
A Parametric Interpolation Framework for
First-Order Theories

Laura Kovács
Chalmers University of Technology, Sweden

laura.kovacs@chalmers.se

Simone Fulvio Rollini
USI, Switzerland

simone.fulvio.rollini@usi.ch

Natasha Sharygina
USI, Switzerland

natasha.sharygina@usi.ch

Abstract—Craig interpolation is successfully used in both
hardware and software model checking. An important class
of state-of-the-art interpolation algorithms is based on recur-
sive procedures that generate interpolants from refutations of
unsatisfiable conjunctions of formulas. We analyze this type
of algorithms and develop a theoretical framework, called a
parametric interpolation framework, for arbitrary first-order
theories and inference systems. Our framework is able to compute
interpolants of different structure and strength, with or without
quantifiers, from the same proof. We show that two classes of
well-known interpolation algorithms, that address local proofs in
first-order logic and the propositional hyper-resolution system,
are instantiations of our framework.

I. INTRODUCTION

Craig interpolation [1] provides powerful heuristics for
verifying software and hardware. In particular, interpolants
extracted from proofs of various properties are used in invariant
generation and bounded model checking, see e.g. [2]–[4].

There exist various methods to compute interpolants from
proofs. The work of [5] introduces an interpolation algorithm
for propositional logic, and is generalized in [6] to generate
interpolants in the combined theory of uninterpreted functions
and linear arithmetic. The approaches of [7]–[9] propose another
interpolation algorithm for propositional logic which is later
extended in [10] to address a class of first-order theories. More
recently, [11] introduces a framework that generalizes [5], [7],
by analyzing the logical strength of interpolants. The work
of [11] has been extended in [12] to interpolation in the hyper-
resolution system. The methods described in [13], [14] give a
general interpolation algorithm that can be used with arbitrary
first-order calculi and inference systems. This algorithm is,
however, restricted to local proofs [13] or split proofs [3].

While interpolation-based verification techniques crucially
depend to which extent nice interpolants can be automatically
generated, there is no general criteria for defining the notion of
a “good” interpolant. The work of [11] suggests that logically
weaker interpolants are more useful in verification, whereas [15]
emphasizes the need for logically strong interpolants in model
checking and predicate abstraction. Hence, interpolants of dif-
ferent strength are needed in different verification frameworks.
However, the interpolants generated by the wide range of
existing interpolation algorithms are not always comparable.
Even more, existing methods might not allow to derive
interpolants of different structure and strength.

In this paper we address some of these issues and introduce
a new theoretical framework, called parametric interpolation
framework, for arbitrary theories and inference systems. We

show that the afore-cited interpolant generation methods can be
considered elements of a class of algorithms characterized
by specific structural properties. Our method supports the
generation of multiple interpolants of different strength and
structure. For example, our approach can generate quantifier-
free interpolants on examples where current methods are only
able to compute quantified interpolants. Our approach also
provides flexibility in adjusting the logical expressiveness of
the computed interpolants, and hence can yield interpolants,
even quantifier-free ones, that are stronger/weaker than the ones
generated by current methods.
Contributions. The main contribution of this paper comes with
the theoretical formalization of a new parametric interpolation
framework (§IV). We show that this framework generalizes
existing interpolation algorithms for first-order theories (§V) and
propositional logic (§VI). We illustrate the kind of interpolants
we produce (§III) and show how the interpolation algorithms
of [11]–[13] can be regarded as special cases of our method in
the context of first-order (§V) and hyper-resolution inference
systems (§VI).

When compared to [13], the differences and benefits of our
approach can be summarized as follows. We derive an algorithm
for arbitrary first-order theories and inference systems, which
extracts interpolants as boolean combinations of formulas from
a refutation proof. Our algorithm can be applied to a class
of proofs strictly larger than the class of local proofs in [13];
it can also produce a family of interpolants which contains
the interpolants of [13]. Within this family, we relate and
compare the interpolants by their logical strength. The results
of [13] about the existence of local proofs in the superposition
calculus and turning non-local proofs into local ones in the style
of [14] can be naturally extended to our framework. Remarkably,
our method allows to compute quantifier-free interpolants for
problems on which [13] can only derive quantified interpolants
(see §III).

Referring to [11], [12], our approach is different in the
following aspects. We first integrate the hyper-resolution system
into our first-order interpolation algorithm, and discuss the
applicability of the family of interpolants proposed there.
We then extend the class of proofs from first-order theories
to arbitrary hyper-resolution refutations, and show how the
structure of the formulas and inference rules allows to obtain
additional interpolants, containing those generated by [12].
Finally, we also compare the produced interpolants by their
logical strength.

II. PRELIMINARIES

This section fixes our notation and recalls some required
terminology by adapting the material of [13] to our setting.

We consider the language of standard first-order logic
with equality. We assume that the language contains boolean
connectives and quantifiers, as well as the logical constants >
and ⊥ respectively denoting the always true and always false
formulas. For a formula A we write A to mean ¬A, that is
the negation of A. We write A1, . . . , An ` A to denote that
A1 ∧ · · · ∧An → A is valid.

We call a symbol a predicate symbol, a function symbol or
a constant. Individual (logical) variables are thus not symbols.
We use capital letters A,B,C,D, I,R, possibly with indices,
to denote formulas. Terms are denoted by s, t, variables by
x, y, z, constants by a, b, c, and functions by f, g, all possibly
with indices. A signature Σ is a finite set of symbols. The
signature of a formula A, denoted by ΣA, is the set of all
symbols occurring in A. For example, the signature of g(a, x)
is {g, a}. The language of a formula A, denoted by LA, is the
set of all formulas built from ΣA.

Consider a formula A whose free variables are x1, . . . , xm.
Then ∀A denotes the formula (∀x1, . . . , xm)A; similarly, ∃A
is the formula (∃x1, . . . , xm)A.
Inference Systems and Derivations. An inference rule, or
simply inference, is an n + 1-ary relation on formulas, where
n ≥ 0. It is usually written as: A1 ··· An

A where A1, . . . , An

are the premises and A the conclusion. An inference system
is a set of inference rules. An axiom is the conclusion of an
inference with 0 premises. An inference with 0 premises and
conclusion A will be written without the bar line as A. A
derivation, or a proof, of a formula A is a finite tree built from
inferences in the inference system, such that the root of the tree
is A and all leaves are axioms; nodes correspond to formulas.
A node A with parents A1, . . . , An represents the conclusion
A of an inference with premises A1, . . . , An. A derivation of
A is from assumptions A1, . . . , An if every leaf is either an
axiom or one of the formulas A1, . . . , An. A refutation is a
derivation of ⊥.
Colored Symbols and Formulas. Let us now fix two sentences
R and B and give all definitions relative to them. We define
ΣRB = ΣR ∩ ΣB as the set of symbols occurring both in R
and B and take LRB = LR ∩LB . The signature symbols from
ΣRB are called grey symbols. Signature symbols occurring
only in ΣR \ ΣRB will be called red, and symbols occurring
only in ΣB \ ΣRB are blue. A symbol that is not grey is also
called colored. Further, a formula A is called grey if it contains
only grey symbols. Grey formulas are thus in LRB . A formula
A that is not grey is called colored. Finally, a formula A is
called red if it contains only red and grey symbols, but at least
one red symbol. Similarly, A is said to be a blue formula if
it only contains blue and grey symbols, but at least one blue
symbol. In the sequel, red formulas will be denoted by R and
blue formulas by B, possibly with indices.

An RB-derivation is any derivation Π satisfying the
following conditions:

(RB1) for every leaf C, we have:
R ` ∀C and C ∈ LR or B ` ∀C and C ∈ LB ;

(RB2) for every inference C1 ··· Cn

C of Π, we have:
∀C1, . . . , ∀Cn ` ∀C.

We call RB-refutation an RB-derivation of ⊥.
Craig Interpolation. Given two formulas R and B such that
their conjunction is unsatisfiable, that is R∧B ` ⊥, an (Craig)

interpolant of R and B is any grey formula I such that A ` I
and B ∧ I ` ⊥. Hence, I ∈ LRB . Note that we are interested
in interpolants I of red R and blue B formulas. As proved
in [13], Craig interpolation can also be defined modulo theories.
Symbols occurring in a theory are called interpreted, while all
other symbols are uninterpreted.

III. EXAMPLE

We start with an example showing what kind of interpolants
we can compute.

Example 1: Let us take the formula ∀z(z = c) ∧ a =
c ∧ g(b) = g(h) as R, and f(a) 6= f(h) ∧ h = b as B. Then,
c, g are red symbols, a, b, h are grey symbols, and f is a blue
symbol. Clearly, R ∧B is unsatisfiable. A possible refutation

∀z(z = c) a = c

∀z(z = a)

a = b
f(a) = f(b)

f(a) 6= f(h)
h = b

f(h) = f(b)

f(a) 6= f(b)

⊥

Fig. 1. Local refutation Π of R ∧B.

Π of R ∧B is given in Fig. 1.
A possible interpolant of R and B is the quantified formula

∀z(z = a). For example, the interpolation algorithm of [13]
would compute this quantified interpolant from Fig. 1. However,
when applying our method on Fig. 1, besides ∀z(z = a) we are
able to compute the formulas a = b and h 6= b∨(a = b∧h = b)
as possible interpolants of R and B. Note that these two addi-
tional interpolants are quantifier-free, and of different strength.
Our method thus offers the possibility of computing quantifier-
free interpolants for problems on which [13] could only derive
quantified interpolants. When applying our method to quantifier-
free inference systems, for example to the propositional hyper-
resolution system, our approach also generates a range of
quantifier-free interpolants, including those coming from [12].
The main advantage of our approach hence comes with the
flexibility of choosing between more than one interpolant
and generating interpolants of different boolean structure and
strength, with or without quantifiers, from the same proof.

IV. A PARAMETRIC INTERPOLATION FRAMEWORK

In this section we present a new interpolation framework
that describes a class of recursive interpolation procedures
computing so-called partial interpolants from refutation proofs,
as follows. First, partial interpolants of the leaves of the proof
are derived. Next, partial interpolants for (some of) the inner
nodes are derived, by relying on the previously computed partial
interpolants. In what follows, we first define the notion of partial
interpolants. Then our parametric interpolation algorithm is
given (Alg. 1), and the soundness of our approach is discussed.
Our parametric interpolation algorithm will be later instantiated
into two specific interpolation algorithms (§V and §VI).

Let Π be an RB-refutation, corresponding to the unsatis-
fiability proof of R ∧ B. Following [13], in our approach to
interpolation we generate an interpolant I of R and B such
that I is a boolean combination of formulas of Π. Recall that
R ` I , B ` I and I ∈ LRB . Our interpolation framework is
parametric in a chosen partition of Π. By a partition of Π we
mean a set of derivations P = {Π′i} such that (i) each Π′i is a

sub-derivation of Π, (ii) a leaf of a sub-derivation Π′i represents
the root of another sub-derivation Π′j , (iii) each inference of
Π belongs to some Π′i ∈ P . We call leaves of a sub-derivation
Π′i ∈ P sub-leaves of Π′i; note that a sub-leaf might also be a
leaf of Π. Similarly, the root of a sub-derivation Π′i is called
a sub-root of Π′i. The aim of our algorithm is to build an
interpolant from Π, by using the partition P of Π. To this end,
we first define the notion of a partial interpolant of a formula
C. We are then interested in computing the partial interpolants
of the sub-roots C of the sub-derivations in P .

Definition 1: [Partial Interpolant] Let C be a formula, and
let f and g denote functions over formulas such that f(⊥) =
g(⊥) = ⊥. A formula IC is called a partial interpolant of C
with respect to R and B if it satisfies:

R ` IC ∨ f(C), B ` IC ∨ g(C), IC ∈ LRB . (1)

Note that when C is ⊥, a partial interpolant IC is an interpolant
of R and B, since we have R ` IC and B ` IC . We
also note that Def. 1 generalizes the notion of C-interpolants
from [13]. Namely, by taking f(C) = C and g(C) = C
a partial interpolant IC is just a C-interpolant in the sense
of [13], when C is grey.

Let us emphasize that in Def. 1 we are not restricted
to a particular choice of f and g. That is, f and g can be
arbitrary functions over formulas. For example, the value of
f(C) and g(C) might not even depend on C, or f and g can be
defined using P; the only restriction we impose is that eq. (1)
holds. Such a generality allows us to build various (partial)
interpolants, as presented later in §V and §VI.

Using partial interpolants, our interpolation framework is
summarized as follows. Given a partition P of Π, we first
compute partial interpolants of the leaves of Π. Next, for each
sub-derivation Π′i ∈ P with root C and leaves C1, . . . , Cn, we
build a partial interpolant IC of C, inductively proceeding as
follows. We use the sub-leaves C1, . . . , Cn, and respectively
compute their partial interpolants IC1 , . . . , ICn . IC is then
obtained as a boolean combination of (some of) C, C1, . . . , Cn,
and IC1 , . . . , ICn As a consequence of this approach, a partial
interpolant of the root ⊥ of Π is an interpolant I of R and B.

When computing partial interpolants of a formula C, we
make a case distinction whether C is a leaf (base case) or
a sub-root of Π (induction step). We next address each case
separately and formulate requirements over a formula to be a
partial interpolant of C (see eq. (2) and (5)).
Partial Interpolants of Leaves. Let C be a leaf of Π. Then, by
the property (RB1) of RB-derivations, we need to distinguish
between R ` C and B ` C. The following conditions over a
partial interpolant IC of C are therefore imposed in order to
satisfy (1):

R ` C ∧ f(C)→ IC , B ` IC → g(C), IC ∈ LRB , if R ` C;

R ` f(C)→ IC , B ` IC → C ∨ g(C), IC ∈ LRB , if B ` C. (2)

Partial Interpolants of Sub-Roots. Let C be the root of a sub-
derivation Π′ of Π. We assume that Π′ consists of more than
one formula (otherwise, we are in Case 1) and that the leaves
of Π′ are C1, . . . , Cn. By the property (RB2), we conclude∧

Ci ` C. By the induction hypothesis over C1, . . . , Cn, we
assume that the partial interpolants IC1

, . . . , ICn
of the sub-

leaves Ci are already computed. Using eq. (1), we have:

R ` ICi
∨ f(Ci), B ` ICi

∨ g(Ci), ICi
∈ LRB . (3)

From a simple combination of
∧
Ci ` C and eq. (3), we

have:
R `

∧
(ICi
∨f(Ci))∧(

∨
Ci∨C), B `

∧
(ICi
∨g(Ci))∧(

∨
Ci∨C). (4)

Using (1) in conjunction with (4), we derive the following
constraints over a partial interpolant IC of C:

R `
∧

(ICi
∨ f(Ci)) ∧ (

∨
Ci ∨ C) ∧ f(C)→ IC , IC ∈ LRB ,

B ` IC →
∨

(ICi
∧ g(Ci)) ∨ (

∧
Ci ∧ C) ∨ g(C). (5)

Parametric Interpolation Algorithm. Our interpolation
algorithm is given in Alg. 1. It takes as input an RB-derivation
Π, a partition P of Π, and the functions f and g. In addition,
Alg. 1 depends on a construct function which builds partial
interpolants of leaves and sub-roots of Π, by using the functions
f and g. That is, for a formula C, construct returns a set
Φ of partial interpolants IC by making a case distinction
whether C is a leaf or a sub-root of Π. Hence, setting
fC = f(C), gC = g(C), fi = f(Ci), gi = g(Ci), Ii = I(Ci),
construct is defined as:

construct(C,Ci, Ii, fC , gC , fi, gi) =

{
Φ1, if C is a leaf
Φ2, if C is a sub-root (6)

where each IC ∈ Φ1 satisfies (2) and each IC ∈ Φ2 satisfies (5).
Note that the arguments Ci, ICi

, f(Ci), g(Ci) of construct
become trivially empty whenever C is a leaf. For simplicity of
notation, we therefore write construct(C, f(C), g(C)) when-
ever C is a leaf. The behavior of construct, in particular the
choice of Φ1 and Φ2, is specific to the inference system in
which Π was produced. We will address the choice of Φ1 and
Φ2 in §V and §VI.

Assuming that construct, f, g are fixed, Alg. 1 returns
an interpolant I of R and B as follows. First, the leaves of
Π are identified (line 2). For each leaf C of Π, a set Φ1

of partial interpolants satisfying (2) is constructed. Then, the
partial interpolant of C is selected from Φ1 (line 5). Next,
partial interpolants of the sub-roots C of Π are recursively
computed (lines 9-18). To this end, each sub-derivation Π′ ∈ P
with root C and leaves C1, . . . , Cn is analyzed. A set Φ2 of
partial interpolants of C is built by using the partial interpolants
of C1, . . . , Cn (line 13). The partial interpolant of C is then
selected from Φ2 (line 14). Finally, the partial interpolant of the
sub-root ⊥ is returned as the interpolant of R and B (line 19).

Algorithm 1: Parametric Interpolation Algorithm
Input: Formulas R and B such that R∧B → ⊥, an RB-refutation
Π of R ∧B, a partition P of Π, and functions f, g, construct.
Output: Interpolant I of R and B
Assumption: f and g satisfy (1), construct produces grey formulas

1 begin
Compute Partial Interpolants of Leaves

2 L := leaves(Π);
3 for each formula C in L do
4 Φ1 := construct(C, f(C), g(C));
5 IC := select(Φ1);
6 endfor ;

Compute Partial Interpolants of Sub-Roots
7 I :=

⋃
C∈L

IC , where I[C] := IC ;

8 P∗ = {};
9 repeat
10 for each Π′ in P such that leaves(Π′) ⊆ L do
11 C := root(Π′);
12 for each Ci in leaves(Π′) do ICi := I[Ci] endfor ;
13 Φ2 := construct(C,Ci, ICi , f(C), g(C), f(Ci), g(Ci));
14 IC := select(Φ2);
15 I := I ∪ {IC}; L := L ∪ {C};
16 endfor ;

17 P∗ := P∗ ∪ {Π′};
18 until P∗ = P;

Compute Interpolant
19 return I[⊥]

Alg. 1 depends on the particular choice of f, g, and
construct, as well as of the proof partition P . select denotes a
function that picks and returns a formula from a set of formulas.

A parametric interpolation framework is thus implicitly
defined by the values of f, g, construct, and P , yielding
different interpolation algorithms based on Alg. 1.

In the sequel we present two concrete choices of f, g
and construct, together with P . The first one, illustrated in
§V, yields an interpolation procedure for arbitrary first-order
inference systems. The second one, discussed in §VI, addresses
the propositional hyper-resolution system. We also show that
Alg. 1 generalizes the interpolation algorithms of [12], [13].

V. INTERPOLATION IN FIRST-ORDER SYSTEMS

We present an interpolation procedure for arbitrary
first-order inference systems, by fixing the definition of
f, g, construct and P in Alg. 1 as follows.

Definition of functions f and g. We take f and g such that
f(C) = g(C) = C, for every formula C. Clearly, the condition
f(⊥) = g(⊥) = ⊥ from Def. 1 is satisfied.

Definition of partition P . We are interested in a special kind
of partition, which we call RB-partition and define below.

Definition 2: [RB-partition] Let Π be an RB-derivation
and consider a partition P = {Π′j} of Π into a set of sub-
derivations Π′j . The partition P of Π is called an RB-partition
if the following conditions hold:

• the sub-root C of each Π′j is grey;

• the sub-leaves Ci of each Π′j satisfy one of the following
conditions: (a) every Ci is grey, or (b) if some of the Ci are
colored, then the colored sub-leaves Cj are also leaves of Π
and Cj are either all red or all blue. Hence, a colored sub-leaf
Cj cannot contain both red and blue symbols.

In this section we fix P to be an RB-partition. We are now left
with defining the input function construct of Alg. 1. We make
a case distinction on the sub-roots of the proof, and define the
sets Φ1 and Φ2 of partial interpolants as follows.

Definition of construct for Partial Interpolants of Leaves.
Let C be a leaf of Π. Since f(C) = g(C) = C, eq. (2) yields
the following constraints over IC :
R ` ⊥, B ` IC → C, IC ∈ LRB , if R ` C;

R ` C → IC , B ` >, IB ∈ LRB , if B ` C.

In principle, any formula IC ∈ LRB such that C → IC
if R ` C, and C → IC if B ` C can be chosen as partial
interpolant. Depending on whether C is grey or not, we define
the set Φ1 of partial interpolants as follows:

• If C is grey, we take: Φ1 = {C,⊥}, if R ` C; {C,>}, if B ` C.

• If C is colored, we take: Φ1 = {⊥}, if R ` C; {>}, if B ` C.

Definition of construct for Partial Interpolants of Sub-
Roots. Let C be the root of a sub-derivation Π′ ∈ P , and let
C1, . . . , Cn denote the sub-leaves of Π′. As f(C) = g(C) = C

and f(Ci) = g(Ci) = Ci, eq. (5) yields the following
constraints over IC ∈ LRB :

R `
∧

(ICi
∨ Ci) ∧ (

∨
Ci ∨ C) ∧ C → IC ,

B ` IC →
∨

(ICi
∧ Ci) ∨ (

∧
Ci ∧ C) ∨ C. (7)

Any formula IC ∈ Φ2 needs to satisfy eq. (7). A potential set
Φ2 of partial interpolants consists of the following ten formulas
(annotated from (a) to (j)):

(a)
∧

(ICi
∨ Ci) ∧ (

∨
Ci ∨ C) ∧ C (f)

∨
(ICi

∧ Ci)
(b)

∧
(ICi

∨ Ci) ∧ (
∨

Ci) (g)
∨

(ICi
∧ Ci) ∨ C

(c)
∧

(ICi
∨ Ci) ∧ (

∨
Ci ∨ C) (h)

∨
(ICi

∧ Ci) ∨ (
∧

Ci ∧ C)
(d)

∧
(ICi

∨ Ci) ∧ C (i)
∨

(ICi
∧ Ci) ∨ (

∧
Ci)

(e)
∧

(ICi
∨ Ci) (j)

∨
(ICi

∧ Ci) ∨ (
∧

Ci ∧ C) ∨ C
(8)

It is not hard to argue that every formula from (8) satisfies
eq. (7). However, not any formula from (8) could be used as a
partial interpolant IC , as partial interpolants need to be grey.
Note however that P is an RB-partition; this means that the
root of Π′ is grey, yielding that f(C) = g(C) = C are grey
formulas. Hence, whether a formula from (8) is grey depends
only on whether the leaves of Π′ are also grey. To define the
set Φ2 of partial interpolants, we therefore exploit the definition
of RB-partitions and adjust (8) to the following three cases. In
the sequel we refer by (a), . . . , (j) to the formulas denoted by
(a), . . . , (j) in (8).

Case (i). All leaves Ci of Π′ are grey. Any formula from (8)
is a partial interpolant and:

Φ2 = {(a), (b), (c), (d), (e), (f), (g), (h), (i), (j)}.

Case (ii). Some leaves of Π′ are red. Let us write {Ci} =
{Dk} ∪ {Cj}, where Cj are the grey leaves and Dk denote
the red leaves of Π′. Using the definition of RB-partitions, Dk
are also leaves of Π. From property (RB1) of RB-derivations,
we conclude R `

∧
Dk and take IDk

= ⊥ as the partial
interpolants of Dk. From property (RB2), we have `

∨
Ci ∨

C. Then from R `
∧

Dk and `
∨
Ci ∨ C, we derive R `∨

Cj ∨ C. Thus, restricting ourselves to the grey leaves Cj ,
the constraints (5) become:

R `
∧

(ICj
∨ Cj) ∧ (

∨
Cj ∨ C) ∧ C → IC ,

B ` IC →
∨

(ICj
∧ Cj) ∨ C.

Let (a′),(b′),(c′),(f′),(g′) denote the formulas obtained from
(a),(b),(c),(f),(g), by replacing Ci with Cj . It is not difficult to
prove that any formula (a′),(b′),(c′),(f′),(g′) can be taken as a
partial interpolant IC of C. Hence:

Φ2 = {(a′), (b′), (c′), (f′), (g′)}.

Case (iii). Some leaves of Π′ are blue. Using the notation of
Case (ii), eq. (5) imposes the following constraints over IC :

R `
∧

(ICj
∨ Cj) ∧ C → IC ,

B ` ICj
→
∨

(ICj
∧ Cj) ∨ (

∧
Cj ∧ C) ∨ C.

Let (d′),(e′),(h′),(i′),(j′) denote the formulas obtained from
(d),(e),(h),(i),(j), by replacing Ci with Cj . Then, formulas
(d′),(e′),(h′),(i′),(j′) are partial interpolant IC of C. Hence:

Φ2 = {(d′),(e′),(h′),(i′),(j′)}.

Interpolation Algorithm for First-Order Inference Systems.
Alg. 1 yields a new interpolation procedure for arbitrary first-
order inference systems, as follows. It takes as input an RB-
refutation Π and an RB-partition P of Π. The input functions
f, g of Alg. 1 satisfy the condition f(C) = g(C) = C, for
every C, whereas the construct function is defined by using the

above given sets Φ1 and Φ2 in (6). With these considerations
on its inputs, Alg. 1 returns an interpolant I of R and B by
recursively computing the partial interpolants of leaves and
sub-roots of Π.

The (partial) interpolants derived by Alg. 1 are of different
strength and are computed from the same proof. We next discuss
the strength of our partial interpolants, and relate them to other
methods, in particular to the local derivation framework of [13].

Logical Relations among Partial Interpolants. The logical
relations among the formulas from (8) are given in Fig. 2. An
arrow is drawn between two formulas denoted by (x) and (y)
if (x)→(y). All implications in Fig. 2 are valid, which can be
shown by simply applying resolution on (x)∧(y). The logical
relations of Fig. 2 correspond to Case (i) above; the relations
corresponding to Cases (ii) and (iii) are special cases of Fig. 2.

(a)

(b)

(d)

(c) (e) (f) (h) (i)

(j)(g)

Fig. 2. Implication graph of partial interpolants in first-order inference systems.

The Local Derivations Framework. The interpolation al-
gorithm of [13] extracts interpolants from so-called local
derivations, also called split derivations in [3]. An inference
in a local derivation cannot use both red and blue symbols;
inferences of local derivations are called local inferences. It is
easy to see that local proofs are special cases of RB-derivations.

Given a local RB-derivation Π, by making use of our
notation, the algorithm of [13] can be summarized as follows.
A partition P of Π is first created such that each sub-derivation
Π′ of Π is a maximal red or a maximal blue sub-derivation.
Next, partial interpolants are constructed as given below:

• If C is a grey sub-leaf of Π, then:
Φ1 = {C}, if R ` C; {C}, if B ` C.

• If C is a grey sub-root of a sub-derivation Π′ with leaves
C1, . . . , Cn, then C1, . . . , Cn ` C. Let {Cj} denote the set of
grey leaves of Π′. Hence, {Cj} ⊆ {C1, . . . , Cn} and:

Φ2 =

{
{
∧

j(Cj ∨ ICj
) ∧
∨

j Cj}, if Π′ is a red sub-derivation;
{
∧

j(Cj ∨ ICj
)}, if Π′ is a blue sub-derivation.

It is therefore not hard to argue that the algorithm of [13] is a
special case of Alg. 1. The partial interpolants generated by [13]
are a subset of the partial interpolants we compute. In particular,
if Π′ is a red (respectively, blue) sub-derivation, then the partial
interpolant of the sub-root C of Π′ in [13] corresponds to our
formula (b′) (respectively, (e′)) defined before.

Note that the sets Φ1 and Φ2 computed by [13] contain
exactly one formula, giving thus exactly one interpolant, while
the cardinality of Φ1 and Φ2 in our method can be greater than
1 (lines 4 and 13 of Alg. 1). Moreover, some of our interpolants
cannot be obtained by other methods – see Example 1.

Example 2: We illustrate our first-order interpolation pro-
cedure by using the formulas R and B of Example 1. Consider
the RB-refutation Π given in Fig. 1 and take the RB-partition
P = {Π′,Π′′}, where Π′ and Π′′ are respectively given in
Fig. 3 and Fig. 4.

By applying Alg. 1, we first visit the sub-derivation Π′′

and compute Ia=b. Since Π′′ has red leaves, the set of
partial interpolants corresponding to the root a = b of Π′′

is: {(a′), (b′), (c′), (f′), (g′)}. Since all the sub-leaves of Π′′

are colored leaves, (a′),(b′),(c′),(f′),(g′) respectively reduce to
a = b ∧ a 6= b, ⊥, a = b, ⊥, a = b. The set of partial
interpolants Ia=b is thus given by: {a = b,⊥}. Next, we

a = b
f(a) = f(b)

f(a) 6= f(h)
h = b

f(h) = f(b)

f(a) 6= f(b)

⊥

Fig. 3. Sub-derivation Π′.

∀z(z = c) a = c

∀z(z = a)

a = b

Fig. 4. Sub-derivation Π′′.

visit the sub-derivation Π′. As Π′ has blue leaves, the set
of partial interpolants corresponding to the root ⊥ of Π′ is
{(d′), (e′), (h′), (i′), (j′)}. Since Π′ has two grey sub-leaves,
namely a = b and h = b, the formulas (d′),(e′),(h′),(i′),(j′) are
simplified, yielding the following set of partial interpolants I⊥:
{(Ia=b∨a = b)∧ (Ih=b∨h = b), (Ia=b∧a 6= b)∨ (Ih=b∧h 6=
b) ∨ (a = b ∧ h = b)}. To derive the partial interpolant Ih=b,
note that h = b is the only grey leaf of B. Therefore, the set of
partial interpolants Ih=b is given by {>, h 6= b}. Using these
results, the set of (partial) interpolants I⊥ is finally given by
{a = b, h 6= b ∨ (a = b ∧ h = b)}.

The RB-partition we used here is different from the one
used in [13]. The flexibility in choosing RB-partitions in Alg. 1
allows us to derive quantifier-free interpolants from Fig. 1.

Summarizing, a natural question to ask about Alg. 1 is
whether a given refutation admits an RB-partition P . It is
even more interesting to understand which inference systems
yield always an RB-partition of an RB-refutation. To some
extent, the works of [13], [14] answer these questions by
considering so-called local derivations. In [14], it is shown that
non-local derivations in some cases can be translated into local
ones, by existentially quantifying away colored uninterpreted
constants; such a transformation comes thus at the price of
introducing quantifiers. Further, [13] proves that an extension
of the quantifier-free superposition calculus with quantifier-free
linear rational arithmetic always guarantees local derivations.
Since local derivations are special cases of RB-derivations,
the results of [13], [14] also apply to our framework. Deriving
sufficient and/or necessary conditions over RB-partitions of
RB-derivations is an interesting task to be further investigated.

VI. INTERPOLATION IN THE HYPER-RESOLUTION SYSTEM

In this section, we study our parametric interpolation
algorithm in the propositional hyper-resolution system. We start
by introducing the hyper-resolution system and some notation.
We then turn Alg. 1 into an interpolation procedure for the
propositional hyper-resolution system, by fixing the choices
of f, g, construct, and P . We also argue that our approach
generalizes the work of [12].

Formulas in the hyper-resolution system are of a special
format, called clauses. A clause is a finite disjunction of literals,
where a literal is either an atomic predicate p (positive literal)

or a negation of p (negative literal). We assume that R and
B, as well as all formulas in an RB-derivation are clauses.
The hyper-resolution system is an inference system that uses a
single inference rule, called the hyper-resolution rule:

p1 ∨ · · · ∨ pn−1 ∨ E D1 ∨ p1 . . . Dn−1 ∨ pn−1∨
Di ∨ E

where p1, . . . , pn are literals, called pivots, and D1, . . . , Dn, E
are clauses. An RB-derivation is thus a finite tree built from
applications of the hyper-resolution rule. In what follows, we
write HR system and HR rule to mean respectively the hyper-
resolution system and its rule.

Let us introduce the following notations specific to the
clauses of the HR system. Note that the color of a formula in
the HR system is defined by the color of its literals. Let Σ be a
signature. We introduce a restriction operator |Σ over clauses C.
The application of |Σ to a clause C yields a clause C|Σ, where
C|Σ is the disjunction of the literals lj of C such that lj are in
Σ. We denote C|R = C|ΣR\ΣRB

and say that C|R is restricted
to the red symbols of C. Similarly, we write C|B = C|ΣB\ΣRB

and C|RB = C|ΣRB
, where C|B and C|RB are restricted to

the blue and grey symbols of C, respectively. Hence, a formula
C in the HR system can be written as C = C|B ∨C|R∨C|RB .
Next, for each clause C and inference in Π, we define two
arbitrary subsets ∆C

R,∆
C
B ⊆ ΣRB of grey symbols, where

∆C
R ∪ ∆C

B = ΣRB . We then write C|R∆C
R

= C|R ∨ C|∆C
R

,
C|B∆C

B
= C|B ∨C|∆C

B
. It is important to remark that ∆C

R,∆
C
B

need not to be the same for the inferences where C is involved:
for example, a grey symbol of C can be treated as red in
the inference where C is the conclusion, and as blue in an
inference where C is a premise. With these notations at hand,
we now define the input parameters f, g, construct and P of
Alg. 1 in the HR system.
Definition of functions f and g. We take f and g such that,
for every formula C:

f(C) = C|R∆C
R
, g(C) = C|B∆C

B
. (9)

Note that f(C)∨ g(C) = C|R ∨C|B ∨C|RB = C for any C.
Similarly to [11], f(C) and g(C) separate the symbols of C
into sets of red and blue symbols, where the grey symbols in
ΣRB can be treated either as red, blue, or grey.
Definition of partition P . We fix the partition of an RB-
derivation to a so-called HR-partition, as defined below.

Definition 3: [HR-partition] Let Π be an RB-derivation
and consider a partition P = {Π′j} of Π into a set of sub-
derivations Π′j . The partition P of Π is called an HR-partition
if the following condition holds:

• for each sub-derivation Π′j with root C and leaves C1, . . . , Cn,
the inference C1 ... Cn

C is an application of the hyper-resolution
rule. That is, for some clauses E,D1, . . . , Dn−1 and literals
p1, . . . , pn−1, C1 can be written as p1 ∨ · · · ∨ pn−1 ∨ E,
C2, . . . , Cn denote respectively D1 ∨ p1, . . . , Dn−1 ∨ pn−1,
and C is

∨
Di ∨ E.

In this section we fix P to be an HR-partition, and proceed to
the definition of the construct function for partial interpolants.

Definition of construct for Partial Interpolants of Leaves.
Let C be a leaf of Π. Note that, if R ` C, then we have
C ∈ LR. Similarly, if B ` C then C ∈ LB holds. Therefore,
by using the definition of f and g from (9), the constraints
of (2) over the partial interpolants IC ∈ LRB reduce to:

R ` C ∧ C|R∆C
R
→ IC , B ` IC → C|∆C

B
, if R ` C;

R ` C|∆C
R
→ IC B ` IB → C ∨ C|B∆C

B
, if B ` C.

By satisfying the above constraints, a set Φ1 of partial
interpolants is defined as:

Φ1 = {C|∆C
B
}, if R ` C; {C|∆C

R
}, if B ` C.

Definition of construct for Partial Interpolants of Sub-
Roots. Let C be the root of a sub-derivation Π′ ∈ P , and
let C1, . . . , Cn denote the leaves of Π′. Further, denote by
∆i

R = ∆Ci

R and ∆i
B = ∆Ci

B . Considering the definitions of
f and g from (9), the constraints of eq. (5) over the partial
interpolants IC ∈ LRB are simplified to:

R `
∧

(ICi
∨ Ci|R∆i

R
) ∧ (

∨
Ci ∨ C) ∧ C|R∆C

R
→ IC ,

B ` IC →
∨

(ICi
∧ Ci|B∆i

B
) ∨ (

∧
Ci ∧ C) ∨ C|B∆C

B
(10)

Any formula IC ∈ Φ2 thus satisfies eq. (10). A potential set
Φ2 of partial interpolants therefore consists of the following
ten formulas (similarly to §V, annotated from (a) to (j)):

(a)
∧

(ICi
∨ Ci|R∆i

R
) ∧ (

∨
Ci ∨ C) ∧ C|R∆C

R

(b)
∧

(ICi
∨ Ci|R∆i

R
) ∧ (

∨
Ci)

(c)
∧

(ICi
∨ Ci|R∆i

R
) ∧ (

∨
Ci ∨ C)

(d)
∧

(ICi
∨ Ci|R∆i

R
) ∧ C|R∆C

R

(e)
∧

(ICi
∨ Ci|R∆i

R
)

(f)
∨

(ICi
∧ Ci|B∆i

B
)

(g)
∨

(ICi
∧ Ci|B∆i

B
) ∨ C|B∆C

B

(h)
∨

(ICi
∧ Ci|B∆i

B
) ∨ (

∧
Ci ∧ C)

(i)
∨

(ICi
∧ Ci|B∆i

B
) ∨ (

∧
Ci)

(j)
∨

(ICi
∧ Ci|B∆i

B
) ∨ (

∧
Ci ∧ C) ∨ C|B∆C

B

(11)

To use the formulas from (11) as partial interpolants we need
to ensure that they are grey. Similarly to §V, the definition
of the set Φ2 of partial interpolants comes by considering the
following three cases.
Case (i). The root C and all leaves Ci of Π′ are grey. As C is
grey, we have C|R∆C

R
= C|∆C

R
and C|B∆C

B
= C|∆C

B
. A similar

result for Ci is also derived. The formulas (a),(d),(g),(j) of (11)
are therefore partial interpolants IC . Moreover, if C = C|∆C

R
,

the formulas (b),(f),(h) are also partial interpolants. On the other
hand, if C = C|∆C

B
, (c),(e),(i) also yield partial interpolants.

We thus have:

Φ2 =


{(a),(b),(d),(f),(g),(h),(j)}, if C = C|∆C

R
;

{(a),(c),(d),(e),(g),(i),(j)}, if C = C|∆C
B

;

{(a),(d),(g),(j)}, otherwise.

Case (ii). Some leaves of Π′ are red. Similarly to §V, we
write {Ci} = {Dk} ∨ {Cj}, where Cj are the grey leaves (i.e.
disjunction of grey literals) and Dk denote the red leaves of
Π′. Let (a′),(b′),(c′),(f′),(g′) denote the formulas obtained from
(a),(b),(c),(f),(g), by replacing Ci with Cj . We then have:

Φ2 =


{(a′),(b′),(f′),(g′)}, if C = C|∆C

R
;

{(a′),(c′),(g′)}, if C = C|∆C
B

;

{(a′),(g′)}, otherwise.

Case (iii). Some leaves of Π′ are blue. Using the notation of
Case (ii), let (d′),(e′),(h′),(i′),(j′) denote the formulas obtained
from (d),(e),(h),(i),(j), by replacing Ci with Cj . Then:

Φ2 =


{(d′),(h′),(j′)}, if C = C|∆C

R
;

{(d′),(e′),(i′),(j′)}, if C = C|∆C
B

;

{(d′),(j′)}, otherwise.

Interpolation Algorithm for the HR System. Alg. 1 yields
a new interpolation algorithm for the HR system, as follows. It
takes as input an RB-refutation Π and an HR-partition P of
Π. The input functions f, g of Alg. 1 satisfy eq. (9), whereas
the construct function is defined by using the above specified
Φ1 and Φ2 in (6). With such specification, Alg. 1 computes an
interpolant I of R and B in the HR system.

Our interpolation method for the HR system benefits from
the advantage of computing partial interpolants of different
strength, from the same proof. We next discuss the strength of
these partial interpolants, and relate them to the labeled HR
framework of [12].
Logical Relations among Partial Interpolants. The logical
relations among the formulas of (11) are given in the implication
graph of Fig. 5. Similarly to Fig. 2, an arrow in Fig. 5 is drawn
between two formulas denoted by (x) and (y) if (x)→(y) holds.
Furthermore, an arrow annotated by M (resp. O) in Fig. 5 is

(a)

(b)

(d)

(c) (e) (f) (h) (i)

(j)(g)

M O
M O

Fig. 5. Implication graph of partial interpolants in the HR system.

drawn between two formulas (x) and (y) if (x)→(y) holds under
the assumption that C = C|∆C

R
(resp. C = C|∆C

B
). Fig. 5 shows

that some of the implications do not always hold: (a)→(b) and
(d)→(h) hold only if C = C|∆C

R
, while (c)→(g) and (i)→(j)

hold only if C = C|∆C
B

.

The Labeled Hyper-Resolution Framework. We now relate
Alg. 1 to the approach of [12] in the HR system. The
algorithm of [12] relies on a so-called labeling function L.

rb

r b

⊥

Fig. 6. The Hasse Dia-
gram of t.

Given a derivation Π, L first assigns
labels to the literals l in the leaves C
of Π. Labels are denoted by L(l, C)
where L(l, C) ∈ {r, b, rb,⊥}, with
the following meaning in our coloring
approach: a red literal has label r, a
blue literal b and a grey literal can have
label r, b, rb. Next, the label L(l, C) of
a literal l in the conclusion C of an
inference with premises C1, . . . , Cn is
computed from the labels L(l, C1), . . . , L(l, Cn), under the
assumption that L(l, Ci) = ⊥ if l does not appear in Ci.
Namely, L(l, C) = L(l, C1) t · · · t L(l, Cn), where t is the
join operator of the lattice defined by Fig. 6. For example,
r t b = rb and b t ⊥ = b. Labels for the pivots of a HR
inference are also computed in this way.

Given an RB-refutation Π, using our notation, the algorithm
of [12] can be summarized as follows:

• If C is a leaf of Π, then:
Φ1 = {C|b}, if R ` C; {C|r}, if B ` C,

where C|b and C|r denote the restriction of C to its literals
with label b and r.

• If C is the conclusion of the HR-rule with premises
C1, . . . , Cn, then, for some literals p1, . . . , pn−1 and clauses
D1, . . . , Dn−1, E, we have C1 = p1 ∨ · · · ∨ pn−1 ∨ E,
C2 = D1 ∨ p1, . . . , Cn = Dn−1 ∨ pn−1, and C =

∨
Di ∨ E.

The pivots pi are assumed to have the same label in [12].
Then:

Φ2 =


IC1
∨
∨n

i=2 ICi
, if L(pi, Di ∨ pi) t L(pi,

∨
pi ∨ E) = r;

IC1
∧
∧n

i=2 ICi
, if L(pi, Di ∨ pi) t L(pi,

∨
pi ∨ E) = b;{

(IC1
∨
∨

pi) ∧
∧n

i=2(pi ∨ ICi
),

(IC1 ∧
∧

pi) ∨
∨n

i=2(pi ∧ ICi
)

,
if L(pi, Di ∨ pi)
tL(pi,

∨
pi ∨ E) = rb.

We argue that Alg. 1 in the HR system generalizes the method
of [12]. To this end, the behavior of the labeling function on the
shared literals will be simulated in our framework, by assigning
appropriate sets ∆C

R,∆
C
B to every clause C in every inference

as follows.

Consider a leaf C of the RB-refutation Π, such that C ∈ LR.
Using [12], the red literals of C are labeled with r, and the grey
literals with one of the labels r, b, rb. The partial interpolant
C|b is thus a sub-clause of C|RB . We then fix ∆C

B such that
C|b = C|∆C

B
, and hence our partial interpolant is also a partial

interpolant of [12]. A similar argument holds when C ∈ LB .

Consider now an arbitrary HR inference in Π, with root C
and leaves Ci. An HR inference is also a sub-derivation, and
thus clearly satisfies the restrictions of an HR-partition of Π.
Assume that, for all i, L(pi, Di ∨ pi) t L(pi,

∨
pi ∨ E) = r.

According to the definition of L, we have either pi ∈ ΣR\RB

or pi ∈ ΣRB , and both pi and pi have label r. We then choose
the sets ∆R,∆B such that, if pi is grey, then pi ∈ ∆i

R \∆i
B

and pi ∈ ∆1
R \ ∆1

B . A similar argument holds also when
L(pi, Di ∨ pi) t L(pi,

∨
pi ∨ E) is b or rb.

We thus conclude that Alg. 1 generalizes and extends the
method of [12] in a number of ways. While in [12] the label
L(l, C) of a literal l in the conclusion C of an HR inference
is derived in a unique way from the labels of the inference
premises, in our framework the sets ∆C

R and ∆C
B can be chosen

independently for every clause C and every inference. An
important aspect of the labeled system is that it allows to
systematically compare the strength of the interpolants resulting
from different labelings. In particular, in [11] a total order � is
defined over the labels {r, b, rb,⊥} as b � rb � r � ⊥. Then,
� is extended to a partial order over labeling functions L,L′,
as follows: L � L′ is defined if, for every clause C and literal l
in C, L(l, C) � L′(l, C). If L � L′, then the interpolant given
by L is stronger than the one given by L′. Our framework also
benefits from such a comparison, since in any RB-refutation we
are able to simulate the labeling function L by an appropriate
choice of ∆C

R,∆
C
B for every clause in the refutation. Therefore,

for any RB-refutation and labelings L,L′ such that L � L′, the
interpolant obtained with L is stronger than the one obtained
with L′.
Extending the Labeled Hyper-Resolution Framework. The
main advantage of the HR system is that the HR rule can be
applied to remove colored literals in order to make colored
formulas grey. This allows us to obtain an additional set of
partial interpolants for sub-derivations containing colored sub-
leaves/sub-roots. Let Π′ ∈ P be a sub-derivation with root C
and leaves C1, . . . , Cn. As P is an HR-partition, formulas C
and Ci are as given in Def. 3. Consider now the formulas (d)

and (g) from eq. (11), and replace C and Ci with the clauses
from Def. 3. We thus obtain the new formulas (d) and (g):

(d) (IC1
∨ (E ∨

∨
pi)|R∆1

R
) ∧
∧

(ICi
∨ (Di ∨ pi)|R∆i

R
)

∧ (
∨

Di ∨ E)|R∆C
R

;

(g) (IC1
∧ (E ∨

∨
pi)|B∆1

B
) ∨
∨

(ICi
∧ (Di ∨ pi)|B∆i

B
)

∨ (
∨

Di ∨ E)|B∆C
B
.

From Fig. 5, we have (a)→(d) and (g)→(j). It is also not
hard to derive that (d)∧ (g)→ ⊥. Therefore, we conclude that
(d)→(g) also holds in the HR system. The relation (d)→(g) can
be further exploited to derive intermediate pairs of formulas
(x),(y), such that (d)→(x), (x)→(y) and (g) → (y). Our goal
is to obtain new partial interpolants by removing the colored
literals of Di and E in (d) and (g) using the HR rule. This
reasoning gives us the following formulas:

(m) (IC1
∨ E|∆1

R
∨
∨

pi|R∆1
R

) ∧
∧

(ICi
∨Di|∆i

R
∨ pi|R∆i

R
)

∧
∧

Di|∆C
R
∧ E|∆C

R
;

(n) (IC1
∧ E|∆1

B
∧
∧

pi|B∆1
B

) ∨
∨

(ICi
∧Di|∆i

B
∧ pi|B∆i

B
)

∨
∨

Di|∆C
B
∨ E|∆C

B
,

It is always possible to split a HR inference in a sequence
of HR inferences so that a uniform labeling of the pivots is
achieved (see [12] – §4). In turn, the presence of a uniform
labeling allows to further simplify (m) and (n), thus deriving
the partial interpolants of [12] as special cases of our formulas
(see Appendix A).

Example 3: Consider a proof Π with an HR inference, as
in Fig. 7. Assume that the following partial interpolants are
given: I1 = Ip1p2q1 , I2 = Ip1q2 , I3 = Ip2q3 . We assume that
all literals belong to Σ|RB , and the pivots p1 and p2 are both
labeled as rb.

...
p1p2q1

...
p1q2

...
p2q3

q1q2q3

...
Fig. 7. RB-proof Π with HR inferences.

The algorithm of [12] yields the partial interpolant Iq1q2q3 =
(I1 ∨ p1 ∨ p2) ∧ (I2 ∨ p1) ∧ (I3 ∨ p2). W.l.o.g., we assume
that the sets ∆R,∆B have been chosen such that, for every
clause C, all shared literals of C are in ∆C

R ∩∆C
B

1. Then, our
method generates the partial interpolant Iq1q2q3 as the formula
(m), simplified below:
I = (I1 ∨ q1 ∨ p1 ∨ p2) ∧ (I2 ∨ q2 ∨ p1) ∧ (I3 ∨ q3 ∨ p2) ∧ q1 ∧ q2 ∧ q3

Our interpolant I , which is stronger than the interpolant I ′
of [12], cannot be generated in [12]. Moreover, our method
can also generate the interpolant I ′ of [12], by applying the
HR rule with pivots qi.

VII. CONCLUSIONS

In this paper we proposed a new parametric interpolation
framework for arbitrary first-order theories and inference
systems. We discussed two classes of well-known interpolation
algorithms, that respectively address local derivations in first-
order logic and the propositional hyper-resolution system, and

1This is case (C) in Appendix A. The other choices of ∆R,∆B yield other
generalizations of [12].

showed that they can be regarded as instantiations of our method.
The main advantage of our framework is its ability to compute
various interpolants of different structure and strength, with or
without quantifiers, from the same proof.

Our work makes the first step towards a theoretical for-
malization of a generic interpolation approach. We believe
our parametric interpolation algorithm can be adjusted and
instantiated to cover a range of previously proposed systems
(some being discussed in the paper) as well as some new
ones. As future work, we will study the relationships among
specific inference systems and theories, and features of the
derivations that can be produced. We believe that such studies
will yield efficient interpolation algorithms specialized to
various theories. On the practical side, we intend to apply
our work on examples coming from bounded model checking
and/or invariant discovery in order to characterize the notion
of a “good” interpolant. For example, we plan to extend our
method with ideas from [16] where interpolants of a certain
structure are computed.

Acknowledgements. We acknowledge funding from the Aus-
trian FWF grants S11410-N23 and T425-N23, the Austrian
WWTF grant ICT C-050, and ICT COST Action IC0901.

REFERENCES

[1] W. Craig, “Three uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory,” J. Symb. Log., vol. 22, no. 3, 1957.

[2] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-
tions from Proofs,” in POPL, 2004, pp. 232–244.

[3] R. Jhala and K. L. McMillan, “A Practical and Complete Approach to
Predicate Refinement,” in TACAS, 2006, pp. 459–473.

[4] K. L. McMillan, “Quantified Invariant Generation Using an Interpolating
Saturation Prover,” in TACAS, 2008, pp. 413–427.

[5] ——, “Interpolation and SAT-Based Model Checking,” in CAV, 2003.
[6] ——, “An Interpolating Theorem Prover,” in TACAS, 2004, pp. 16–30.
[7] P. Pudlák, “Lower Bounds for Resolution and Cutting Plane Proofs and

Monotone Computations,” J. Symb. Log., vol. 62, no. 3, 1997.
[8] J. Krajı́cek, “Interpolation Theorems, Lower Bounds for Proof Systems,

and Independence Results for Bounded Arithmetic,” J. Symb. Log.,
vol. 62, no. 2, pp. 457–486, 1997.

[9] G. Huang, “Constructing Craig Interpolation Formulas,” in COCOON,
1995.

[10] G. Yorsh and M. Musuvathi, “A Combination Method for Generating
Interpolants,” in CADE, 2005, pp. 353–368.

[11] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher, “Inter-
polant Strength,” in VMCAI, 2010, pp. 129–145.

[12] G. Weissenbacher, “Interpolant Strength Revisited,” in SAT, 2012.
[13] L. Kovács and A. Voronkov, “Interpolation and Symbol Elimination,”

in CADE, 2009, pp. 199–213.
[14] K. Hoder, L. Kovács, and A. Voronkov, “Playing in the Grey area of

Proofs,” in POPL, 2012, pp. 259–272.
[15] R. Jhala and K. L. McMillan, “Interpolant-Based Transition Relation

Approximation,” in CAV, 2005, pp. 39–51.
[16] A. Albarghouthi and K. L. McMillan, “Beautiful Interpolants,” in CAV,

2013, to appear.

APPENDIX A: EXTENSION OF THE LABELED
HYPER-RESOLUTION FRAMEWORK

As mentioned in §VI (page 8), it is always possible to
split a HR inference in a sequence of HR inferences so that a
uniform labeling of the pivots is achieved (see [12] – §4). We
show how this affects the choice of sets ∆R,∆B in our setup,
by analyzing the three possible cases:

(A) if the label is r, then the ∆R,∆B sets are chosen
so that, if pi is grey, then pi ∈ ∆i

R \ ∆i
B and pi ∈

∆1
R \∆1

B ;

(B) if the label is b then, if pi is grey, then pi ∈ ∆i
B \∆i

R
and pi ∈ ∆1

B \∆1
R;

(C) if the label is rb then pi ∈ ∆i
R ∩∆i

B and pi ∈ ∆1
R ∩

∆1
B .

In case (A), (n) reduces to:

(o) (IC1 ∧ E|∆1
B

) ∨
∨

(ICi ∧Di|∆i
B

) ∨
∨

Di|∆C
B
∨ E|∆C

B
.

Formula (o) can be thus also used as an additional partial
interpolant in Φ2. A special case of (o) is the partial interpolant∨n

i=1 ICi .

In case (B), (m) reduces to:

(p) (IC1 ∨ E|∆1
R

) ∧
∧

(ICi ∨Di|∆i
R

) ∧
∧

Di|∆C
R
∧ E|∆C

R
.

Formula (p) can then be also used as a partial interpolant in
Φ2. A special case of (p) is

∧n
i=1 ICi .

(d) (m) (g)(n)

(o)

(p)

?

•

∗

•

∗

?

Fig. 8. Additional implication graph.

In case (C), the formulas (m) and (n) can also be used as
partial interpolants in Φ2.

The relations between Fig. 5 and the formulas (m), (n),
(p), and (o) are shown in Fig. 8. Similarly to Fig. 2, an arrow
in Fig. 8 is drawn between two formulas denoted by (x) and
(y) if (x)→(y) holds. In addition, an arrow annotated by ?
(respectively, by ∗ and •) is drawn between (x) and (y) if
(x)→(y) holds under the assumption that pi ∈ (∆i

R ∩ ∆i
B)

(respectively, pi ∈ (ΣB\RB ∪ (∆i
B \∆i

R)) and pi ∈ (ΣR\RB ∪
(∆i

R \∆i
B))).

