has k-GSA.

Proof. Take any inconsistent Φ = {φi1 , . . . , φik+1}. Consider a parent ik+1 and
its children i1, . . . , ik. If ik+1 is not the root, extend Φ to a Φ′ in such a way
that: the children are decorated with φi1 , . . . , φik , all their descendants and ik+1
with >, all the nodes external to the subtree rooted in ik+1 with φn+1. Since F
has T -TI, then at node ik+1:∧

(ik+1,j)∈E

IFj ,Sj ∧ φik+1 =⇒ IFik+1 ,Sik+1

that is: ∧
i∈{i1...ik}

Iφi,Si ∧ > =⇒ Iφi1 ···φik ,Sk+1

If ik+1 is the root, the proof simply ignores the presence of φik+1 and Sik+1 .

Theorem 6. Given a tree T = (V,E), a family F = {ItpSi}i∈V has T -TI if,
for every node ik+1 and its children i1, . . . , ik, there exists Tik+1 such that:

1. If ik+1 is the root, {ItpSi1 , . . . , ItpSik , ItpTik+1
} has (k + 1)-SA.

2. Otherwise, {ItpSi1 , . . . , ItpTik+1
, ItpSik+1

} has (k + 1)-GSA.

Proof. Take any inconsistent Φ = {φ1, . . . , φn}. Consider a parent ik+1 different
from the root and its children i1, . . . , ik.
If {ItpSi1 , . . . , ItpTik+1

, ItpSik+1
} has k-GSA, for {Fi1 , . . . , Fik , φik+1 , Φ\(

⋃
Fij ∪

{φik+1})}: ∧
i∈{i1...ik}

IFi,Si ∧ Iφik+1 ,Tik+1
=⇒ IFik+1 ,Sik+1

The thesis follows since φik+1 =⇒ Iφik+1 ,Tik+1
. If ik+1 is the root, IFik+1 ,Sik+1

=
⊥ and Sik+1 is superfluous.

0 n+ 1
φn+1

1
φ1

n
φn· · ·

Figure 4: TnGSA.

n+ 1

1
φ1

2
φ2

· · · n
φn

n+ 2 · · · 2n

Figure 5: TnSTI .

Theorem 7. If a family F = {ItpSn+1 , ItpS1 , . . . , ItpSn+1} has TnGSA-TI, then
{ItpS1 , . . . , ItpSn+1} has n-GSA.

Proof. Let TnGSA = (V,E) be the tree shown in Fig. 4, where V = {0, . . . , n+ 1}
and E = {(0, i) | 1 ≤ i ≤ n} ∪ {(n+ 1, 0)}.

Take any inconsistent Φ = {φ1, . . . , φn+1}. We decorate node 0 with >, all
other nodes i with φi, for 1 ≤ i ≤ n+ 1. Since F has T -TI, then at node 0:∧

(0,j)∈E

IFj ,Sj ∧ > =⇒ IF0,Sn+1

Hence, by construction:
n∧
i=1

Iφi,Si =⇒ Iφ1...φn,Sn+1

Theorem 8. If a family F = {ItpS0 , . . . , ItpSn}∪ {ItpT1 , . . . , ItpTn} has TnSTI-
TI, then it has n-STI.

Proof. Let TnSTI = (V,E) be the tree shown in Fig. 5, where V = {1, . . . , 2n}
and E = {(n+ i, i) | 1 ≤ i ≤ n} ∪ {(n+ i, n+ i− 1) | 1 ≤ i ≤ n}.

Take any inconsistent Φ = {φ1, . . . , φn}. For 1 ≤ i ≤ n, we decorate i with
φi, n+ i with >; similarly we associate i with ItpTi and n+ i with ItpSi . Since
F has T -TI, then at every node n+ i+ 1, for 0 ≤ i ≤ n− 1:

(IFn+i,Si ∧ IFi+1,Ti+1) ∧ > =⇒ IFn+i+1,Si+1

Hence, by construction,

Iφ1...φi,Si ∧ Iφi+1,Ti+1 =⇒ Iφ1...φi+1,Si+1

Lemma 1. If {L1, L2, L3} satisfies CC∗BGSA, then {ItpL1 , ItpL2 , ItpL3} has BGSA.

Proof (by structural induction). We remind here the restricted BGSA constraints
CC∗BGSA:

(α1, α2), (δ1, δ2) ∈ {(ab, ab), (b, a), (a, b)}, β2 = β3, γ1 = γ3, δ3 = max{δ1, δ2}

The reader can verify that the conditions on the δi are equivalent to (δ1, δ2, δ3) ∈
{(ab, ab, ab), (b, a, a), (a, b, a)}.

We show that, given a refutation of Φ, for any clause C in the refutation
the partial interpolants satisfy Iφ1,L1(C) ∧ Iφ2,L2(C) =⇒ Iφ1φ2,L3(C), that is
Iφ1,L1(C) ∧ Iφ2,L2(C) ∧ Iφ1φ2,L3(C) =⇒ ⊥.

For simplicity, we write I1, I2, I3 to refer to the three partial interpolants for
C and, if C has antecedents, we denote their partial interpolants with I+

1 , I+
2 ,

I+
3 and I−1 , I−2 , I−3 .

Base case (leaf). Case splitting on C (refer to Table 2):

C ∈ φ1 : I1 = C�1,b I2 = C�2,a I3 = C�3,b
C ∈ φ2 : I1 = C�1,a I2 = C�2,b I3 = C�3,b
C ∈ φ3 : I1 = C�1,a I2 = C�2,a I3 = C�3,a

The goal is to show that in each case I1 ∧ I2 ∧ I3 =⇒ ⊥. Representing C by
grouping variables into the different partitions, with overbraces to show the label
assigned to each variable, we have:

C ∈ φ1 :

C�1,b=
a︷ ︸︸ ︷

Cφ1�b ∨
α1︷ ︸︸ ︷

Cφ1φ2�b ∨
γ1︷ ︸︸ ︷

Cφ1φ3�b ∨
δ1︷ ︸︸ ︷

Cφ1φ2φ3�b

C�2,a =

b︷ ︸︸ ︷
Cφ1�a ∧

α2︷ ︸︸ ︷
Cφ1φ2�a ∧

b︷ ︸︸ ︷
Cφ1φ3�a ∧

δ2︷ ︸︸ ︷
Cφ1φ2φ3�a

C�3,b =

a︷ ︸︸ ︷
Cφ1�b ∧

a︷ ︸︸ ︷
Cφ1φ2�b ∧

γ3︷ ︸︸ ︷
Cφ1φ3�b ∧

δ3︷ ︸︸ ︷
Cφ1φ2φ3�b

C ∈ φ2 :

C�1,a =

b︷ ︸︸ ︷
Cφ2�a ∧

α1︷ ︸︸ ︷
Cφ1φ2�a ∧

b︷ ︸︸ ︷
Cφ2φ3�a ∧

δ1︷ ︸︸ ︷
Cφ1φ2φ3�a

C�2,b=
a︷ ︸︸ ︷

Cφ2�b ∨
α2︷ ︸︸ ︷

Cφ1φ2�b ∨
β2︷ ︸︸ ︷

Cφ2φ3�b ∨
δ2︷ ︸︸ ︷

Cφ1φ2φ3�b

C�3,b =

a︷ ︸︸ ︷
Cφ2�b ∧

a︷ ︸︸ ︷
Cφ1φ2�b ∧

β3︷ ︸︸ ︷
Cφ2φ3�b ∧

δ3︷ ︸︸ ︷
Cφ1φ2φ3�b

C ∈ φ3 :

C�1,a =

b︷ ︸︸ ︷
Cφ3�a ∧

b︷ ︸︸ ︷
Cφ2φ3�a ∧

γ1︷ ︸︸ ︷
Cφ1φ3�a ∧

δ1︷ ︸︸ ︷
Cφ1φ2φ3�a

C�2,a =

b︷ ︸︸ ︷
Cφ3�a ∧

β2︷ ︸︸ ︷
Cφ2φ3�a ∧

b︷ ︸︸ ︷
Cφ1φ3�a ∧

δ2︷ ︸︸ ︷
Cφ1φ2φ3�a

C�3,a=
b︷ ︸︸ ︷

Cφ3�a ∨
β3︷ ︸︸ ︷

Cφ2φ3�a ∨
γ3︷ ︸︸ ︷

Cφ1φ3�a ∨
δ3︷ ︸︸ ︷

Cφ1φ2φ3�a

We can carry out some simplifications, due to the equality constraints in CC∗BGSA
and the fact that variables with label a restricted w.r.t. b (and vice versa) are
removed, leading (with the help of the resolution rule) to the constraints:

(
α1︷ ︸︸ ︷

Cφ1φ2�b ∨
δ1︷ ︸︸ ︷

Cφ1φ2φ3�b) ∧

α2︷ ︸︸ ︷
Cφ1φ2�a ∧

δ2︷ ︸︸ ︷
Cφ1φ2φ3�a ∧

δ3︷ ︸︸ ︷
Cφ1φ2φ3�b =⇒ ⊥

α1︷ ︸︸ ︷
Cφ1φ2�a ∧

δ1︷ ︸︸ ︷
Cφ1φ2φ3�a ∧(

α2︷ ︸︸ ︷
Cφ1φ2�b ∨

δ2︷ ︸︸ ︷
Cφ1φ2φ3�b) ∧

δ3︷ ︸︸ ︷
Cφ1φ2φ3�b =⇒ ⊥

δ1︷ ︸︸ ︷
Cφ1φ2φ3�a ∧

δ2︷ ︸︸ ︷
Cφ1φ2φ3�a ∧

δ3︷ ︸︸ ︷
Cφ1φ2φ3�a =⇒ ⊥

Finally, the constraints on (α1, α2) and (δ1, δ2, δ3) guarantee that the remaining
variables are simplified away, proving the base case.
Inductive step (inner node). The inductive hypothesis (i.h.) consists of I+

1 ∧
I+

2 ∧ I
+
3 =⇒ ⊥, I−1 ∧ I

−
2 ∧ I

−
3 =⇒ ⊥. We do a case splitting on the pivot p:

Case 1 (p in φ1).

I1 ∧ I2 ∧ I3 ⇐⇒

(I+
1 ∨ I

−
1) ∧ (I+

2 ∧ I
−
2) ∧ (I+

3 ∨ I
−
3) ⇐⇒

(I+
1 ∨ I

−
1) ∧ I+

2 ∧ I
−
2 ∧ I

+
3 ∧ I

−
3 =⇒

(I+
1 ∧ I

+
2 ∧ I

+
3) ∨ (I−1 ∧ I

−
2 ∧ I

−
3) =⇒ i.h.⊥

Case 2 (p in φ2).

I1 ∧ I2 ∧ I3 ⇐⇒

(I+
1 ∧ I

−
1) ∧ (I+

2 ∨ I
−
2) ∧ (I+

3 ∨ I
−
3) ⇐⇒

I+
1 ∧ I

−
1 ∧ (I+

2 ∨ I
−
2) ∧ I+

3 ∧ I
−
3 =⇒

(I+
1 ∧ I

+
2 ∧ I

+
3) ∨ (I−1 ∧ I

−
2 ∧ I

−
3) =⇒ i.h.⊥

Case 3 (p in φ3).

I1 ∧ I2 ∧ I3 ⇐⇒

(I+
1 ∧ I

−
1) ∧ (I+

2 ∧ I
−
2) ∧ (I+

3 ∧ I
−
3) ⇐⇒

I+
1 ∧ I

−
1 ∧ I

+
2 ∧ I

−
2 ∧ (I+

3 ∨ I
−
3) =⇒

(I+
1 ∧ I

+
2 ∧ I

+
3) ∨ (I−1 ∧ I

−
2 ∧ I

−
3) =⇒ i.h.⊥

Case 4 (p in φ1φ2). If (α1, α2) = (ab, ab):

I1 ∧ I2 ∧ I3 ⇐⇒

(I+
1 ∨ p) ∧ (I−1 ∨ p) ∧ (I+

2 ∨ p) ∧ (I−2 ∨ p) ∧ (I+
3 ∨ I

−
3) =⇒

(I+
1 ∨ p) ∧ (I−1 ∨ p) ∧ (I+

2 ∨ p) ∧ (I−2 ∨ p) ∧ (I+
3 ∨ p) ∧ (I−3 ∨ p) =⇒

((I+
1 ∧ I

+
2 ∧ I

+
3) ∨ p) ∧ ((I−1 ∧ I

−
2 ∧ I

−
3) ∨ p) =⇒ resol

(I+
1 ∧ I

+
2 ∧ I

+
3) ∨ (I−1 ∧ I

−
2 ∧ I

−
3) =⇒ i.h.⊥

Case 5 (p in φ1φ2φ3). If (δ1, δ2, δ3) = (ab, ab, ab):

I1 ∧ I2 ∧ I3 ⇐⇒

(I+
1 ∨ p) ∧ (I−1 ∨ p) ∧ (I+

2 ∨ p) ∧ (I−2 ∨ p) ∧ ((I+
3 ∨ p) ∧ (I−3 ∨ p)) ⇐⇒

(I+
1 ∨ p) ∧ (I−1 ∨ p) ∧ (I+

2 ∨ p) ∧ (I−2 ∨ p) ∧ ((I+
3 ∧ p) ∨ (I−3 ∧ p)) =⇒

((I+
1 ∨ p) ∧ (I+

2 ∨ p) ∧ I
+
3 ∧ p) ∨ ((I−1 ∨ p) ∧ (I−2 ∨ p) ∧ I

−
3 ∧ p) =⇒ resol

(I+
1 ∧ I

+
2 ∧ I

+
3) ∨ (I−1 ∧ I

−
2 ∧ I

−
3) =⇒ i.h.⊥

All the remaining cases are treated in a similar manner, to reach a point (possibly
after a resolution step if some of the labels are ab) where the inductive hypothesis
can be applied.

Lemma 2. If {ItpL1 , ItpL2 , ItpL3} has BGSA, then {L1, L2, L3} satisfies CCBGSA.

Proof (by contradiction). We remind here the BGSA constraints CCBGSA:

(α1, α2), (δ1, δ2) � {(ab, ab), (b, a), (a, b)}, β2 � β3, γ1 � γ3, δ1 � δ3, δ2 � δ3

We show that, if any of the CCBGSA constraints is violated, there exist an un-
satisfiable formula Φ = {φ1, φ2, φ3} and a refutation such that Iφ1,L1 ∧ Iφ2,L2 6=⇒ Iφ1φ2,L3 .
The possible violations for the CCBGSA constraints consist of:

1. (α1, α2), (δ1, δ2) ∈ {(a, a), (ab, a), (a, ab)}
2. (β2, β3), (γ1, γ3), (δ1, δ3), (δ2, δ3) ∈ {(a, ab), (a, b), (ab, b)}

It is sufficient to take into account (α1, α2) ∈ {(a, a), (a, ab)} and (β2, β3) ∈
{(a, ab), (a, b), (ab, b)}. The remaining cases follow by symmetry.

(1) (α1, α2) = (a, a) : φ1 = (p ∨ q) ∧ r, φ2 = (p ∨ r) ∧ q, φ3 = s

A = φ1 B = φ2, φ3

p ∨ q [⊥] p ∨ r [p ∧ r]
q ∨ r [p ∧ r] r [⊥]

q [p ∧ r] q [q]
⊥ [(p ∧ r) ∨ q]

A = φ2 B = φ1, φ3

p ∨ q [p ∧ q] p ∨ r [⊥]
q ∨ r [p ∧ q] r [r]

q [(p ∧ q) ∨ r] q [⊥]
⊥ [(p ∧ q) ∨ r]

We have Iφ1,L1 = (p ∧ r) ∨ q, Iφ2,L2 = (p ∧ q) ∨ r, Iφ1φ2,L3 = ⊥ since s is
absent from the proof. Then, Iφ1,L1 ∧ Iφ2,L2 6=⇒ Iφ1φ2,L3 : a counter model
is q, r.

(2) (α1, α2) = (a, ab) : φ1 = (p ∨ q) ∧ r, φ2 = (p ∨ r) ∧ q, φ3 = s

A = φ2 B = φ1, φ3

p ∨ q [>] p ∨ r [⊥]
q ∨ r [p] q [⊥]

r [(p ∨ q) ∧ q] r [>]
⊥ [((p ∨ q) ∧ q) ∨ r]

We have Iφ1,L1 = (p ∧ r) ∨ q and Iφ1φ2,L3 = ⊥ as in (1), while Iφ2,L2 =
((p∨ q)∧ q)∨ r. Then, Iφ1,L1 ∧ Iφ2,L2 6=⇒ Iφ1φ2,L3 : a counter model is q, r.

(3) (β2, β3) = (a, b) : φ1 = s, φ2 = (p ∨ r) ∧ q, φ3 = (p ∨ q) ∧ r

A = φ1, φ2 B = φ3

p ∨ q [>] p ∨ r [p ∨ r]
q ∨ r [p ∨ r] r [>]

q [p ∨ r] q [q]
⊥ [(p ∨ r) ∧ q]

We have Iφ1,L1 = >, since s is absent from the proof, while Iφ2,L2 = (p∧q)∨r
as in (1); Iφ1φ2,L3 = (p∨r)∧q. Then, Iφ1,L1 ∧Iφ2,L2 6=⇒ Iφ1φ2,L3 : a counter
model is q, r.

(4) (β2, β3) = (a, ab) : φ1 = s, φ2 = (p ∨ r) ∧ q, φ3 = (p ∨ q) ∧ r

A = φ1, φ2 B = φ3

p ∨ q [>] p ∨ r [⊥]
q ∨ r [p] r [>]

q [p ∨ r] q [⊥]
⊥ [(p ∨ r ∨ q) ∧ q]

Iφ1,L1 = > as in (3), Iφ2,L2 = (p ∧ q) ∨ r as in (1), Iφ1φ2,L3 = (p ∨ r ∨ q) ∧ q.
Then, Iφ1,L1 ∧ Iφ2,L2 6=⇒ Iφ1φ2,L3 : a counter model is q, r.

(5) (β2, β3) = (ab, b) : φ1 = s, φ2 = (p ∨ r) ∧ q, φ3 = (p ∨ q) ∧ r

Iφ1,L1 = > as in (3), Iφ2,L2 = ((p∨ q)∧ q)∨ r as in (2), Iφ1φ2,L3 = (p∨ r)∧ q
as in (3). Then, Iφ1,L1 ∧ Iφ2,L2 6=⇒ Iφ1φ2,L3 : a counter model is q, r.

Lemma 3. If {L1, . . . , Ln+1} satisfies CCnGSA, then the family {ItpL1 , . . . , ItpLn+1}
has n-GSA.

Proof (by structural induction). We assume that the CCnGSA constraints have
been restricted in a similar manner to what shown in CC∗BGSA. We prove that,
given a refutation of Φ, for any clause C in the refutation the partial interpolants
satisfy Iφ1,L1(C)∧ . . .∧ Iφn,Ln(C) =⇒ Iφ1...φn,Ln+1(C), that is Iφ1,L1(C)∧ . . .∧
Iφn,Ln(C) ∧ Iφ1...φn,Ln+1(C) =⇒ ⊥.
Base case (leaf). Remember that, if C ∈ φi, i 6= n + 1, C has class A in
configuration i (hence the partial interpolant is C�i,b) and in configuration n+ 1
(C�n+1,b) and class B in all the other configurations j 6= i, n + 1 (C�j,a). If
C ∈ φn+1, it has class B in all configurations (C�n+1,a in configuration n + 1,
C�i,a everywhere else). So we need to prove:

C�1,a ∧ . . . ∧ C�i−1,a ∧ C�i,b ∧C�i+1,a ∧ . . . ∧ C�n,a ∧ C�n+1,b =⇒ ⊥

C�1,a ∧ . . . ∧ C�i−1,a ∧ C�i,a ∧ C�i+1,a ∧ . . . ∧ C�n,a ∧ C�n+1,a =⇒ ⊥

respectively for i 6= n+ 1 and i = n+ 1.
We can divide the variables of C ∈ φi into partitions, obtaining C = Cφi ∨

Cφiφ2 ∨ . . .∨Cφ1...φn , leading to a system of constraints as shown for BGSA; the
conjunction of:

(Cφi ∨ Cφiφ2 ∨ . . . ∨ Cφ1...φn)�1,a

...

(Cφi ∨ Cφiφ2 ∨ . . . ∨ Cφ1...φn)�i,b

...

(Cφi ∨ Cφiφ2 ∨ . . . ∨ Cφ1...φn)�n,a

must imply ⊥ for every φi, i 6= n+ 1 (similarly for φn+1). All the simplifications
are carried out in line with the proof of Lemma 1.
Inductive step (inner node). The proof is a again a direct generalization of the
proof of Lemma 1.

Performing a case splitting on the pivot and on its labeling vector, the starting
point is a conjunction of the partial interpolants I1 ∧ . . . ∧ In ∧ In+1 of C, which
is then expressed in terms of the partial interpolants for the antecedents. The
goal is to reach a formula ψ = (I+

1 ∧ . . . ∧ I+
n ∧ I+

n+1) ∨ (I−1 ∧ . . . ∧ I−n ∧ I
−
n+1)

where the inductive hypothesis can be applied.
The key observation is that the restricted CCnGSA constraints give rise to a

combination of boolean operators (after the dualization of the ones in In+1 due
to the negation) which makes it always possible to obtain the desired ψ, possibly
with the help of the resolution rule.

Lemma 4. If a family F = {ItpL1 , . . . , ItpLn+1} has n-GSA, then {L1, . . . , Ln+1}
satisfies CCnGSA.

Proof (by induction and contradiction). We prove the theorem by strong induc-
tion on n ≥ 2.
Base Case (n = 2). Follows by Lemma 2.
Inductive Step. Assume the thesis holds for all k ≤ n− 1, we prove it for
k = n. By Lemma 17, if a family F = {ItpL1 , . . . , ItpLn+1} has n-GSA, then any
subfamily of size k+1 ≤ n has k-GSA. Combined with the inductive hypothesis,
this implies that it is sufficient to establish the theorem for every variable p
and labeling vectors α = (α1, . . . , αn) and β = (β1, . . . , βn+1) corresponding to
partitions φ1 · · ·φn and φ1 · · ·φn+1, respectively.

We only show the case of α. The proof for β is analogous. W.l.o.g., assume
that there is a p such that α violates CCnGSA for α1 = α2 = a (other cases are
symmetric). Construct a family of labelings {L′1, L′2, L′n+1} from {L1, . . . , Ln+1}
by (1) taking all labelings of partitions involving only subsets of φ1, φ2 and φn+1.
For example, vectors (η3, η4) and (η1, η2, η3, ηn+1) would be discarded, while
(η1, η2) and (η1, η2, ηn+1) would be kept; and (2) for p, set the labeling vector of
partition φ1φ2 to (α1, α2) = (a, a). By Lemma 2, {L′1, L′2, L′n+1} does not have
BGSA. Let Φ′ = {φ1, φ2, φn+1} be such that Iφ1,L′1

∧Iφ2,L′2
6=⇒ Iφ1φ2,L′n+1

, and
let Π be the corresponding resolution refutation.

Construct Φ = {φ1, φ2, p, . . . , p, φn+1} by adding (n − 2) copies of p to Φ′.
Φ is unsatisfiable, and Π is also a valid refutation for Φ. From this point, we
assume that all interpolants are generated from Π.

Assume, by contradiction, that F has n-GSA. Then,

Iφ1,L1 ∧ · · · ∧ Iφn,Ln =⇒ Iφ1···φn,Ln+1

But, because φ3, . . . , φn do not contribute any clauses to Π, Iφi,Li = > for
3 ≤ i ≤ n. Hence,

Iφ1,L1 ∧ Iφ2,L2 =⇒ Iφ1φ2,Ln+1

However, by construction:

Iφ1,L1 = Iφ1,L′1
Iφ2,L2 = Iφ2,L′2

Iφ1φ2,Ln+1 = Iφ1φ2,L′n+1

which leads to a contradiction. Hence α must satisfy CCnGSA.

Proposition 3. Any family {ItpL0 , ItpL1 , ItpL2} has 2-PI.

Proof. Recall that I>,L0 = > and Iφ1φ2,L2 = ⊥ for any L0, L2. Hence, 2-PI
reduces to the following two conditions: φ1 =⇒ Iφ1,L1 , Iφ1,L1 ∧ φ2 =⇒ ⊥,
which are true of any Craig interpolant.

Corollary 4. A family {ItpL1 , ItpL2} has 2-SA if and only if {L1, L2} satisfies
(α1, α2) � {(ab, ab), (a, b), (b, a)}

Proof. Follows from Lemma 2 and Lemma 1.

Lemma 5. There exists a family {ItpL0 , ItpL1 , ItpL2} that has 2-PI and a fam-
ily {ItpL′1 , ItpL′2} that has 2-SA, but the family {ItpL0 , ItpL1 , ItpL2 , ItpL′1 , ItpL′2}
does not have 2-STI.

Proof. By Theorem 4, a necessary condition for 2-STI is that {ItpL1 , ItpL′2 , ItpL2}
has BGSA. By Proposition 3, {L0, L1, L2} can be arbitrary. By Theorem 9
and Corollary 4, there exists {L′1, L′2} such that {ItpL′1 , ItpL′2} has 2-SA, but
{ItpL1 , ItpL′2 , ItpL2} does not have BGSA.
Lemma 6. The set of labeling constraints of any n-GSA strengthening is a sub-
set of constraints of n-GSA.
Proof. Assume w.l.o.g we strengthen the first subformula φ1. Then any variable
in any partition which does not involve φ1 has the same labeling vector and its
n-GSA labeling constraints are also the same. Instead, variables in any partition
φ1φi2 . . . φik have now a labeling vector (αi2 , . . . , αik), where the first component
α1 is missing. Referring to the definition of CCnGSA, it is easy to verify that the
set of the constraints for the strengthening are a subset of the constraints for
n-GSA.
Theorem 13. Any F = {ItpLi1 , . . . , ItpLik , ItpLn+1} s.t. k < n that has an
n-GSA strengthening property can be extended to a family that has n-GSA.
Proof. Refer to the definition of CCnGSA and to Lemma 6. We can complete F
for example by introducing n − k instances of McMillan’s system ItpM . Both
constraints (1) and (2) for n-GSA are satisfied, since ItpM always assigns label b
(recall the order b � ab � a). Note that ItpM is not necessarily the only possible
choice.
Theorem 14. PI holds for all single LISs.
Proof. In [17] we addressed n-PI for a family of LISs {ItpL0 , . . . , ItpLn}. Given
an inconsistent Φ = {φ1, . . . , φn}, Table 3 shows the labelings Li, Li+1 for an
arbitrary step Iφ1...φi,Li∧φi+1 =⇒ Iφ1...φiφi+1,Li+1 (ψ1 = φ1∧. . .∧φi, ψ2 = φi+1,
ψ3 = φi+2 ∧ . . . ∧ φn):

Table 3: n-PI step.
p in ? Variable class, label

ψ1 | ψ2ψ3 ψ1ψ2 | ψ3

ψ1 A, a A, a
ψ2 B, b A, a
ψ3 B, b B, b
ψ1ψ2 AB,α1 A, a
ψ2ψ3 B, b AB, β2
ψ1ψ3 AB, γ1 AB, γ2
ψ1ψ2ψ3 AB, δ1 AB, δ2

We identified a set of constraints for Li, Li+1 as:

γ1 � γ2 δ1 � δ2

For a single LIS, γ1 = γ2 and δ1 = δ2, so all constraints are trivially satisfied for
0 ≤ i ≤ n− 1.

Leaf: C [I] Inner node: C+ ∨ p : α [I+] C− ∨ p : β [I−]
C+ ∨ C− [I]

I =
{
C� b if C ∈ A
¬(C� a) if C ∈ B I =

{
I+ ∨ I− if α t β = a
I+ ∧ I− if α t β = b
(I+ ∨ p) ∧ (I− ∨ p) if α t β = ab

Labeled interpolation system ItpL.

C Complexity of the Labeled Interpolation Systems

We briefly examine here the complexity of a Labeled Interpolation System ItpL.
A simple realization of the interpolation algorithm of Fig. 3 (reported above) is
based on a topological visit of the refutation DAG.

While visiting a leaf, the partial interpolant is computed by restricting the
clause w.r.t. to a or b, given a labeling L for its shared variables. Note that it is
not necessary to specify labels for local variables, since variables of class A can
only have label a and variables of class B only label b.

While visiting an inner node, (i) the labels of the shared variables of the
resolvent clause are updated based on the labels of the antecedent clauses, (ii)
the label of the pivot is computed in the same way, and (iii) the partial inter-
polant is obtained by a boolean combination of the (already computed) partial
interpolants of the antecedents, plus possibly two occurrences of the pivot.

We distinguish between the complexity of generating partial interpolants for
leaves and inner nodes as follows.
Leaf. The cost of restricting a clause C is |C|. Checking whether a clause or a
variable has class A,B,AB takes constant time.
Inner node. If C is the resolvent clause, (i) takes |C|, both (ii) and (iii) take
constant time. We assume that, for each node, the labels of shared variables
are encoded in a bit-vector-like data structure, so that retrieving the label of a
variable takes constant time.

Assume the DAG has N nodes and the largest clause has size S, then the
overall complexity is O(NS). In practice, S << N and the complexity is linear
in the size of the DAG. The overhead introduced by the computations due to
the use of a labeling is thus negligible.

