
Noname manuscript No.
(will be inserted by the editor)

Loop Summarization using
State and Transition Invariants

Daniel Kroening · Natasha Sharygina ·
Stefano Tonetta · Aliaksei Tsitovich ·
Christoph M. Wintersteiger

the date of receipt and acceptance should be inserted later

Abstract This paper presents algorithms for program abstraction based on the
principle of loop summarization, which, unlike traditional program approxima-
tion approaches (e.g., abstract interpretation), does not employ iterative fixpoint
computation, but instead computes symbolic abstract transformers with respect
to a set of abstract domains. This allows for an effective exploitation of problem-
specific abstract domains for summarization and, as a consequence, the precision
of an abstract model may be tailored to specific verification needs. Furthermore,
we extend the concept of loop summarization to incorporate relational abstract
domains to enable the discovery of transition invariants, which are subsequently
used to prove termination of programs. Well-foundedness of the discovered transi-
tion invariants is ensured either by a separate decision procedure call or by using
abstract domains that are well-founded by construction.

We experimentally evaluate several abstract domains related to memory op-
erations to detect buffer overflow problems. Also, our light-weight termination
analysis is demonstrated to be effective on a wide range of benchmarks, including
OS device drivers.

Keywords Program Abstraction · Loop Summarization · Loop Invariants ·
Transition Invariants · Termination

D. Kroening
University of Oxford, UK

N. Sharygina
University of Lugano, Switzerland

S. Tonetta
Fondazione Bruno Kessler, Trento, Italy

A. Tsitovich
University of Lugano / Phonak AG, Switzerland

C. M. Wintersteiger
Microsoft Research, Cambridge UK

2 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

1 Introduction

Finding good abstractions is key to further extension of the applicability of formal
methods to real problems in software and hardware engineering. Building a concise
model that represents the semantics of a system with sufficient precision is the
objective of research in this area.

Loops in programs are the Achilles’ heel of program verification. Sound analysis
of all program paths through loops requires either an explicit unwinding or an
over-approximation (of an invariant) of the loop.

Unwinding is computationally too expensive for many industrial programs.
For instance, loops greatly limit the applicability of bounded model checking
(BMC) [8]. In practice, if the bound on the number of loop iterations cannot
be pre-computed (the problem is undecidable by itself), BMC tools simply un-
wind the loop a finite number of times, thus trading the soundness of the analysis
for scalability. Other methods rely on sufficiently strong loop invariants; however,
the computation of such invariants is an art. Abstract interpretation [22] and
counterexample-guided abstraction refinement (CEGAR) [12] use saturating pro-
cedures to compute over-approximations of the loop. For complex programs, this
procedure may require many iterations until the fixpoint is reached or the right
abstraction is determined. Widening is a remedy for this problem, but it introduces
further imprecision, yielding spurious behavior.

Many approximation techniques furthermore assume that loops terminate, i.e.,
that every execution reaches the end of the loop after a finite number of iterations.
Unfortunately, it is not the case for many real applications (some loops are even
designed to be infinite). Thus, (non-) termination should be taken into account
when constructing approximations.

In this paper, we focus on effective program abstraction and, to that end, we
propose a loop summarization algorithm that replaces program fragments with
summaries, which are symbolic abstract transformers. Specifically, for programs
with no loops, an algorithm precisely encodes the program semantics into sym-
bolic formulæ. For loops, abstract transformers are constructed based on problem-
specific abstract domains. The approach does not rely on fixpoint computation of
the abstract transformer and, instead, constructs the transformer as follows: an
abstract domain is used to draw a candidate abstract transition relation, giving
rise to a candidate loop invariant, which is then checked to be consistent with the
semantics of the loop. The algorithm allows tailoring of the abstraction to each
program fragment and avoids any possibly expensive fixpoint computation and
instead uses a finite number of relatively simple consistency checks. The checks
are performed by means of calls to a SAT or SMT-based decision procedure, which
allows to check (possibly infinite) sets of states within a single query. Thus, the
algorithm is not restricted to finite-height abstract domains.

Our technique is a general-purpose loop and function summarization method
and supports relational abstract domains that allow the discovery of (disjunctively
well-founded) transition invariants (relations between pre- and poststates of a
loop). These are employed to address the problem of program termination. If a
disjunctively well-founded transition invariant exists for a loop, we can conclude
that it is terminating, i.e., any execution through a loop contains a finite number of
loop iterations. Compositionality (transitivity) of transition invariants is exploited

Loop Summarization using State and Transition Invariants 3

to limit the analysis to a single loop iteration, which in many cases performs
considerably better in terms of run-time.

We implemented our loop summarization technique in a tool called Loopfrog
and we report on our experience using abstract domains tailored to the discovery
of buffer overflows on a large set of ANSI-C benchmarks. We demonstrate the
applicability of the approach to industrial code and its advantage over fixpoint-
based static analysis tools.

Due to the fact that Loopfrog only ever employs a safety checker to analyze
loop bodies instead of unwindings, we gain large speedups compared to state-of-
the-art tools that are based on path enumeration. At the same time, the false-
positive rate of our algorithm is very low in practice, which we demonstrate in an
experimental evaluation on a large set of Windows device drivers.

Outline This paper is structured as follows. First, in Section 2 we provide sev-
eral basic definitions required for reading the paper. Then, Section 3 presents our
method for loop summarization and sketches the required procedures. Next, in
Section 4 the algorithm is formalized and a proof of its correctness is given. Back-
ground on termination and the algorithm extension to support termination proofs
is presented in Section 5. Implementation details and an experimental evaluation
are provided in Section 6. Related work is discussed in Section 7. Finally, Section 8
gives conclusions and highlights possible future research directions.

2 Loop Invariants

Informally, an invariant is a property that always holds for (a part of) the pro-
gram. The notion of invariants of computer programs has been an active research
area from the early beginnings of computer science. A well-known instance are
Hoare’s rules for reasoning about program correctness [37]. For the case of looping
programs fragments, [37] refers to loop invariants, i.e., predicates that hold upon
entry to a loop and after each iteration. As a result, loop invariants are guaranteed
to hold immediately upon exit of the loop1. For example, “p-a ≤ length(a)” is
a loop invariant for the loop in Figure 1.

Important types of loop invariants that are distinguished and used in this work
are state invariants and transition invariants.

Formally, a program can be represented as a transition system P = 〈S, I,R〉,
where:

– S is a set of states;
– I ⊆ S is the set of initial states;
– R ⊆ S × S is the transition relation.

We use the relational composition operator ◦ which is defined for two binary
relations Ri ⊆ S × S and Rj ⊆ S × S as

Ri ◦Rj :=
{
(s, s′) ∈ S × S ∃s′′ ∈ S . (s, s′′) ∈ Ri ∧ (s′′, s′) ∈ Rj

}
.

To simplify the presentation, we also define R1 := R and Rn := Rn−1 ◦R for any
relation R : S × S.

1Here we only consider structured loops or loops for which the exit condition is evaluated
before an iteration has changed the state of any variables.

4 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

p=a;

while(*p!=0){

if(*p==’/’)

*p=0;

p++;

}

*p!=’/’

p++
*p==0

p=a

vo

vi

*p=0

*p==’/’*p!=0

Fig. 1: The example of a program and its program graph

Note that a relation R is transitive if it is closed under relational composition,
i.e., when R ◦ R ⊆ R. The reflexive and non-reflexive transitive closures of R are
denoted as R∗ and R+ respectively. The set of reachable states is then defined as
R∗(I) := {s ∈ S ∃s′ ∈ I . (s′, s) ∈ R∗}.

We now discuss two kinds of invariants, state invariants and transition in-
variants. For historical reasons, state invariants are often referred to simply as
invariants; we will use the term “state invariant” when it is necessary to stress its
difference to transition invariants.

Definition 1 (State Invariant) A state invariant V for program P represented
by a transition system 〈S, I,R〉 is a superset of the reachable state space, i.e.,
R∗(I) ⊆ V .

In contrast to state invariants that represent the safety class of properties, tran-
sition invariants, introduced by Podelski and Rybalchenko [49], enable reasoning
about liveness properties and, in particular, about program termination.

Definition 2 (Transition Invariant [49]) A transition invariant T for program
P represented by a transition system 〈S, I,R〉 is a superset of the transitive closure
of R restricted to the reachable state space, i.e., R+ ∩ (R∗(I)×R∗(I)) ⊆ T .

State and transition invariants can be used together during loop summarization
to preserve both safety- and liveness-related semantics of a loop in its abstraction.
Our experiments with a static analyser tailored to buffer overflows focus on state
invariants, while our experiments with termination analysis mainly use transition
invariants.

3 Loop Summarization with State Invariants

Algorithm 1 presents an outline of loop summarization. The function Summa-
rize traverses the control-flow graph of the program P and calls itself recursively
for each block with nested loops. If a block is a loop without nested loops, it
is summarized using the function SummarizeLoop and the resulting summary
replaces the original loop in P ′. Thereby, outer loops also become loop-free, which
enables further progress.

Loop Summarization using State and Transition Invariants 5

Algorithm 1: Routines of loop summarization

1 Summarize(P)
2 input: program P
3 output: Program summary
4 begin
5 foreach Block B in ControlFlowGraph(P) do
6 if B has nested loops then
7 B :=Summarize(B)
8 else if B is a single loop then
9 B :=SummarizeLoop(B)

10 endif

11 end foreach
12 return P

13 end

14 SummarizeLoop(L)
15 input: Single-loop program L (over variable set X)
16 output: Loop summary
17 begin
18 I := >
19 foreach Candidate C in PickInvariantCandidates(L) do
20 if IsStateInvariant(L, C) then
21 I := I ∧ C
22 endif

23 end foreach

24 return “Xpre := X; havoc(X); assume(I(Xpre) =⇒ I(X));”

25 end

26 IsStateInvariant(L, C)
27 input: Single-loop program L (over variable set X), invariant candidate C
28 output: TRUE if C is an invariant for L; FALSE otherwise
29 begin
30 return Unsat(¬(L(X,X ′) ∧ C(X)⇒ C(X ′)))
31 end

The function SummarizeLoop computes the summaries. A very imprecise
over-approximation is to replace a loop with a program fragment that “havocs”
the state by setting all variables that are (potentially) modified during loop execu-
tion to non-deterministic values. To improve the precision of these summaries, we
strengthen them by means of (partial) loop invariants. SummarizeLoop has two
subroutines that are related to invariant discovery: PickInvariantCandidates,
which returns a set of “invariant candidates” depending on an abstract interpre-
tation selected for the loop and IsStateInvariant, which establishes whether a
candidate is an actual loop invariant (a state invariant in this case).

Note that this summarization algorithm only uses state invariants and does
not take loop termination into account. State invariants over-approximate the set

6 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

of states that a loop can reach but do not provide any information about the
progress of the loop. Thus, the summaries computed by the algorithm are always
terminating program fragments. The abstraction is a sound over-approximation,
but it may be too coarse for programs that contain unreachable paths. We address
this issue in Section 5.

4 Summarization using Symbolic Abstract Transformers

In the following subsections we formally describe the steps of our summarization
approach. We first present necessary notation and define summarization as an
over-approximation of a code fragment. Next, we show that a precise summary
can be computed for a loop-free code fragment, and we explain how a precise
summary of a loop body is used to obtain information about the computations
of the loop. Finally, we give a bottom-up summarization algorithm applicable to
arbitrary programs.

4.1 Abstract interpretation

To formally state the summarization algorithm and prove its correctness we rely on
abstract interpretation [22]. It constructs an abstraction of a program using values
from an abstract domain by iteratively applying the instructions of a program to
abstract values until a fixpoint is reached. Formally:

Definition 3 A program graph is a tuple
G = 〈PL, E, pli, plo,L, C〉, where

– PL is a finite non-empty set of vertices called program locations;
– pli ∈ PL is the initial location;
– plo ∈ PL is the final location;
– E ⊆ PL×PL is a non-empty set of edges; E∗ denotes the set of paths, i.e., the

set of finite sequences of edges;
– L is a set of elementary commands;
– C : E → L associates a command with each edge.

A program graph is often used as an intermediate modeling structure in pro-
gram analysis. In particular, it is used to represent the control-flow graph of a
program.

Example 1 To demonstrate the notion of a program graph we use the program
fragment in Figure 1 as an example. On the left-hand side, we provide the program
written in the programming language C. On the right-hand side, we depict its
program graph.

Let S be the set of states, i.e., the set of valuations of program variables. The
set of commands L consists of tests LT and assignments LA, i.e., L = LT ∪̇LA,
where:

– a test q ∈ LT is a predicate over S (q ⊆ S);
– an assignment e ∈ LA is a map from S to S.

Loop Summarization using State and Transition Invariants 7

A program P is then formalized as the pair 〈S,G〉, where S is the set of states
and G is a program graph. We write L∗ for the set of sequences of commands.
Given a program P , the set paths(P) ⊆ L∗ contains the sequence C(e1), . . . , C(en)
for every 〈e1, .., en〉 ∈ E∗.

The (concrete) semantics of a program is given by the pair 〈A, τ〉, where:

– A is the set of assertions of the program, where each assertion p ∈ A is a
predicate over S (p ⊆ S);
A(⇒, false, true,∨,∧) is a complete Boolean lattice;

– τ : L → (A→ A) is the predicate transformer.

An abstract interpretation is a pair 〈Â, t〉, where Â is a complete lattice of the
form Â(v,⊥,>,t,u), and t : L → (Â→ Â) is a predicate transformer. Note that
〈A, τ〉 is a particular abstract interpretation called the concrete interpretation.
In the following, we assume that for every command c ∈ L, the function t(c)
(predicate transformer for command c) is monotone (which is the case for all
natural predicate transformers). Given a predicate transformer t, the function
t̃ : L∗ → (Â→ Â) is recursively defined as follows:

t̃(p)(φ) =

{
φ if p is empty
t̃(e)(t(q)(φ)) if p = q; e for a q ∈ L, e ∈ L∗.

Example 2 We continue using the program in Figure 1. Consider an abstract do-
main where abstract state is a four-tuple 〈pa, za, sa, la〉. The first member, pa is
the offset of the pointer p from the base address of the array a (i.e., p − a in our
example), the Boolean za holds if a contains the zero character, the Boolean sa
holds if a contains the slash character, la is the index of the first zero character if
present. The predicate transformer t is defined as follows:

t(p = a)(φ) = φ[pa := 0] for any assertion φ;
t(∗p != 0)(φ) = φ ∧ (pa 6= la) for any assertion φ;
t(∗p == 0)(φ) = φ ∧ za ∧ (pa ≥ la) for any assertion φ;
t(∗p ==′ /′)(φ) = φ ∧ sa for any assertion φ;
t(∗p !=′ /′)(φ) = φ for any assertion φ;

t(∗p = 0)(φ) =

{
φ[za := true, la := pa] if φ⇒ (pa < la)
φ[za := true] otherwise;

t(p++)(φ) = φ[pa := pa + 1] for any assertion φ.
(We used φ[x := v] to denote an assertion equal to φ apart from the variable

x that takes value v.)

Given a program P , an abstract interpretation 〈Â, t〉 and an element φ ∈ Â,
we define the Merge Over all Paths MOPP (t, φ) as

MOPP (t, φ) :=
⊔

π∈paths(P)

t̃(π)(φ) .

Given two complete lattices Â(v,⊥,>,t,u) and Â′(v′,⊥′,>′,t′,u′), the pair
of functions 〈α, γ〉, with α : Â → Â′ and γ : Â′ → Â is a Galois connection iff α
and γ are monotone and satisfy:

for all φ ∈ Â : φ v γ(α(φ))

for all φ′ ∈ Â′ : α(γ(φ′)) v′ φ′ .

8 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

An abstract interpretation 〈Â, t〉 is a correct over-approximation of the con-
crete interpretation 〈A, τ〉 iff there exists a Galois connection 〈α, γ〉 such that for
all φ ∈ Â and p ∈ A, if p ⇒ γ(φ), then α(MOPP (τ, p)) v MOPP (t, φ) (i.e.,
MOPP (τ, p)⇒ γ(MOPP (t, φ))).

4.2 Computing Abstract Transformers

In order to implement abstract interpretation for a given abstract domain, an
algorithmic description of the abstract predicate transformer t(p) for a specific
command p ∈ L is required. These transformers are frequently hand-coded for a
given programming language and a given domain. Reps et al. describe an algorithm
that computes the best possible (i.e., most precise) abstract transformer for a given
finite-height abstract domain automatically [52]. Graf and Säıdi’s algorithm for
constructing predicate abstractions [30] is identified as a special case.

The algorithm presented by Reps et al. has two inputs: a formula Fτ(q), which
represents the concrete semantics τ(q) of a command q ∈ L symbolically, and
an assertion φ ∈ Â. It returns the image t(q)(φ) of the predicate transformer
t(q). The formula Fτ(q) is passed to a decision procedure, which is expected to
provide a satisfying assignment to the variables. The assignment represents one
concrete transition (p, p′) ∈ A×A. The transition is abstracted into a pair (φ, φ′) ∈
Â × Â, and a blocking constraint is added to remove this satisfying assignment.
The algorithm iterates until the formula becomes unsatisfiable. An instance of the
algorithm for the case of predicate abstraction is the implementation of SatAbs
described in [15]. SatAbs uses a propositional SAT-solver as decision procedure
for bit-vector arithmetic. The procedure is worst-case exponential in the number
of predicates, and thus, alternatives have been explored. In [42, 39] a symbolic
decision procedure generates a symbolic formula that represents the set of all
solutions. In [43], a first-order formula is used and the computation of all solutions
is carried out by an SMT-solver. In [9], a similar technique is proposed where
BDDs are used in order to efficiently deal with the Boolean component of Fτ(q).

4.3 Abstract summarization

The idea of summarization is to replace a code fragment, e.g., a procedure of the
program, by a summary, which is a representation of the fragment. Computing
an exact summary of a program (fragment) is undecidable in the general case.
We therefore settle for an over-approximation. We formalize the conditions the
summary must fulfill in order to have a semantics that over-approximates the
original program.

We extend the definition of a correct over-approximation (from Section 4.1) to
programs. Given two programs P and P ′, we say that P ′ is a correct over-approx-
imation of P iff for all p ∈ A(⇒, false, true,∨,∧), MOPP (τ, p)⇒MOPP ′(τ, p).

Definition 4 (Abstract Summary) Given a program P , and an abstract inter-
pretation 〈Â, t〉 with a Galois connection 〈α, γ〉 with 〈A, τ〉, we denote the abstract
summary of P by Sum〈Â,t〉(P). It is defined as the program 〈U,G〉, where U de-

notes the universe of program variables and G = 〈{vi, vo}, {〈vi, vo〉}, vi, vo, {a}, C〉

Loop Summarization using State and Transition Invariants 9

and {a} together with C(〈vi, vo〉) = a, where a is a new (concrete) command such
that τ(a)(p) = γ(MOPP (t, α(p))).

Lemma 1 If 〈Â, t〉 is a correct over-approximation of 〈A, τ〉, the abstract sum-
mary Sum〈Â,t〉(P) is a correct over-approximation of P .

Proof Let P ′ = Sum〈Â,t〉(P). For all p ∈ A,

MOPP (τ, p)) ⇒ γ(MOPP (t, α(p)))[by def. of correct over-approx.]

= τ(a)(p)[by Definition 4]

= MOPP ′(τ, p) [MOP over a single-command path].

The following sections discuss our algorithms for computing abstract sum-
maries. The summarization technique is first applied to particular fragments of
the program, specifically to loop-free (Section 4.4) and single-loop programs (Sec-
tion 4.5). In Section 4.6, we use these procedures as subroutines to obtain the
summarization of an arbitrary program. We formalize code fragments as program
sub-graphs.

Definition 5 Given two program graphs G = 〈V,E, vi, vo,L, C〉 and G′ = 〈V ′, E′,
v′i, v

′
o,L′, C′〉, G′ is a program sub-graph of G iff V ′ ⊆ V , E′ ⊆ E, and C′(e) = C(e)

for every edge e ∈ E′.

4.4 Summarization of loop-free programs

Obtaining MOPP (t, φ) is as hard as assertion checking on the original program.
Nevertheless, there are restricted cases where it is possible to represent MOPP (t, φ)
using a symbolic predicate transformer.

Let us consider a program P with a finite number of paths, in particular, a
program whose program graph does not contain any cycles. A program graph G =
〈V,E, vi, vo,L, C〉 is loop-free iff G is a directed acyclic graph.

In the case of a loop-free program P , we can compute a precise (not abstract)
summary by means of a formula FP that represents the concrete behavior of P .
This formula is obtained by converting P to static single assignment (SSA) form,
whose size is linear in the size of P (this step is beyond the scope of this work;
see [14] for details).

Example 3 We continue the running example (Fig. 1). The symbolic transformer
of the loop body P ′ is represented by:

((∗p =′ /′ ∧ a′ = a[∗p = 0]) ∨ (∗p 6=′ /′ ∧ a′ = a)) ∧ (p′ = p+ 1) .

Recall the abstract domain from Ex. 2. We can deduce that:

1. ifm < n, then MOPP ′(t, (pa = m∧za∧(la = n)∧¬sa)) = (pa = m+1∧za∧la =
n ∧ ¬sa)

2. MOPP ′(t, za) = za.

This example highlights the generic nature of our technique. For instance, case
1 of the example cannot be obtained by means of predicate abstraction because
it requires an infinite number of predicates. Also, the algorithm presented in [52]
cannot handle this example because assuming the string length has no a-priori
bound, the lattice of the abstract interpretation has infinite height.

10 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

4.5 Summarization of single-loop programs

We now consider a program that consists of a single loop.

Definition 6 A program P = 〈U,G〉 is a single-loop program iff G = 〈V,E, vi,
vo,L, C〉 and there exists a program sub-graph G′ and a test q ∈ LT such that

vi

vo

vb

q
q

G′

– G′ = 〈V ′, E′, vb, vi,L′, C′〉 with
– V ′ = V \ {vo},
– E′ = E \ {〈vi, vo〉, 〈vi, vb〉},
– L′ = L \ q,
– C′(e) = C(e) for all e ∈ E′,
– G′ is loop-free.

– C(〈vi, vb〉) = q, C(〈vi, vo〉) = q.

We first record the following simple lemma.

Lemma 2 Given a loop-free program P , and an abstract interpretation 〈Â, t〉, if
MOPP (t, ψ) v ψ, then, for all repetitions of loop-free paths of a program P , i.e.,
for all π ∈ (paths(P))∗, t̃(π)(ψ) v ψ.

Proof If MOPP (t, ψ) =
⊔
π∈paths(P) t̃(π)(ψ) v ψ, then, for all paths π ∈ paths(P),

t̃(π)(ψ) v ψ. Thus, by induction on repetitions of loop-free paths, for all paths
π ∈ (paths(P))∗, t̃(π)(ψ) v ψ.

The following can be seen as the “abstract interpretation analog” of Hoare’s
rule for while loops.

Theorem 1 Given a single-loop program P with guard q and loop body P ′, and an
abstract interpretation 〈Â, t〉, let ψ be an assertion satisfying MOPP ′(t, t(q)(ψ))
v ψ and let 〈Â, tψ〉 be a new abstract interpretation s.t.

MOPP (tψ, φ) =

{
t(q)(ψ) if φ v ψ
> elsewhere.

If 〈Â, t〉 is a correct over-approximation, then 〈Â, tψ〉 is also a correct over-approx-
imation.

Loop Summarization using State and Transition Invariants 11

Proof If φ v ψ,

α(MOPP (τ, p)) v MOPP (t, p) [〈Â, t〉 is a correct over-approximation]

=
⊔

π∈paths(P)

t̃(π)(φ) [by definition of MOP]

v
⊔

π∈paths(P)

t̃(π)(ψ) [φ v ψ]

=
⊔

π∈(q;π′)∗,π′∈paths(P ′)
t̃((π′; q)∗)(ψ) [P is a single-loop program]

=
⊔

π∈(q;π′)∗,π′∈paths(P ′)
t̃((q)∗)(t̃((π′)∗)(ψ)) [by definition of t̃]

v t(q)(
⊔

π∈(q;π′)∗,π′∈paths(P ′)
t̃((π′)∗)(ψ)) [t is monotone]

v t(q)(ψ) [by Lemma 2]

Otherwise, trivially α(MOPP (τ, p)) v > = MOPP (tψ, φ).

In other words, if we apply the predicate transformer of the test q and then the
transformer of the loop body P ′ to the assertion ψ, and we obtain an assertion at
least as strong as ψ, then ψ is a state invariant of the loop. If a stronger assertion φ
holds before the loop, the predicate transformer of q applied to φ holds afterwards.

Theorem 1 gives rise to a summarization algorithm. Given a program fragment
and an abstract domain, we heuristically provide a set of formulas, which encode
that a (possibly infinite) set of assertions ψ are invariant (for example, x′ = x
encodes that every ψ defined as x = c, with c a value in the range of x, is an
invariant). We apply a decision procedure to check if the formulas are unsatisfiable
(see IsStateInvariant(L,C) in Algorithm 1).

The construction of the summary is then straightforward: given a single-loop
program P , an abstract interpretation 〈Â, t〉, and a state invariant ψ for the loop
body, let 〈Â, tψ〉 be the abstract interpretation as defined in Theorem 1. We denote

the summary Sum〈Â,tψ〉(P) by SlS(P, Â, tψ) (Single-Loop Summary).

Corollary 1 If 〈Â, t〉 is a correct over-approximation of 〈A, τ〉, then SlS(P, Â,
tψ) is a correct over-approximation of P .

Example 4 We continue the running example from Figure 1. Recall the abstract
domain in Ex. 2. Let P ′ denote the loop body of the example program and let q
denote the loop guard. By applying the symbolic transformer from Ex. 3, we can
check that the following conditions hold:

1. MOPP ′(t, t(q)(φ)) v φ for any assertion ((pa ≤ la) ∧ za ∧ ¬sa).
2. MOPP ′(t, t(q)(φ)) v φ for the assertion za.

Thus, we summarize the loop with the following predicate transformer:

(za → z′a) ∧ (((pa ≤ la) ∧ za ∧ ¬sa)→ ((p′a = l′a) ∧ z′a ∧ ¬s′a)) .

12 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

Algorithm 2: Arbitrary program summarization

1 Summarize(P)
input : program P = 〈U,G〉
output: over-approximation P ′ of P

2 begin
3 〈T,>〉 :=sub-graph dependency tree of P ;
4 Pr := P ;
5 for each G′ such that G > G′ do
6 〈U,G′′〉:=Summarize(〈U,G′〉);
7 Pr := Pr where G′ is replaced with G′′;
8 update 〈T,>〉;
9 end for

10 if Pr is a single loop then

11 〈Â, t〉 := choose abstract interpretation for Pr;
/* Choice of abstract interpretation defines set of

candidate assertions ψ, which are checked to hold in the

next step. */

12 ψ := test state invariant candidates for t on Pr;

13 P ′ := SlS(Pr, Â, tψ);
/* Those ψ that hold on Pr form the single-loop summary

(SlS). */

14 endif
15 else

/* Pr is loop-free */

16 P ′ := Sum〈A,τ〉(Pr);

17 endif
18 return P ′

19 end

4.6 Summarization for programs with multiple loops

We now describe an algorithm for over-approximating a program with multiple
loops that are possibly nested. Like traditional algorithms (e.g., [56]), the depen-
dency tree of program fragments is traversed bottom-up, starting from the leaves.
The code fragments we consider may be function calls or loops. We treat function
calls as arbitrary sub-graphs (see Definition 5) of the program graph, and do not
allow recursion. We support irreducible graphs using loop simulation [2].

Specifically, we define the sub-graph dependency tree of a program P = 〈U,G〉
as the tree 〈T,>〉, where

– the set of nodes of the tree are program sub-graphs of G;
– for G1, G2 ∈ T , G1 > G2 iff G2 is a program sub-graph of G1 with G1 6= G2;
– the root of the tree is G;
– every leaf is a loop-free or single-loop sub-graph;
– every loop sub-graph is in T .

Algorithm 2 takes a program as input and computes its summary by following
the structure of the sub-graph dependency tree (Line 3). Thus, the algorithm is

Loop Summarization using State and Transition Invariants 13

called recursively on the sub-program until a leaf is found (Line 5). If it is a
single loop, an abstract domain is chosen (Line 11) and the loop is summarized as
described in Section 4.5 (Line 13). If it is a loop-free program, it is summarized
with a symbolic transformer as described in Section 4.4 (Line 16). The old sub-
program is then replaced with its summary (Line 7) and the sub-graph dependency
tree is updated (Line 8). Eventually, the entire program is summarized.

Theorem 2 Summarize(P) is a correct over-approximation of P .

Proof We prove the theorem by induction on the structure of the sub-graph de-
pendency tree.

In the first base case (Pr is loop-free), the summary is precise by construction
and is thus a correct over-approximation of P .

In the second base case (Pr is a single loop), by hypothesis, each abstract
interpretation chosen at Line 11 is a correct over-approximation of the concrete
interpretation. Thus, if P is a single-loop or a loop-free program, P ′ is a cor-
rect over-approximation of P (resp. by Theorem 1 and by definition of abstract
summary).

In the inductive case, we select a program subgraph G′ and we replace it
with G′′, where 〈U,G′′〉=Summarize(〈U,G′〉). Through the induction hypothesis,
we obtain that 〈U,G′′〉 is a correct over-approximation of 〈U,G′〉. Thus, for all
p ∈ A, MOP〈U,G′〉(τ, p)⇒ MOP〈U,G′′〉(τ, p). Note that G′′ contains only a single
command g.

We want to prove that for all p ∈ A, MOPP (τ, p) ⇒ MOPP ′(τ, p) (for read-
ability, we replace the subscript “(πi;πg;πf) ∈ paths(P), πg ∈ paths(〈U,G′〉), and
πi ∩G′ = ∅” with ∗ and “π ∈ paths(P), and π ∩G′ = ∅” with ∗∗):

MOPP (τ, p) =
⊔

π∈paths(P)

τ̃(π)(p) [by definition of MOP]

=
⊔
∗
τ̃(πf)(τ̃(πg)(τ̃(πi)(p))) ∪

⊔
∗∗
τ̃(π)(p) [G′ is a subgraph]

⇒
⊔
∗
τ̃(πf)(MOP〈U,G′′〉(τ̃ , (τ̃(πi)(p)))) ∪

⊔
∗∗
τ̃(π)(p) [G′′ is an over-approx.]

=
⊔
∗
τ̃(πf)(MOP〈U,(G′′;πi)〉(τ, p)) ∪

⊔
∗∗
τ̃(π)(p) [by definition of MOP]

=
⊔

π∈paths(P)

MOPπ[g/πg](τ, p) [by induction on length of paths]

=
⊔

π∈paths(P ′)
MOPπ(τ, p) [by definition of π′]

= MOPπ′(τ, P) [by definition of MOP]

The precision of the over-approximation is controlled by the precision of the
symbolic transformers. However, in general, the computation of the best abstract
transformer is an expensive iterative procedure. Instead, we use an inexpensive
syntactic procedure for loop-free fragments. Loss of precision only happens when
summarizing loops, and greatly depends on the abstract interpretation chosen in
Line 11.

14 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

Note that Algorithm 2 does not limit the selection of abstract domains to any
specific type of domain, and that it does not iterate the predicate transformer on
the program. Furthermore, this algorithm allows for localization of the summariza-
tion procedure, as a new domain may be chosen for every loop. Once the domains
are fixed, it is also straightforward to monitor the progress of the summarization,
as the number of loops and the cost of computing the symbolic transformers are
known—another distinguishing feature of our algorithm.

The summarization can serve as an over-approximation of the program. It can
be trivially analyzed to prove unreachability, or equivalently, to prove assertions.

4.7 Leaping counterexamples

Let P ′ denote the summary of the program. The program P ′ is a loop-free sequence
of symbolic summaries for loop-free fragments and loop summaries. A counterex-
ample for an assertion in P ′ follows this structure: for loop-free program fragments,
it is identical to a concrete counterexample. Upon entering a loop summary, the
effect of the loop body is given as a single transition in the counterexample: we
say that the counterexample leaps over the loop.

Example 5 Consider the summary from Ex. 4. Suppose that in the initial condi-
tion, the buffer a contains a null terminating character in position n and no ′/′

character. If we check that, after the loop, pa is greater than the size n, we obtain
a counterexample with p0a = 0, p1a = n.

The leaping counterexample may only exist with respect to the abstract inter-
pretations used to summarize the loops, i.e., the counterexample may be spurious
in the concrete interpretation. Nevertheless, leaping counterexamples provide use-
ful diagnostic feedback to the programmer, as they show a (partial) path to the
violated assertion, and contain many of the input values the program needs to
violate the assertion. Furthermore, spurious counterexamples can be eliminated
by combining our technique with counterexample-guided abstraction refinement,
as we have an abstract counterexample. Other forms of domain refinement are also
applicable.

5 Termination Analysis using Loop Summarization

In this section we show how to employ loop summarization with transition invari-
ants to tackle the problem of program termination.

5.1 The termination problem

The termination problem (also known as the uniform halting problem) is has roots
in Hilbert’s Entscheidungsproblem and can be formulated as follows:

In finite time, determine whether a given program always finishes running
or could execute forever.

Loop Summarization using State and Transition Invariants 15

Undecidability of this problem was shown by Turing [57]. This result sometimes
gives rise to the belief that termination of a given program can never be proven. In
contrast, numerous algorithms that prove termination of many realistic classes of
programs have been published, and termination analysis now is at a point where
industrial application of termination proving tools for specific programs is feasible.

One key fact underlying these methods is that termination may be reduced to
the construction of well-founded ranking relations [58]. Such a relation establishes
an order between the states of the program by ranking each of them, i.e., by
assigning a natural number to each state such that for any pair of consecutive states
si, si+1 in any execution of the program, the rank decreases, i.e., rank(si+1) <
rank(si). The existence of such an assignment ensures well-foundedness of the
given set of transitions. Consequently, a program is terminating if there exists a
ranking function for every program execution.

Podelski and Rybalchenko proposed disjunctive well-foundedness of transition
invariants [49] as a means to improve the degree of automation of termination
provers. Based on this discovery, the same authors together with Cook gave an
algorithm to verify program termination using iterative construction of transition
invariants—the Terminator algorithm [17, 18]. This algorithm exploits the rela-
tive simplicity of ranking relations for a single path of a program. It relies on a
safety checker to find previously unranked paths of a program, computes a rank-
ing relation for each of them individually, and disjunctively combines them in a
global (disjunctively well-founded) termination argument. This strategy shifts the
complexity of the problem from ranking relation synthesis to safety checking, a
problem for which many efficient solutions exist (mainly by means of reachability
analysis based on Model Checking).

The Terminator algorithm was successfully implemented in tools (e.g., the
Terminator [18] tool, ARMC [50], SatAbs [21]) and applied to verify industrial
code, most notably, Windows device drivers. However, it has subsequently become
apparent that the safety check is a bottleneck of the algorithm, consuming up to
99% of the run-time [18, 21] in practice. The runtime required for ranking relation
synthesis is negligible in comparison. A solution to this performance issue is Com-
positional Termination Analysis (CTA) [40]. This method limits path exploration
to several iterations of each loop of the program. Transitivity (or compositionality)
of the intermediate ranking arguments is used as a criterion to determine when to
stop the loop unwinding. This allows for a reduction in run-time, but introduces
incompleteness since a transitive termination argument may not be found for each
loop of a program. However, experimental evaluation on Windows device drivers
confirmed that this case is rare in practice.

The complexity of the termination problem together with the observation that
most loops have, in practice, (relatively) simple termination arguments suggests
the use of light-weight static analysis for this purpose. In particular, we propose
a termination analysis based on the loop summarization algorithm described in
Section 3. We build a new technique for termination analysis by 1) employing
an abstract domain of (disjunctively well-founded) transition invariants during
summarization and 2) using a compositionality check as a completeness criterion
for the discovered transition invariant.

16 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

5.2 Formalism for reasoning about termination

As described in Section 2, we represent a program as a transition system P =
〈S, I,R〉, where:

– S is a set of states;
– I ⊆ S is the set of initial states;
– R ⊆ S × S is the transition relation.

We also make use of the notion of (disjunctively well-founded) transition in-
variants (Definition 2, page 4) introduced by Podelski and Rybalchenko [49].

Definition 7 (Well-foundedness) A relation R is well-founded (wf.) over S if
for any non-empty subset of S, there exists a minimal element (with respect to
R), i.e., ∀X ⊆ S . X 6= ∅ =⇒ ∃m ∈ X, ∀s ∈ X, (s,m) /∈ R.

The same does not hold for the weaker notion of disjunctive well-foundedness.

Definition 8 (Disjunctive Well-foundedness [49]) A relation T is disjunc-
tively well-founded (d.wf.) if it is a finite union T = T1 ∪ · · · ∪ Tn of well-founded
relations.

The main result of the work [49] concludes program termination from the
existence of disjunctively well-founded transition invariant.

Theorem 3 (Termination [49]) A program P is terminating iff there exists a
d.wf. transition invariant for P .

This result is applied in the Terminator2 algorithm [18], which automates con-
struction of d.wf. transition invariants. It starts with an empty termination con-
dition T = ∅ and queries a safety checker for a counterexample—a computation
that is not covered by the current termination condition T . Next, a ranking rela-
tion synthesis algorithm is used to obtain a termination argument T ′ covering the
transitions in the counterexample. The termination argument is then updated as
T := T ∪ T ′ and the algorithm continues to query for counterexamples. Finally,
either a complete (d.wf.) transition invariant is constructed or there does not exist
a ranking relation for some counterexample, in which case the program is reported
as non-terminating.

5.3 Compositional termination analysis

Podelski and Rybalchenko [49] remarked an interesting fact regarding the com-
positionality (transitivity) of transition invariants: If T is transitive, it is enough
to show that T ⊇ R instead of T ⊇ R+ to conclude termination, because a com-
positional and d.wf. transition invariant is well-founded, since it is an inductive
transition invariant for itself [49]. Therefore, compositionality of a d.wf. transition
invariant implies program termination.

To comply with the terminology in the existing literature, we define the notion
of compositionality for transition invariants as follows:

2The Terminator algorithm is referred to as Binary Reachability Analysis (BRA), though
BRA is only a particular technique to implement the algorithm (e.g., [21]).

Loop Summarization using State and Transition Invariants 17

Definition 9 (Compositional Transition Invariant [49, 40]) A d.wf. tran-
sition invariant T is called compositional if it is also transitive, or equivalently,
closed under composition with itself, i.e., when T ◦ T ⊆ T .

This useful property did not find its application in termination analysis until
2010. To understand its value we need to look closer at the transitive closure of
program’s transition relation R. The safety checker in the Terminator algorithm
verifies that a candidate transition invariant T indeed includes R+ restricted to the
reachable states. Note that the (non-reflexive) transitive closure of R is essentially
an unwinding of program loops:

R+ = R ∪ (R ◦R) ∪ (R ◦R ◦R) ∪ . . . =
∞⋃
i=1

Ri .

Thus, instead of searching for a d.wf. transition invariant that is a superset
of R+, we can therefore decompose the problem into a series of smaller ones. We
can consider a series of loop-free programs in which R is unwound k times, i.e.,
the program that contains the transitions in R1 ∪ . . . ∪Rk. As was shown in [40],
if there is a d.wf. Tk with

⋃k
j=1R

j ⊆ Tk and Tk is also transitive, then Tk is a
compositional transition invariant for P .

This idea results in an algorithm that constructs d.wf. relations Ti for incre-
mentally deep unwindings of P until it finally finds a transitive Tk, which proves
termination of P . In [40], this algorithm was named Compositional Termination
Analysis (CTA).

5.4 From Terminator via CTA to a light-weight static analysis

Terminator is a complete algorithm (relative to completeness of the ranking
procedure). Note that CTA is not even complete relative to the completeness of
the ranking procedure for terminating programs even if they are finite-state. This
is due to the fact that T is not guaranteed to ever become transitive, even if it
contains R+.

The Terminator strategy can be seen as a “proof by construction”: it ex-
plicitly builds the valid terminating argument for every path in a program. CTA
combines “proof by construction” with a “proof by induction”: it first tries to
construct a base step and then check the inductiveness. Inductive proofs are hard
to find, and the implementation reported in [40] can only compute very simple
inductive arguments. However, as it was shown in [40], for loops in industrial ap-
plications such as Windows device drivers, that CTA performs considerably better
than Terminator.

This observation suggests an even more light-weight proof strategy—from a
mix of “proof by construction” with “proof by induction” to a pure “proof by
induction”: we propose to replace ranking synthesis-based transition invariant dis-
covery with abstract domain-based transition invariant discovery. Instead of a
complex base case, we “guess” several variants of the loop using lightweight static
analysis methods and then check if the inductive argument happens to hold as
well. This method is of course incomplete, but avoids expensive path enumeration
inside the safety checker. We apply a variant of our loop summarization algorithm
with specific relational domains for this purpose.

18 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

5.5 Loop summarization with transition invariants

We introduce a method that allows transition invariants to be included for strength-
ening of loop summaries. This increases the precision of the summaries by allowing
loop termination to be taken into account.

According to Definition 2, a binary relation T is a transition invariant for a
program P if it contains R+ (restricted to the reachable states). Note, however,
that transitivity of T is also a sufficient condition when T is only a superset of R:

Theorem 4 A binary relation T is a transition invariant for the program 〈S, I,R〉
if it is transitive and R ⊆ T .

Proof From transitivity of T it follows that T+ ⊆ T . Since R ⊆ T it follows that
R+ ⊆ T .

This simple fact allows for an integration of transition invariants into the loop
summarization framework by a few adjustments to the original algorithm. Consider
line 19 of Algorithm 1 (page 5), where candidate invariants are selected. Clearly, we
need to allow selection of transition invariants here, i.e., invariant candidates now
take the relational form C(X,X ′), where X ′ is the post-state of a single iteration
of L.

What follows is a check for invariance of C over L(X,X ′), i.e., a single unwind-
ing of the loop. Consider the temporary (sub-)program 〈S, S, L〉 to represent the
execution of the loop from a non-deterministic entry state. A transition invariant
for this program is required to cover L+, which, according to Theorem 4, is implied
by L ⊆ C and transitivity of C. The original invariant check in IsTransitionIn-
variant establishes L ⊆ C, when the check for unsatisfiability receives the more
general formula L(X,X ′) ∧ C(X,X ′) as a parameter. The summarization proce-
dure furthermore requires a slight change to include a check for compositionality.
The resulting procedure is Algorithm 3.

5.6 Termination checks

The changes to the summarization algorithm allow for termination checks dur-
ing summarization through application of Theorem 3, which requires a transition
invariant to be disjunctively well-founded. This property may be established by
allowing only disjunctively well-founded invariant candidates, or it may be checked
by means of decision procedures (e.g., SMT solvers where applicable).

According to Definition 8, the well-foundedness of each of the disjuncts of
a candidate relation T must be established in order to ensure that it is d.wf.
This can be done by an explicit encoding of the well-foundedness criteria given in
Definition 7. However, the resulting formula contains quantifiers. As a consequnce,
the obtained decision problem is frequently beyond the capabilities of state-of-the-
art solvers.

Loop Summarization using State and Transition Invariants 19

Algorithm 3: Loop summarization with transition invariants.

1 SummarizeLoop-TI(L)
2 input: Single-loop program L with a set of variables X
3 output: Loop summary
4 begin
5 T := >
6 foreach Candidate C in PickInvariantCandidates(L) do
7 if IsTransitionInvariant(L, C) ∧ IsCompositional(C) then
8 T := T ∧ C
9 endif

10 end foreach

11 return “Xpre := X; havoc(X); assume(T (Xpre, X));”

12 end

13 IsTransitionInvariant(L, C)
14 input: Single-loop program L (with entry state X and post-iteration state

X ′), invariant candidate C
15 output: TRUE if C is a transition invariant for L; FALSE otherwise
16 begin
17 return Unsat(¬(L(X,X ′) ∧ C(X,X ′)⇒ C(X,X ′)))
18 end

19 IsCompositional(C)
20 input: Invariant candidate C(X,X ′)
21 output: TRUE if C is compositional; FALSE otherwise
22 begin
23 return Unsat(¬

(
C(X,Y) ∧ C(Y,X ′)⇒ C(X,X ′)

)
)

24 end

5.7 The difference between Terminator, CTA and loop summarization-based
termination

The complexity of establishing well-foundedness of a transition invariant hints at
the explanation of a major difference between our new algorithm and Termi-
nator/CTA. The latter construct the transition invariant using the abstraction-
refinement loop such that it is already disjunctively well-founded, while we allow
any transition invariant to be discovered, though, later it needs to be checked for
well-foundedness. Note that even if the discovered transition invariant is not well-
founded, it is still a valid transition invariant and can therefore be used to improve
the precision of summaries.

However, the research in size-change termination for functional languages [5]3

suggests that a small set of templates for ranking relations is enough to cover
many classes of programs. Besides, the expensive well-foundedness check can be
completely omitted if we employ specialized abstract domains that produce only

3We discuss the relation of our method to size-change termination in Section 7.2.1.

20 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

well-founded candidates for transition invariants. This is the approach we take in
the following section.

int x = 0 ;
while (x<255)

x++;

Fig. 2: An example of a
terminating loop with a
strictly increasing iterator

Example 6 Consider the program in Figure 2.
The symbolic transformer for the loop body is:
φL := x′ = x + 1. Also consider the relation “>”
for a pair x′ and x as a candidate relation Tc.
Tc is indeed a transition invariant if the following
formula is unsatisfiable:

x < 255 ∧ x′ = x+ 1 ∧ ¬(x′ > x) .

The formula is UNSAT, i.e., the invariant holds, and x′ > x is added to the
symbolic transformer as a transition invariant. Since the relation is compositional
and d.wf. (we explain the reason for this later), the loop is marked as terminating.

5.8 Invariant candidate selection

We now propose a set of specialized candidate relations, which we find useful in
practice, as demonstrated in the following section. We focus on transition invari-
ants for machine-level integers (i.e., finite integers with overflows) for a bit-precise
analysis of programs implemented in low-level languages such as ANSI-C.

In contrast to other work on termination proving with abstract domains (e.g., [6]),
we do not aim for general domains like Octagons and Polyhedra. Although fast in
computation, they are not designed for termination and d.wf. and compositionality
checks for them can be costly. Instead we focus on domains that

– generate few, relatively simple candidate relations;
– allow for efficient d.wf. and compositionality checks.

Arithmetic operations on machine-level integers usually allow overflows, e.g.,
the instruction i = i+1 for a pre-state i = 2k−1 results in a post-state i′ = −2k−1

(when represented in two’s-complement). If termination of the loop depends on
machine-level integers, establishing well-foundedness of a relation over it is not
straightforward, as increasing/decreasing sequences of numbers of this kind can
be affected by overflow/underflow. However, we can use the following theorem to
simplify the discovery of a d.wf. transition invariant.

Theorem 5 If T : K ×K is a strict order relation for a finite set K ⊆ S and is
a transition invariant for the program 〈S, I,R〉, then T is well-founded.

Proof If T is a transition invariant, then for all pairs (k1, k2) ∈ K ×K. Thus, it
is total over K. Non-empty finite totally-ordered sets always have a least element
and, therefore, T is well-founded.

The proof uses the fact that, when checking T for being a transition invariant,
we implicitly enumerated all the pairs of pre- and post-states to discover if any of
them violates the order.

A total strict-order relation is also transitive, which allows for an alternative
(stronger) criterion than Theorem 3:

Loop Summarization using State and Transition Invariants 21

Corollary 2 A program terminates if it has a transition invariant T that is also
a finite strict-order relation.

This corollary allows for a selection of invariant candidates that ensures (dis-
junctive) well-foundedness of transition invariants. An explicit check is therefore
not required. An example of such a candidate appears in Example 6.

Note that strictly ordered and finite transition invariants exist for many pro-
grams in practice: machine-level integers or strings of fixed length have a finite
number of possible distinct pairs and strict natural or lexicographical orders are
defined for them as well.

6 Experimental Evaluation

This section first presents Loopfrog—a tool that implements loop summarization
and serves as a basis for our experiments. Next, we evaluate the implementation
to detect buffer overflows in ANSI-C programs. We finally demonstrate the appli-
cability of loop summarization to termination analysis.

6.1 The Loopfrog tool

The theoretical concept of symbolic abstract transformers is implemented and put
to use by our tool Loopfrog. Its architecture is outlined in Figure 3. As input,
Loopfrog receives a model file, extracted from software sources by Goto-CC4.
This model extractor features full ANSI-C support and simplifies verification of
software projects that require complex build systems. It mimics the behavior of the
compiler, and thus ‘compiles’ a model file using the original settings and options.
Switching from compilation mode to verification mode is thus frequently achieved
by changing a single option in the build system. As suggested by Figure 3, all
other steps are fully automated.

The resulting model contains a control flow graph and a symbol table, i.e.,
it is an intermediate representation of the original program in a single file. For
calls to system library functions, abstractions containing assertions (pre-condition
checks) and assumptions (post-conditions) are inserted. Note that the model also
can contain the properties to be checked in the form of assertions (calls to the
assert function).

Preprocessing The model, instrumented with assertions, is what is passed to the
first stage of Loopfrog. In this preprocessing stage, the model is adjusted in
various ways to increase performance and precision. First, irreducible control flow
graphs are rewritten according to an algorithm due to Ashcroft and Manna [2].
Like a compiler, Loopfrog inlines small functions, which increases the model
size, but also improves the precision of subsequent analysis. Thereafter, it runs
a field-sensitive pointer analysis. The information obtained this way is used to
generate assertions over pointers, and to eliminate pointer variables in the program
where possible. Loopfrog automatically adds assertions to verify the correctness
of pointer operations, array bounds, and arithmetic overflows.

4http://www.cprover.org/goto-cc/

http://www.cprover.org/goto-cc/

22 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

lo
op

-f
re
e
fr
ag

m
en
ts lo
op

s

Y
es
/
N
o

lo
op
bo
dy

Preprocessing

Model Extractor

Abstract
Domains

po
te
nt
ia
l i
nv
ar
ia
nt
s

Verification Engine Verification Engine

ANSI-C Sources

‘SAFE’ or

is
in
va
ri
a
n
t?

Loop Summarization

Loopfrog

su
m
m

ar
ie
s

Leaping Counterexample

Fig. 3: Architecture of Loopfrog

Loop summarization Once the preprocessing is finished, Loopfrog starts to re-
place loops in the program with summaries. These are shorter, loop-free program
fragments that over-approximate the original program behavior. To accomplish
this soundly, all loops are replaced with a loop-free piece of code that “havocs”
the program state, i.e., it resets all variables that may be changed by the loop to
unknown values. Additionally, a copy of the loop body is kept, such that assertions
within the loop are preserved.

While this is already enough to prove some simple properties, much higher
precision is required for more complex ones. As indicated in Fig. 3, Loopfrog
makes use of predefined abstract domains to achieve this. Every loop body of
the model is passed to a set of abstract domains, through each of which a set of
potential invariants of the loop is derived (heuristically).

The choice of the abstract domain for the loop summarization has a significant
impact on the performance of the algorithm. A carefully selected domain generates
fewer invariant candidates and thus speeds up the computation of a loop summary.
The abstract domain has to be sufficiently expressive to retain enough of the
semantics of the original loop to show the property.

Loop Summarization using State and Transition Invariants 23

Constraint Meaning

1 ZTs String s is zero-terminated

2 Ls < Bs Length of s (Ls) is less than the size of the allo-
cated buffer (Bs)

3 0 ≤ i ≤ Ls Bounds on integer variables i (i is
non-negative, i is bounded by buffer
size, etc.) k is an arbitrary integer
constant.

4 0 ≤ i
5 0 ≤ i < Bs
6 0 ≤ i < Bs − k
7 0 < offset(p) ≤ Bs Pointer offset bounds

8 valid(p) Pointer p points to a valid object

Table 1: Examples of abstract domains tailored to buffer-overflow analysis.

Checking invariant candidates All potential invariants obtained from abstract do-
mains always constitute an abstract (post-)state of a loop body, which may or may
not be correct in the original program. To ascertain that a potential invariant is
an actual invariant, Loopfrog makes use of a verification engine. In the current
version, the symbolic execution engine of CBMC [14] is used. This engine allows
for bit-precise, symbolic reasoning without abstraction. In our context, it always
gives a definite answer, since only loop-free program fragments are passed to it. It
is only necessary to construct an intermediate program that assumes a potential
invariant to be true, executes a loop body once and then checks if the potential
invariant still holds. If the verification engine returns a counterexample, we know
that a potential invariant does not hold; in the opposite case it can be a loop
invariant and it is subsequently added to a loop summary, since even after the
program state is havoced, the invariant still holds. Loopfrog starts this process
from an innermost loop, and thus there is never an intermediate program that
contains a loop. In case of nested loops, the inner loop is replaced with a summary
before the outer loop is analyzed. Owing to this strategy and the small size of
fragments checked (only a loop body), small formulas are given to the verification
engine and an answer is obtained quickly.

Verifying the abstraction The result, after all loops have been summarized, is a
loop-free abstraction of the input program. This abstract model is then handed
to a verification engine once again. The verification time is much lower than that
required for the original program, since the model does not contain loops. As
indicated by Fig. 3, the verification engine used to check the assertions in the
abstract model may be different from the one used to check potential invariants.
In Loopfrog, we choose to use the same engine (CBMC).

6.2 An abstract domain for safety analysis of string-manipulating programs

In order to demonstrate the benefits of our approach to static analysis of programs
with buffer overflows, the first experiments with Loopfrog were done with a set
of abstract domains that are tailored to buffer-related properties. The constrains
of the domains are listed in Table 1.

24 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

We also make use of string-related abstract domains instrumented into the
model similar to the approach by Dor et al. [25]: for each string buffer s, a Boolean
value zs and integers ls and bs are tracked. The Boolean zs holds if s contains the
zero character within the buffer size bs. If so, ls is the index of the first zero
character, otherwise, ls has no meaning.

The chosen domains are instantiated according to variables occurring in the
code fragment taken into account. To lower the number of template instantiations,
the following simple heuristics can be used:

1. Only variables of appropriate type are considered (we concentrate on string
types).

2. Indices and string buffers are combined in one invariant only if they are used
in the same expression, i.e., we detect instructions which contain p[i] and build
invariants that combine i with all string buffers pointed to by p.

As shown in the next section these templates have proven to be effective in our
experiments. Other applications likely require different abstract domains. However,
new domain templates may be added quite easily: they usually can be implemented
with less than a hundred lines of code.

6.3 Evaluation of loop summarization applied to static analysis of
buffer-intensive programs

In this set of experiments we focus on ANSI-C programs: the extensive buffer
manipulations in programs of this kind often give rise to buffer overruns. We
apply the domains from Table 1 to small programs collected in benchmarks suites
and to real applications as well. All data was obtained on an 8-core Intel Xeon
with 3.0 GHz. We limited the run-time to 4 hours and the memory per process
to 4 GB. All experimental data, an in-depth description of Loopfrog, the tool
itself, and all our benchmark files are available on-line for experimentation by other
researchers5.

6.3.1 Evaluation on the benchmark suites

The experiments are performed on two recently published benchmark sets. The
first one, by Zitser et al. [59], contains 164 instances of buffer overflow problems,
extracted from the original source code of sendmail, wu-ftpd, and bind. The test
cases do not contain complete programs, but only those parts required to trigger
the buffer overflow. According to Zitser et al., this was necessary because the tools
in their study were all either unable to parse the test code, or the analysis used
disproportionate resources before terminating with an error ([59], pg. 99). In this
set, 82 tests contain a buffer overflow, and the rest represent a fix of a buffer
overflow.

We use metrics proposed by Zitser et al. [59] to evaluate and compare the
precision of our implementation. We report the detection rate R(d) (the percentage
of correctly reported bugs) and the false positive rate R(f) (the percentage of
incorrectly reported bugs in the fixed versions of the test cases). The discrimination

5http://www.cprover.org/loopfrog/

http://www.cprover.org/loopfrog/

Loop Summarization using State and Transition Invariants 25

rate R(¬f |d) is defined as the ratio of test cases on which an error is correctly
reported, while it is, also correctly, not reported in the corresponding fixed test
case. Using this measure, tools are penalized for not finding a bug, but also for
not reporting a fixed program as safe.

R(d) R(f) R(¬f |d)

Loopfrog 1.00 0.38 0.62

=, 6=, ≤ 1.00 0.44 0.56

Interval Domain 1.00 0.98 0.02

Polyspace 0.87 0.50 0.37

Splint 0.57 0.43 0.30

Boon 0.05 0.05 0

Archer 0.01 0 0

Uno 0 0 0

Loopfrog [41] 1.00 0.26 0.74

=, 6=, ≤[41] 1.00 0.46 0.54

Table 2: Effectiveness of various static analy-
sis tool in Zitser et al. [59] and Ku et al. [41]
benchmarks: detection rate R(d), false positive
rate R(f), and discrimination rate R(¬f |d).

The results of a compar-
ison with a wide selection
of static analysis tools6 are
summarized in Table 2. Al-
most all of the test cases in-
volve array bounds violations.
Even though Uno, Archer and
BOON were designed to detect
these type of bugs, they hardly
report any errors. BOON ab-
stracts all string manipula-
tion using a pair of inte-
gers (number of allocated and
used bytes) and performs flow-
insensitive symbolic analysis
over collected constraints. The
three tools implement differ-
ent approaches for the analy-
sis. BOON and Archer perform a symbolic analysis while UNO uses Model Check-
ing. Archer and UNO are flow-sensitive, BOON is not. All three are interproce-
dural. We observe that all three have a common problem—the approximation is
too coarse and additional heuristics are applied in order to lower the false positive
rate; as a result, only few of the complex bugs are detected. The source code of the
test cases was not annotated, but nevertheless, the annotation-based Splint tool
performs reasonably well on these benchmarks. Loopfrog and the implementa-
tion of the Interval Domain are the only entrants that report all buffer overflows
correctly (a detection rate of R(d) = 1). With 62%, Loopfrog also has the highest
discrimination rate among all the tools. It is also worth to note that our summa-
rization technique performs quite well when only few relational domains are used
(the second line of Table 2). The third line in this table contains the data for a
simple interval domain, not implemented in Loopfrog, but as a abstract domain
used in SatAbs model checker as a part of pre-processing; it reports almost all
checks as unsafe.

The second set of benchmarks was proposed by Ku et al. [41]. It contains 568
test cases, of which 261 are fixed versions of buffer overflows. This set partly over-
laps with the first one, but contains source code of a greater variety of applications,
including the Apache HTTP server, Samba, and the NetBSD C system library.
Again, the test programs are stripped down, and are partly simplified to enable
current model checkers to parse them. Our results on this set confirm the results
obtained using the first set; the corresponding numbers are given in the last two
lines of Table 2. On this set the advantage of selecting property-specific domains
is clearly visible, as a 20% increase in the discrimination rate over the simple rela-
tional domains is witnessed. Also, the performance of Loopfrog is much better

6The data for all tools but Loopfrog, “=, 6=, ≤”, and the Interval Domain is from [59].

26 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

Time Assertions

Suite Program In
st
r
u
c
ti
o
n
s

#
L
o
o
p
s

S
u
m

m
a
r
i-

z
a
ti
o
n

C
h
e
c
k
in

g
A
ss
e
r
ti
o
n
s

T
o
ta

l

P
e
a
k

M
e
m

o
r
y

T
o
ta

l

P
a
ss
e
d

V
io
la
te

d

freecell-solver aisleriot-board-2.8.12 347 26 10s 295s 305s 111MB 358 165 193

freecell-solver gnome-board-2.8.12 208 8 0s 3s 4s 13MB 49 16 33

freecell-solver microsoft-board-2.8.12 168 4 2s 9s 11s 32MB 45 19 26

freecell-solver pi-ms-board-2.8.12 185 4 2s 10s 13s 33MB 53 27 26

gnupg make-dns-cert-1.4.4 232 5 0s 0s 1s 9MB 12 5 7

gnupg mk-tdata-1.4.4 117 1 0s 0s 0s 3MB 8 7 1

inn encode-2.4.3 155 3 0s 2s 2s 6MB 88 66 22

inn ninpaths-2.4.3 476 25 5s 40s 45s 49MB 96 47 49

ncompress compress-4.2.4 806 12 45s 4060s 4106s 345MB 306 212 94

texinfo ginstall-info-4.7 1265 46 21s 326s 347s 127MB 304 226 78

texinfo makedoc-4.7 701 18 9s 6s 16s 28MB 55 33 22

texinfo texindex-4.7 1341 44 415s 9336s 9757s 1021MB 604 496 108

wu-ftpd ckconfig-2.5.0 135 0 0s 0s 0s 3MB 3 3 0

wu-ftpd ckconfig-2.6.2 247 10 13s 43s 57s 27MB 53 10 43

wu-ftpd ftpcount-2.5.0 379 13 10s 32s 42s 37MB 115 41 74

wu-ftpd ftpcount-2.6.2 392 14 8s 24s 32s 39MB 118 42 76

wu-ftpd ftprestart-2.6.2 372 23 48s 232s 280s 55MB 142 31 111

wu-ftpd ftpshut-2.5.0 261 5 1s 9s 10s 13MB 83 29 54

wu-ftpd ftpshut-2.6.2 503 26 27s 79s 106s 503MB 232 210 22

wu-ftpd ftpwho-2.5.0 379 13 7s 23s 30s 37MB 115 41 74

wu-ftpd ftpwho-2.6.2 392 14 8s 27s 35s 39MB 118 42 76

wu-ftpd privatepw-2.6.2 353 9 4s 17s 22s 32MB 80 51 29

Table 3: Large-scale evaluation of Loopfrog on the programs from wu-ftpd,
texinfo, gnupg, inn, and freecell-solver tools suites.

if specialized domains are used, simply because there are fewer candidates for the
invariants.

The leaping counterexamples computed by our algorithm are a valuable aid in
the design of new abstract domains that decrease the number of false positives.
Also, we observe that both test sets include instances labeled as unsafe that Loop-
frog reports to be safe (1 in [59] and 9 in [41]). However, by manual inspection of
the counterexamples for these cases, we find that our tool is correct, i.e., that the
test cases are spurious.7 For most of the test cases in the benchmark suites, the
time and memory requirements of Loopfrog are negligible. On average, a test
case finishes within a minute.

6.3.2 Evaluation on real programs

We also evaluated the performance of Loopfrog on a set of large-scale bench-
marks, that is, complete un-modified program suites. Table 3 contains a selection
of the results.

These experiments clearly show that the algorithm scales reasonably well in
both memory and time, depending on the program size and the number of loops
contained. The time required for summarization naturally depends on the com-
plexity of the program, but also to a large degree on the selection of (potential)
invariants. As experience has shown, unwisely chosen invariant templates may gen-
erate many useless potential invariants, each requiring a test by the SAT-solver.

In general, the results regarding the program assertions shown to hold are not
surprising; for many programs (e.g., texindex, ftpshut, ginstall), our selection of

7We exclude those instances from our benchmarks.

Loop Summarization using State and Transition Invariants 27

Loopfrog Interval Domain
Suite Benchmark Total Failed Ratio Failed Ratio

bchunk bchunk 96 8 0.08 34 0.35
freecell-solver make-gnome-freecell 145 40 0.28 140 0.97
freecell-solver make-microsoft-freecell 61 30 0.49 58 0.95
freecell-solver pi-make-microsoft-freecell 65 30 0.46 58 0.89
gnupg make-dns-cert 19 5 0.26 19 1.00
gnupg mk-tdata 6 0 0.00 6 1.00
inn encode 42 11 0.26 38 0.90
inn ninpaths 56 19 0.34 42 0.75
ncompress compress 204 38 0.19 167 0.82
texinfo makedoc 83 46 0.55 83 1.00
wu-ftpd ckconfig 1 1 1.00 1 1.00
wu-ftpd ftpcount 61 7 0.11 47 0.77
wu-ftpd ftpshut 63 13 0.21 63 1.00
wu-ftpd ftpwho 61 7 0.11 47 0.77

Table 4: Comparison between Loopfrog and an interval domain: The column
labeled ‘Total’ indicates the number of properties in the program, and ‘Failed’
shows how many of the properties were reported as failing; ‘Ratio’ is Failed/Total.

string-specific domains proved to be quite useful. It is also interesting to note that
the results on the ftpshut program are very different on program versions 2.5.0
and 2.6.2: This program contains a number of known buffer-overflow problems in
version 2.5.0, and considerable effort was spent on fixing these bugs for the 2.6.2
release; an effort clearly reflected in our statistics. Just like in this benchmark,
many of the failures reported by Loopfrog correspond to known bugs and the
leaping counterexamples we obtain allow us to analyze those faults. Merely for
reference we list CVE-2001-1413 (a buffer overflow in ncompress) and CVE-2006-
1168 (a buffer underflow in the same program), for which we are easily able to
produce counterexamples.8 On the other hand, some other programs (such as the
ones from the freecell-solver suite) clearly require different abstract domains, suit-
able for heap structures other than strings. The development of suitable domains
and subsequent experiments, however, are left for future research.

6.3.3 Comparison with the interval domain

To highlight the applicability of Loopfrog to large-scale software and to demon-
strate its main advantage, we present a comparative evaluation against a simple
interval domain, which tracks the bounds of buffer index variables, a technique
often employed in static analysers. For this experiment, Loopfrog was config-
ured to use only two abstract domains, which capture the fact that an index is
within the buffer bounds (#4 and #5 in Table 1). As apparent from Table 4, the
precision of Loopfrog in this experiment is far superior to that of the simple
interval analysis.

To evaluate scalability, we applied other verification techniques to this example.
CBMC [14] tries to unwind all the loops, but fails, reaching the 2 GB memory limit.
The same behavior is observed using SatAbs [16], where the underlying model
checker (SMV) hits the memory limit.

8The corresponding bug reports may be obtained from http://cve.mitre.org/.

http://cve.mitre.org/

28 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

Constraint Meaning

1 i′ < i
i′ > i

A numeric variable i is strictly decreasing
(increasing).

2 x′ < x
x′ > x

Any loop variable x is strictly decreasing
(increasing).

3
sum(x′, y′) < sum(x, y)
sum(x′, y′) > sum(x, y)

Sum of all numeric loop variables is
strictly decreasing (increasing).

4

max(x′, y′) < max(x, y)
max(x′, y′) > max(x, y)
min(x′, y′) < min(x, y)
min(x′, y′) > min(x, y)

Maximum or minimum of all numeric loop
variables is strictly decreasing (increas-
ing).

5

(x′ < x ∧ y′ = y)∨
(x′ > x ∧ y′ = y)∨
(y′ < y ∧ x′ = x)∨
(y′ > y ∧ x′ = x)

A combination of strict increase or de-
crease for one of loop variables while the
remaining ones are not updated.

Table 5: Templates of abstract domains used to draw transition invariant candi-
dates

6.4 Evaluation of loop summarization applied to termination analysis

For a proof of concept we have implemented loop termination analysis within our
static analyzer Loopfrog. As before, the tool operates on the program models
produced by Goto-CC model extractor; ANSI-C programs are the primary ex-
perimental target.

We implemented a number of domains based on strict-order numeric relations,
thus, following Corollary 2, additional checks for compositionality and d.wf.-ness
of candidate relations are not required. The domains are listed in Table 5. Here
we report the results for the two most illustrative schemata:

– Loopfrog 1: domain #3 in Table 5. Expresses the fact that a sum of all
numeric variables of a loop is strictly decreasing (increasing). This is the fastest
approach, because it generates very few (but large) invariant candidates per
loop.

– Loopfrog 2: domain #1 in Table 5. Expresses that numeric variables are
strictly decreasing (increasing). Generates twice as many simple strict-order
relations as there are variables in a loop.

As a reference point, we used a termination prover built upon the CBMC
and SatAbs [16] framework. This tool implements Compositional Termination
Analysis (CTA) [40] and the Binary Reachability Analysis used in the Termina-
tor algorithm [17]. For both the default ranking function synthesis methods were
enabled—templates for relations on bit-vectors with SAT-based enumeration of
coefficients; for more details see [21].

We experimented with a large number of ANSI-C programs including:

Loop Summarization using State and Transition Invariants 29

Benchmark Method T NT TO Time

adpcm
11 loops

Loopfrog 1 8 3 0 59.66
Loopfrog 2 10 1 0 162.75
CTA 8 3 0 101.30
Terminator 6 2 3 94.45 +

bcnt
2 loops

Loopfrog 1 0 2 0 2.63
Loopfrog 2 0 2 0 2.82
CTA 0 2 0 0.79
Terminator 0 2 0 0.30

blit
4 loops

Loopfrog 1 0 4 0 0.16
Loopfrog 2 3 1 0 0.05
CTA 3 1 0 5.95
Terminator 3 1 0 3.67

compress
18 loops

Loopfrog 1 5 13 0 3.13
Loopfrog 2 6 12 0 33.92
CTA 5 12 1 699.00 +
Terminator 7 10 1 474.36 +

crc
3 loops

Loopfrog 1 1 2 0 0.15
Loopfrog 2 2 1 0 0.21
CTA 1 1 1 0.33 +
Terminator 2 1 0 14.58

engine
6 loops

Loopfrog 1 0 6 0 2.40
Loopfrog 2 2 4 0 9.88
CTA 2 4 0 16.20
Terminator 2 4 0 4.88

fir
9 loops

Loopfrog 1 2 7 0 5.99
Loopfrog 2 6 3 0 21.59
CTA 6 3 0 2957.06
Terminator 6 2 1 193.91 +

g3fax
7 loops

Loopfrog 1 1 6 0 1.57
Loopfrog 2 1 6 0 6.05
CTA 1 5 1 256.90 +
Terminator 1 5 1 206.85 +

huff
11 loops

Loopfrog 1 3 8 0 24.37
Loopfrog 2 8 3 0 94.61
CTA 7 3 1 16.35 +
Terminator 7 4 0 52.32

jpeg
23 loops

Loopfrog 1 2 21 0 8.37
Loopfrog 2 16 7 0 32.90
CTA 15 8 0 2279.13
Terminator 15 8 0 2121.36

pocsag
12 loops

Loopfrog 1 3 9 0 2.07

Loopfrog 2 9 3 0 6.91
CTA 9 3 0 10.39
Terminator 7 3 2 1557.57 +

qurt
2 loops

Loopfrog 1 0 2 0 3.56
Loopfrog 2 1 1 0 11.67
CTA 1 1 0 30.77
Terminator 0 0 2 0.00

ucbqsort
15 loops

Loopfrog 1 1 14 0 0.79
Loopfrog 2 2 13 0 2.06
CTA 2 12 1 71.73 +
Terminator 9 5 1 51.08 +

v42
12 loops

Loopfrog 1 0 12 0 82.84
Loopfrog 2 0 12 0 2587.22
CTA 0 12 0 73.57
Terminator 1 11 0 335.69

Table 6: Powerstone benchmark suite

Columns 3 to 5 state number of loops proven to terminate (T), possibly non-terminate (NT)

and time-out (TO) for each benchmark. Time is computed only for loops noted in T and NT;

’+’ is used to denote testcases cases where at least one time-outed loop occurred.

30 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

Benchmark Method T NT TO Time

adpcm-test
18 loops

Loopfrog 1 13 5 0 470.05
Loopfrog 2 17 1 0 644.09
CTA 13 3 2 260.98 +
Terminator 12 2 4 165.67 +

bs
1 loop

Loopfrog 1 0 1 0 0.05
Loopfrog 2 0 1 0 0.12
CTA 0 1 0 12.22
Terminator 0 1 0 18.47

crc
3 loops

Loopfrog 1 1 2 0 0.17
Loopfrog 2 2 1 0 0.26
CTA 1 1 1 0.21 +
Terminator 2 1 0 13.88

fft1k
7 loops

Loopfrog 1 2 5 0 0.36
Loopfrog 2 5 2 0 0.67
CTA 5 2 0 141.18
Terminator 5 2 0 116.81

fft1
11 loops

Loopfrog 1 3 8 0 3.68
Loopfrog 2 7 4 0 4.98
CTA 7 4 0 441.94
Terminator 7 4 0 427.36

fir
8 loops

Loopfrog 1 2 6 0 2.90
Loopfrog 2 6 2 0 8.48
CTA 6 2 0 2817.08
Terminator 6 1 1 236.70 +

insertsort
2 loops

Loopfrog 1 0 2 0 0.05
Loopfrog 2 1 1 0 0.06
CTA 1 1 0 226.45
Terminator 1 1 0 209.12

jfdctint
3 loops

Loopfrog 1 0 3 0 5.61
Loopfrog 2 3 0 0 0.05
CTA 3 0 0 1.24
Terminator 3 0 0 0.98

lms
10 loops

Loopfrog 1 3 7 0 2.86
Loopfrog 2 6 4 0 10.49
CTA 6 4 0 2923.12
Terminator 6 3 1 251.03 +

ludcmp
11 loops

Loopfrog 1 0 11 0 96.73
Loopfrog 2 5 6 0 112.81
CTA 3 5 3 3.26 +
Terminator 3 8 0 94.66

matmul
5 loops

Loopfrog 1 0 5 0 0.15
Loopfrog 2 5 0 0 0.09
CTA 3 2 0 1.97
Terminator 3 2 0 2.15

minver
17 loops

Loopfrog 1 1 16 0 2.57
Loopfrog 2 16 1 0 7.66
CTA 14 1 2 105.26 +
Terminator 14 1 2 87.09 +

qsort-exam
6 loops

Loopfrog 1 0 6 0 0.67
Loopfrog 2 0 6 0 3.96
CTA 0 5 1 45.92 +
Terminator 0 5 1 2530.58 +

qurt
1 loop

Loopfrog 1 0 1 0 8.02
Loopfrog 2 1 0 0 13.82
CTA 1 0 0 55.65
Terminator 0 0 1 0.00

select
4 loops

Loopfrog 1 0 4 0 0.55
Loopfrog 2 0 4 0 3.56
CTA 0 3 1 32.60 +
Terminator 0 3 1 28.12 +

sqrt
1 loop

Loopfrog 1 0 1 0 0.60
Loopfrog 2 1 0 0 5.10
CTA 1 0 0 15.28
Terminator 0 0 1 0.00

Table 7: SNU real-time benchmarks suite

Loop Summarization using State and Transition Invariants 31

Benchmark Method T NT TO Time

jhead
8 loops

Loopfrog 1 1 7 0 23.78
Loopfrog 2 4 4 0 78.93
CTA 3 5 0 42.38
Terminator 2 4 2 208.78 +

Table 8: Jhead-2.6 utility

Method T NT TO Time

244 loops in 160
benchmarks

Loopfrog 1 33 211 0 11.38
Loopfrog 2 44 200 0 22.49
CTA 34 208 2 1207.62 +
Terminator 40 204 0 4040.53

Table 9: Aggregated data on Verisec 0.2 suite

Benchmark Method T NT TO Time

bchunk
9 loops

Loopfrog 1 3 6 0 1.67
Loopfrog 2 3 6 0 31.16
CTA 3 6 0 53.03
Terminator 4 5 0 91.13

Table 10: Bchunk 1.2.0 utility

– The SNU real-time benchmark suite that contains small C programs used for
worst-case execution time analysis9;

– The Powerstone benchmark suite as an example set of C programs for embed-
ded systems [53];

– The Verisec 0.2 benchmark suite [41];
– The Jhead 2.6 utility;
– The Bchunk 1.2.0 utility;
– Windows device drivers (from the Windows Device Driver Kit 6.0).

All experiments were run on an Ubuntu server equipped with Dual-Core 2 GHz
Opteron 2212 CPU and 4 GB of memory. The analysis was set to run with a
timeout of 120 minutes for all loops at once (Loopfrog) or of 60 minutes per
loop (CTA and Terminator).

The results for Powerstone, SNU, Jhead and Bchunk are presented in Tables 6,
7, 8 and 10. Each table in columns 3 to 5 reports the quantity of loops that were
proven as terminating (T), potentially non-terminating (NT) and time-out (TO)
for each of the compared techniques.

The time in column 6 is computed only for loops noted in T and NT; loops
with timeout are not included in the total time. Instead, ’+’ is used to denote the
cases where at least one time-out occurred.

The results for the Verisec 0.2 benchmark suite are given in aggregated form
in Table 9. The suite consists of a large number of stripped C programs that
correspond to known security bugs. Although each program has very few loops,
the variety of loop types is fairly broad and, thus, is interesting for analysis.

9http://archi.snu.ac.kr/realtime/benchmark/

http://archi.snu.ac.kr/realtime/benchmark/

32 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

Benchmark group Method T NT TO Time

SDV FLAT DISPATCH HARNESS
557 loops in 30 benchmarks

Loopfrog 1 135 389 33 1752.1
Loopfrog 2 215 201 141 10584.4
CTA 166 160 231 25399.5

SDV FLAT DISPATCH STARTIO
HARNESS
557 loops in 30 benchmarks

Loopfrog 1 135 389 33 1396.0
Loopfrog 2 215 201 141 9265.8
CTA 166 160 231 28033.3

SDV FLAT HARNESS
635 loops in 45 benchmarks

Loopfrog 1 170 416 49 1323.0
Loopfrog 2 239 205 191 6816.4
CTA 201 186 248 31003.2

SDV FLAT SIMPLE HARNESS
573 loops in 31 benchmarks

Loopfrog 1 135 398 40 1510.0
Loopfrog 2 200 191 182 6814.0
CTA 166 169 238 30292.7

SDV HARNESS DRIVER CREATE
9 loops in 5 benchmarks

Loopfrog 1 1 8 0 0.1
Loopfrog 2 1 8 0 0.2
CTA 1 8 0 151.8

SDV HARNESS PNP DEFERRED
IO REQUESTS
177 loops in 31 benchmarks

Loopfrog 1 22 98 57 47.9
Loopfrog 2 66 54 57 617.4
CTA 80 94 3 44645.0

SDV HARNESS PNP IO RE-
QUESTS
173 loops in 31 benchmarks

Loopfrog 1 25 94 54 46.6
Loopfrog 2 68 51 54 568.7
CTA 85 86 2 15673.9

SDV PNP HARNESS SMALL
618 loops in 44 benchmarks

Loopfrog 1 172 417 29 8209.5
Loopfrog 2 261 231 126 12373.2
CTA 200 177 241 26613.7

SDV PNP HARNESS
635 loops in 45 benchmarks

Loopfrog 1 173 426 36 7402.2
Loopfrog 2 261 230 144 13500.2
CTA 201 186 248 41566.6

SDV PNP HARNESS UNLOAD
506 loops in 41 benchmarks

Loopfrog 1 128 355 23 8082.5
Loopfrog 2 189 188 129 13584.6
CTA 137 130 239 20967.8

SDV WDF FLAT SIMPLE HAR-
NESS
172 loops in 18 benchmarks

Loopfrog 1 27 125 20 30.3
Loopfrog 2 61 91 20 202.0
CTA 73 95 4 70663.0

Table 11: Aggregated data of the comparison between Loopfrog and CTA on
Windows device drivers

The aggregated data on experiments with Windows device drivers is provided
in Table 11. The benchmarks are grouped according to the harness used upon
extraction of a model with Goto-CC. Note that we skip the benchmarks where
no loops are detected. Thus, the groups in Table 11 may differ in the numbers of
benchmarks/loops. Furthermore, we do not report Terminator results here, as
it was shown in [40] that CTA outperforms it on this benchmark set.

Discussion Note that direct comparison of Loopfrog in time with iterative tech-
niques like CTA and Terminator is not fair. The latter methods are complete
at least for finite-state programs, relative to the completeness of ranking synthe-
sis method (which is not complete by default in the current CTA/Terminator
implementation for scalability reasons). Our loop summarization technique on the
other hand is a static analysis which aims only for conservative abstractions. In
particular, it does not try to prove unreachability of a loop or of preconditions
that lead to non-termination.

Loop Summarization using State and Transition Invariants 33

The timing information provided here serves as a reference that allows to com-
pare efforts of achieving the same result. Note that:

– Loopfrog spends time enumerating invariant candidates, provided by the
chosen abstract domain, against a path of one loop iteration. Compositionality
and d.wf. checks are not required for the chosen domains.

– CTA spends time 1) unwinding loop iterations, 2) discovering a ranking func-
tion for each unwounded path and 3) checking compositionality of a discovered
relation.

– Terminator spends time 1) enumerating all paths through the loop and 2) dis-
covering a ranking function for each path.

The techniques can greatly vary in time of dealing with a particular loop/pro-
gram. CTA and Terminator give up on a loop once a they hit a path on which
ranking synthesis fails. Loopfrog gives up on a loop if it runs out of transition
invariant candidates to try. In a few tests this leads to an advantage for Termina-
tor (huff and engine in Table 6), however, we observe in almost all other tests
that the Loopfrog technique is generally cheaper (often in orders of magnitude)
in computational efforts required for building a termination argument.

Tables 7, 6 and 8 show that loop summarization is able to prove termination
for the same number of loops as CTA and Terminator, but does so with less
resource requirements. In particular it demonstrates that a simple strict order
relation for all numeric variables of the loop (Table 5, domain #1) is, in practice,
as effective as CTA with default ranking functions. The results on the considerably
larger Windows device drivers (Table 11) lead to similar conclusions.

The comparison demonstrates some weak points of the iterative analysis:

– Enumeration of all paths through the loop can require many iterations or even
can be infinite for infinite state systems (as are most of realistic programs).

– The ranking procedures can often fail to produce a ranking argument; but if
it succeeds, a very simple relation is often sufficient.

– The search for a compositional transition invariant sometimes results in an
exponential growth of the number of loop unrollings (in case of CTA).

Loopfrog does not suffer from the first problem: the analysis of each loop
requires a finite number of calls to a decision procedure. The second issue is lever-
aged by relative simplicity of adding new abstract domain over implementing com-
plex ranking function method. The third issue is transformed into generation of
suitable invariant candidates, which, in general, may generate many candidates,
which slows the procedure down. However, we can control the order of candidates
by prioritizing some domains over the others, and thus, can expect simple ranking
arguments to be discovered first.

The complete results of these experiments as well as the Loopfrog tool are
available at www.verify.inf.usi.ch/loopfrog/termination.

7 Related Work

This section is divided into two parts: the first covers research related to sum-
marization while the second one relates our work to other termination analysis
techniques.

www.verify.inf.usi.ch/loopfrog/termination

34 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

7.1 Work related to loop summarization

The body of work on analysis using summaries of functions is extensive (see a
nice survey in [29]) and dates back to Cousot and Halbwachs [23], and Sharir and
Pnueli [54]. In a lot of projects, function summaries are created for alias analysis
or points-to analysis, or are intended for the analysis of program fragments. As a
result, these algorithms are either specialized to particular problems and deal with
fairly simple abstract domains or are restricted to analysis of parts of the program.
An instance is the summarization of library functions in [29]. In contrast, our
technique aims at computing a summary for the entire program, and is applicable
to complex abstract domains.

The same practical motivation, sound analysis of ANSI-C programs, drives
our work and the work behind Frama-C project10. In particular, the PhD work
of Moy [48] even targets, among others, the same set of benchmarks—Verisec [41]
and Zitser’s [59] test suites. To tackle them with the Frama-C tools, Moy em-
ploys a number of techniques that discover pre- and post-conditions for loops
as well as loop invariants. He combines abstract interpretation-based invariant
inference with weakest precondition-based iterative methods such as the Suzuki-
Ishihata algorithm [55]. The latter one, induction iteration, applies weakest pre-
condition computation to a candidate loop invariant iteratively until an inductive
invariant is found. Thus, loop summarization can be seen as 1-step application of
the induction-iteration method, in which “weakest precondition” is replaced with
“strongest postcondition”11.

Note that application of the Suzuki-Ishihata algorithm to string operation-
intensive programs (as our benchmarks are) often leads to non-terminating itera-
tive computation since there is no guarantee to obtain an inductive invariant from
a candidate. To avoid this uncertainty, we are interested only in those candidates
that can be proven to be an inductive invariant in a single step. We claim that a
careful choice of candidates would contribute more to precision and scalability of
analysis. In fact, our results on the aforementioned benchmark suites support this
claim. We analyze Zitser’s benchmark suite in a matter of seconds and are able to
discharge 62% of bug-free instances, while Frama-C does not complete any of test
cases within a 1 hour limit. When applied to a smaller programs of the Verisec
test suite both tools are able to discharge 74% of bug-free test cases; Loopfrog
required almost no time for this analysis.

Loopfrog shares a lot of its concept and architecture with Houdini, an anno-
tation assistant for ESC/Java [27]. Houdini was first created as a helper to ESC/-
Java; the goal was to lower the burden of manual program annotation (sufficient
annotation is critical for the application of ESC/Java). Similar to loop summariza-
tion, Houdini “magically” guesses a set of candidate relations between program
variables and then discharges or verifies them one by one using the ESC/Java as a
refuter. Verified candidates are added to the program as annotations and are used
later by the main ESC/Java chec in the same way as symbolic execution makes use
of summaries when it runs over a loop-free program. However, there are also nu-
merous differences between the two tools. Houdini is designed to be applied to any

10http://frama-c.com/
11However, the choice of transformer, i.e., “pre-condition” or “post-condition”, is irrelevant

if only one step is performed.

http://frama-c.com/

Loop Summarization using State and Transition Invariants 35

program module or a routine in a library while our summarization concentrates
deliberately on loops. Houdini adds annotations to the program, while Loopfrog
replaces each loop with the summary, thus keeping the cost of analysis for every
consecutive loop as low as for the inner-most one.

Houdini as well as Loopfrog generate a lot of candidates that help to address
buffer access checks. For instance, it generates 6 different comparison relations for
each integral type and a constant in a program. While experimenting with Loop-
frog, we found such an abstract domain of arbitrary relations to be effective,
though very expensive. The result are too many useless candidates. Therefore we
prefer problem-tailored domains that generate fewer candidates.

Furthermore, as we show in Section 5, Loopfrog extends candidates selection
to those that relate two different valuations of the same program variable, e.g.,
before and after a loop iteration. This allows discovering not only safety, but also
liveness-related loop invariants; in particular loop termination can be proven with
the help of this addition.

A series of work by Gulwani et al. [33, 34] uses loop invariant discovery for the
purpose of worst-case execution time (WCET) analysis. One of the approaches
(reported as the most effective in practice) employs template-based generation of
invariant candidates. Starting from the inner-most loop, a bound of the loop’s
maximal resources usage is computed. Therefore, it can be seen as a loop summa-
rization with domains tuned for WCET-analysis rather then string-operations as
in Loopfrog.

The Saturn tool [1] computes a summary of a function with respect to an
abstract domain using a SAT-based approach to improve scalability. However,
summaries of loop-bodies are not created. In favor of scalability, Saturn simply
unwinds loops a constant number of times, and thus, is unsound as bugs that
require more iterations are missed.

SAT-solvers, SAT-based decision procedures, and constraint solvers are fre-
quently applied in program verification. Notable instances are Jackson’s Alloy
tool [38] and CBMC [14]. The SAT-based approach is also suitable for computing
abstractions, as, for example, in [1, 15, 52] (see detailed discussion in Sec. 4.2). The
technique reported here also uses the flexibility of a SAT-based decision procedure
for a combination of theories to compute loop summaries.

Our technique can be used for checking buffer overruns and class-string vul-
nerabilities. There exist a large number of static analysis tools focusing on these
particular problems. In this respect, the principal difference of our technique is that
it is a general purpose abstraction-based checker which is not limited to special
classes of faults.

A major benefit of our approach is its ability to generate diagnostic infor-
mation for failed properties. This is usually considered a distinguishing feature
of model checking [13] and, sometimes, extended static checking [28], but rarely
found in tools based on abstract interpretation. Most model checkers for pro-
grams implement a CEGAR approach [4, 36], which combines model checking
with counterexample-guided abstraction refinement. The best-known instance is
SLAM [4], and other implementations are BLAST [36], MAGIC [10], and Sat-
Abs [16], which implement predicate abstraction.

Recently, a number of projects applied counterexample-guided refinement to
refine abstract domains other than predicate abstraction. Manevich et al. [47] for-
malize CEGAR for general powerset domains; Beyer et al. [7] integrate the TVLA

36 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

system [46] into BLAST and use counterexamples to refine 3-valued structures to
make shape analysis more scalable; Gulavani and Rajamani devised an algorithm
for refining any abstract interpretations [31, 32] by combining widening with in-
terpolation. Our procedure is also able to generate counterexamples with respect
to the abstract domain and could be integrated into a CEGAR loop for automatic
refinement. As Loopfrog does not perform domain refinement, but instead com-
putes an abstraction for a given domain using SAT, it is more closely related to
the work on computing abstractions with abstract conflict driven clause learning
(ACDCL) [26].

7.2 Work related to termination

Although the field of program termination analysis is relatively old and the first
results date back to Turing [58], recent years have seen a tremendous increase in
practical applications of termination proving. Two directions of research enabled
the efficacy of termination provers in practice:

– transition invariants by Podelski and Rybalchenko [49], and
– the size-change termination principle (SCT) by Lee, Jones and Ben-Amram [44],

where the latter has its roots in previous research on termination of declarative
programs. Until very recently, these two lines of research did not intersect much.
The first systematic attempt to understand their common traits is a recent pub-
lication by Heizmann et al. [35].

7.2.1 Relation to size-change termination principle

Termination analysis based on the SCT principle usually involves two steps:

1. construction of an abstract model of the original program in the form of size-
change graphs (SC-graphs) and

2. analysis of the SC-graphs for termination.

SC-graphs contain abstract program values as nodes and use two types of edges,
along which values of variables must decrease, or decrease or stay the same. No edge
between nodes means that none of the relations can be ensured. Graphs G which
are closed under composition with itself, are called idempotent, i.e., G;G = G.12

Lee et al. [44] identify two termination criteria based on a size-change graph:

1. The SC-graph is well-founded, or
2. The idempotent components of an SC-graph are well-founded.

An SC-graph can be related to transition invariants as follows. Each sub-graph
corresponds to a conjunction of relations, which constitutes a transition invariant.
The whole graph forms a disjunction, resulting in a termination criterion very
similar to that presented as Theorem 3: if an SC-graph is well-founded then there
exists a d.wf. transition invariant. Indeed, Heizmann et al. [35] identify the SCT
criterion as strictly stronger than the argument via transition invariants [49]. In

12In this discussion we omit introducing the notation necessary for a formal description of
SCT; see Lee et al. [44, 35] for more detail.

Loop Summarization using State and Transition Invariants 37

other words, there are terminating programs for which there are no suitable SC-
graphs that comply with the termination criteria above.

The intuition behind SCT being a stronger property comes from the fact that
SC-graphs abstract from the reachability of states in a program, i.e., the SC-graph
requires termination of all paths regardless of whether those paths are reachable
or not. Transition invariants, on the other hand, require the computation of the
reachable states of the program. In this respect, our light-weight analysis is closely
related to SCT, as it havocs the input to individual loop iterations before checking
a candidate transition invariant.

The domains of SC-graphs correspond to abstract domains in our approach.
The initial inspiration for the domains we experimented with comes from a recent
survey on ranking functions for SCT [5]. The domains #1–4 in Table 5 encode those
graphs with only down-arcs. Domain #5 has down-arcs and edges that preserve
the value. However, note that, in order to avoid well-foundedness checks, we omit
domains that have mixed edge types.

Program abstraction using our loop summarization algorithm can be seen as
construction of size-change graphs. The domains suggested in Section 5.8 result in
SC-graphs that are idempotent and well-founded by construction.

Another relation to SCT is the second SCT criterion based on idempotent
SC-components. In [35] the relation of idempotency to some notion in transition
invariant-based termination analysis was stated as an open question. However,
there is a close relation between the idempotent SC-components and composi-
tional transition invariants (Definition 9, page 17) used here and in compositional
termination analysis [40]. The d.wf. transition invariant constructed from idempo-
tent graphs is also a compositional transition invariant.

7.2.2 Relation to other research in transition invariant-based termination

The work in Section 5 is a continuation of the research of transition invariants-
based termination proving methods initiated by [49]. Methods developed on the
basis of transition invariants rely on an iterative abstraction refinement-like con-
struction of d.wf. transition invariants [17, 18, 40]. Our approach is different, be-
cause it aims to construct a d.wf. transition invariant without refinement. Instead
of ranking function discovery for every non-ranked path, we use abstract domains
that express ranking arguments for all paths at the same time.

Chawdhary et al. [11] propose a termination analysis using a combination of
fixpoint-based abstract interpretation and an abstract domain of disjunctively well-
founded relations. The abstract domain they suggest is of the same form as domain
#5 in Table 5. However their technique attempts iterative computation of the set
of abstract values and has a fixpoint detection of the form T ⊆ R+, while in
our approach it is enough to check T ⊆ R, combined with the compositionality
criterion. This allows more abstract domains to be applied for summarization, as
each check is less demanding on the theorem prover.

Dams et al. [24] present a set of heuristics that allow heuristic inference of can-
didate ranking relations from a program. These heuristics can be seen as abstract
domains in our framework. Moreover, we also show how candidate relations can
be checked effectively.

Cook et al. [20] use relational predicates to extend the framework of Reps
et al.[51] to support termination properties during computation of inter-procedural

38 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

program summaries. Our approach shares a similar motivation and adds termi-
nation support to abstract domain-based loop summarization. However, we con-
centrate on scalable non-iterating methods to construct the summary while Cook
et al. [20] rely on a refinement-based approach. The same argument applies in the
case of Balaban et al.’s framework [3] for procedure summarization with liveness
properties support.

Berdine et al. [6] use the Octagon and Polyhedra abstract domains to discover
invariance constraints sufficient to ensure termination. Well-foundedness checks,
which we identify as an expensive part of the analysis, are left to iterative verifica-
tion by an external procedure like in the Terminator algorithm [18] and CTA [40].
In contrast to these methods, our approach relies on abstract domains which are
well-founded by construction and therefore do not require explicit checks.

Dafny, a language and a program verifier for functional correctness [45], em-
ploys a very similar method to prove a loop (or a recursive call) terminating. First,
each Dafny type has an ordering, values are finite, and, except for integers, val-
ues are bounded from below. Second, Dafny offers a special decrease predicate.
Now, if one can provide a tuple of variables, each bounded from below, for which
decrease holds (a termination metric), then termination can be concluded. A ter-
mination metric can be given by a developer or guessed using predefined heuristics.
Effectively, this method maps one to one to strict order relational domains used
in Loopfrog.

It is interesting to note one particular case in Dafny: if an unbounded integer
variable is used in a termination metric, then an additional invariant is required
to bound the integer from below. Loopfrog usually deals with machine integers,
which are bounded by design.

Altogether, successful application of the relatively simple predefined heuristics
in Dafny and our experiments supports the main claim of Section 5: light-weight
analysis based on simple heuristics is often sufficient to prove many loops termi-
nating.

8 Conclusion and Future Work

The discovery of an appropriate abstraction is a fundamental step in establishing a
successful verification framework. Abstraction not only reduces the computational
burden of verification, but also makes it possible to analyze in a sound manner
infinite-state software models.

The proposed loop summarization algorithm is a step towards understanding
of what is a right abstraction, how it should be discovered and used to enable ef-
ficient analysis of programs by formal verification tools. The algorithm computes
an abstract model of a program with respect to a given abstract interpretation
by replacing loops and function calls in the control flow graph by their symbolic
transformers. The run-time of the new algorithm is linear in the number of looping
constructs in a program and a finite number of (relatively simple) decision proce-
dure calls is used for discovery of every abstract symbolic transformer. Therefore,
it addresses the problem of the high complexity of computing abstract fixpoints.

The procedure over-approximates the original program, which implies sound-
ness of the analysis, but, as any other abstraction-based technique, it can intro-
duce false positives on the consequent phase of analysis of the constructed abstract

Loop Summarization using State and Transition Invariants 39

model. An additional benefit of the technique is its ability to generate leaping coun-
terexamples, which are helpful for diagnosis of the error or for filtering spurious
warnings. The conducted experimental evaluation within an analysis framework
for buffer overflows demonstrates the best error-detection and error-discrimination
rates when comparing to a broad selection of static analysis tools.

Loop summarization algorithm also can be effectively employed to perform
light-weight program termination analysis. For a sequential program, termination
of all loops is enough to conclude program termination, therefore we focused our
analysis on individual loops. The new algorithm is based on loop summarization
and employs relational abstract domains to discover transition invariants for loops.
It uses compositionality of a transition invariant as a completeness criterion, i.e.,
that a discovered transition invariant holds for any execution through the loop.
If such an invariant exists and it is (disjunctively) well-founded, then the loop is
guaranteed to terminate. Well-foundedness can be checked either by an application
of a quantifier-supporting decision procedure or be ensured by construction. In the
latter case an abstract domain for producing candidates for transition invariants
should be chosen appropriately.

Note, that, although this algorithm is incomplete (because a compositional
transition invariant does not always exist and the ability to discover transition
invariants is restricted by expressiveness of the selected abstract domains), our
evaluation demonstrates its effectiveness. We applied our new termination analysis
to numerous benchmarks including Windows device drivers and demonstrated high
scalability as well as a level of precision that matches to the state-of-the-art path-
based algorithms such as Terminator and CTA.

In contrast to other methods, our algorithm performs both loop summarization
and transition invariant inference at the same time, thus, both safety- and liveness
properties of loop semantics are preserved. Also, it utilizes a family of simple,
custom abstract domains whereas other works in termination analysis often use
off-the-shelf domains; it seems very interesting to note that simpler domains can
go a long way in solving those problems, while keeping computational costs low.

For future research we would like to highlight two specific directions:

1) Problem-specific abstract domains for termination (liveness) analysis Addi-
tional relational abstract domains should be considered for termination (liveness)
analysis in areas where it is appropriate. Possible applications include:

– Verification of liveness properties in protocol implementations with abstract
domains used to reason about message ordering.

– Verification of liveness properties in concurrent programs with abstract do-
mains employed to reason about the independence of termination from thread
scheduling or the execution progress over all threads.

A recent attempt to build a bridge between transition invariants-based termi-
nation analysis and size-change termination by Heizmann et al. [35] suggests that
the well-studied size-change graphs can be adopted as abstract domains.

As a stand-alone theoretical problem we see the definition of a class of systems
and properties for which termination (liveness) can be proved by induction, i.e.,
by guessing and proving the base step (discovery of a transition invariant) and
proving the inductive step (compositionality of a transition invariant).

40 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

2) Combined state/transition invariants abstract domains for conditional termi-
nation (liveness) Cook et. al. aim to compute a loop precondition that implies
termination and use it to establish conditional termination [19]. A combination of
state and transition invariants can be used for similar purposes.

We also plan to investigate whether a negative result of a transition invariant
candidate check can be used to derive a counterexample for termination or a
precondition. For instance, the failure to ensure the total order between all values
of an iterator in a loop may be a hint that an integer overflow leads to non-
termination.

Bibliography

1. Aiken A, Bugrara S, Dillig I, Dillig T, Hackett B, Hawkins P (2007) An
overview of the Saturn project. In: Das M, Grossman D (eds) Workshop on
Program Analysis for Software Tools and Engineering, ACM, pp 43–48

2. Ashcroft E, Manna Z (1979) The translation of ’go to’ programs to ’while’
programs. In: Classics in software engineering, Yourdon Press, Upper Saddle
River, NJ, USA, pp 49–61

3. Balaban I, Cohen A, Pnueli A (2006) Ranking abstraction of recursive pro-
grams. In: Emerson E, Namjoshi K (eds) Verification, Model Checking, and
Abstract Interpretation (VMCAI), Springer Berlin / Heidelberg, Lecture
Notes in Computer Science, vol 3855, pp 267–281

4. Ball T, Rajamani SK (2001) The SLAM toolkit. In: Computer Aided Veri-
fication (CAV), Springer, Lecture Notes in Computer Science, vol 2102, pp
260–264

5. Ben-Amram AM, Lee CS (2009) Ranking functions for size-change termination
II. Logical Methods in Computer Science 5(2)

6. Berdine J, Chawdhary A, Cook B, Distefano D, O’Hearn P (2007) Variance
analyses from invariance analyses. In: Principles of Programming Languages
(POPL), ACM, New York, NY, USA, POPL ’07, pp 211–224

7. Beyer D, Henzinger TA, Théoduloz G (2006) Lazy shape analysis. In: Com-
puter Aided Verification (CAV), Springer, Lecture Notes in Computer Science,
vol 4144, pp 532–546

8. Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y (2003) Bounded model
checking. Advances in Computers 58:118–149

9. Cavada R, Cimatti A, Franzén A, Kalyanasundaram K, Roveri M, Shyama-
sundar RK (2007) Computing predicate abstractions by integrating BDDs
and SMT solvers. In: Formal Methods in Computer-Aided Design (FMCAD),
IEEE Computer Society, pp 69–76

10. Chaki S, Clarke EM, Groce A, Jha S, Veith H (2004) Modular verification
of software components in C. IEEE Transactions on Software Engineering
30(6):388–402

11. Chawdhary A, Cook B, Gulwani S, Sagiv M, Yang H (2008) Ranking abstrac-
tions. In: Drossopoulou S (ed) Programming Languages and Systems, Lecture
Notes in Computer Science, vol 4960, Springer Berlin / Heidelberg, pp 148–162

12. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided
abstraction refinement. In: Emerson E, Sistla A (eds) Computer Aided Veri-

Loop Summarization using State and Transition Invariants 41

fication, Lecture Notes in Computer Science, vol 1855, Springer Berlin / Hei-
delberg, pp 154–169

13. Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press
14. Clarke EM, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs.

In: Jensen K, Podelski A (eds) Tools and Algorithms for Construction and
Analysis of Systems (TACAS), Springer, Lecture Notes in Computer Science,
vol 2988, pp 168–176

15. Clarke EM, Kroening D, Sharygina N, Yorav K (2004) Predicate abstraction of
ANSI-C programs using SAT. Formal Methods in System Design 25(2-3):105–
127

16. Clarke EM, Kroening D, Sharygina N, Yorav K (2005) SATABS: SAT-based
predicate abstraction for ANSI-C. In: Tools and Algorithms for Construction
and Analysis of Systems (TACAS), Springer, Lecture Notes in Computer Sci-
ence, pp 570–574

17. Cook B, Podelski A, Rybalchenko A (2005) Abstraction refinement for ter-
mination. In: International Symposium on Static Analysis (SAS), Springer,
Lecture Notes in Computer Science, vol 3672, pp 87–101

18. Cook B, Podelski A, Rybalchenko A (2006) Termination proofs for systems
code. In: Programming Language Design and Implementation (PLDI), ACM,
pp 415–426

19. Cook B, Gulwani S, Lev-Ami T, Rybalchenko A, Sagiv M (2008) Proving
conditional termination. In: Computer Aided Verification (CAV), Springer,
Lecture Notes in Computer Science, vol 5123, pp 328–340

20. Cook B, Podelski A, Rybalchenko A (2009) Summarization for termination:
no return! Formal Methods in System Design 35(3):369–387

21. Cook B, Kroening D, Ruemmer P, Wintersteiger CM (2010) Ranking function
synthesis for bit-vector relations. In: Tools and Algorithms for Construction
and Analysis of Systems (TACAS), Springer, Lecture Notes in Computer Sci-
ence, vol 6015, pp 236–250

22. Cousot P, Cousot R (1977) Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In: Principles of Programming Languages (POPL), pp 238–252

23. Cousot P, Halbwachs N (1978) Automatic Discovery of Linear Restraints
Among Variables of a Program. In: Principles of Programming Languages
(POPL), pp 84–96

24. Dams D, Gerth R, Grumberg O (2000) A heuristic for the automatic gener-
ation of ranking functions. In: Proceedings of the Workshop on Advances in
Verification (WAVE), pp 1–8

25. Dor N, Rodeh M, Sagiv S (2003) CSSV: towards a realistic tool for statically
detecting all buffer overflows in C. In: Programming Language Design and
Implementation (PLDI), pp 155–167

26. D’Silva V, Haller L, Kroening D, Tautschnig M (2012) Numeric bounds anal-
ysis with conflict-driven learning. In: TACAS, Springer, pp 48–63

27. Flanagan C, Leino KRM (2001) Houdini, an annotation assistant for esc/java.
In: Oliveira J, Zave P (eds) FME 2001: Formal Methods for Increasing Software
Productivity, Lecture Notes in Computer Science, vol 2021, Springer Berlin /
Heidelberg, pp 500–517

28. Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JB, Stata R (2002)
Extended static checking for Java. In: Proceedings of the ACM SIGPLAN 2002

42 D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich and C. M. Wintersteiger

Conference on Programming language design and implementation, ACM, New
York, NY, USA, PLDI ’02, pp 234–245

29. Gopan D, Reps TW (2007) Low-level library analysis and summarization. In:
Computer Aided Verification (CAV), Springer, Lecture Notes in Computer
Science, vol 4590, pp 68–81

30. Graf S, Saidi H (1997) Construction of abstract state graphs with PVS. In:
Computer Aided Verification (CAV), Springer Berlin / Heidelberg, Lecture
Notes in Computer Science, vol 1254, pp 72–83

31. Gulavani BS, Rajamani SK (2006) Counterexample driven refinement for ab-
stract interpretation. In: Tools and Algorithms for Construction and Analysis
of Systems (TACAS), Springer, Lecture Notes in Computer Science, vol 3920,
pp 474–488

32. Gulavani BS, Chakraborty S, Nori AV, Rajamani SK (2010) Refining abstract
interpretations. Information Processing Letters 110(16):666–671

33. Gulwani S, Lev-Ami T, Sagiv M (2009) A combination framework for tracking
partition sizes. In: POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM, New
York, NY, USA, pp 239–251

34. Gulwani S, Mehra KK, Chilimbi T (2009) Speed: precise and efficient static
estimation of program computational complexity. In: POPL ’09: Proceedings
of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, ACM, New York, NY, USA, pp 127–139

35. Heizmann M, Jones N, Podelski A (2011) Size-change termination and transi-
tion invariants. In: Cousot R, Martel M (eds) Static Analysis, Lecture Notes
in Computer Science, vol 6337, Springer Berlin / Heidelberg, pp 22–50

36. Henzinger TA, Jhala R, Majumdar R, Sutre G (2002) Lazy abstraction. In:
Principles of Programming Languages (POPL), ACM, pp 58–70

37. Hoare T (1969) An axiomatic basis for computer programming. Communica-
tions of ACM 12(10):576–580

38. Jackson D, Vaziri M (2000) Finding bugs with a constraint solver. In: Pro-
ceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pp 14–25

39. Kroening D, Sharygina N (2006) Approximating predicate images for bit-
vector logic. In: Tools and Algorithms for Construction and Analysis of Sys-
tems (TACAS), Springer, Lecture Notes in Computer Science, vol 3920, pp
242–256

40. Kroening D, Sharygina N, Tsitovich A, Wintersteiger CM (2010) Termination
analysis with compositional transition invariants. In: International Conference
on Computer-Aided Verification (CAV), Springer, Edinburgh, UK, Lecture
Notes in Computer Science, vol 6174

41. Ku K, Hart TE, Chechik M, Lie D (2007) A buffer overflow benchmark for
software model checkers. In: Automated Software Engineering (ASE), ACM,
pp 389–392

42. Lahiri SK, Ball T, Cook B (2005) Predicate abstraction via symbolic decision
procedures. In: Computer Aided Verification (CAV), Springer, Lecture Notes
in Computer Science, vol 3576, pp 24–38

43. Lahiri SK, Nieuwenhuis R, Oliveras A (2006) SMT Techniques for Fast Pred-
icate Abstraction. In: Computer Aided Verification (CAV), Springer, Lecture
Notes in Computer Science, vol 4144, pp 424–437

Loop Summarization using State and Transition Invariants 43

44. Lee CS, Jones ND, Ben-Amram AM (2001) The size-change principle for pro-
gram termination. In: Principles of Programming Languages (POPL), ACM,
vol 36, pp 81–92

45. Leino KRM (2010) Dafny: an automatic program verifier for functional cor-
rectness. In: Proceedings of the 16th international conference on Logic for
programming, artificial intelligence, and reasoning, Springer-Verlag, Berlin,
Heidelberg, Lecture Notes in Computer Science, vol 6355, pp 348–370

46. Lev-Ami T, Sagiv S (2000) TVLA: A system for implementing static analyses.
In: Static Analysis (SAS), Springer, Lecture Notes in Computer Science, vol
1824, pp 280–301

47. Manevich R, Field J, Henzinger TA, Ramalingam G, Sagiv M (2006) Abstract
counterexample-based refinement for powerset domains. In: Program Analysis
and Compilation (PAC), Springer, Lecture Notes in Computer Science, vol
4444, pp 273–292

48. Moy Y (2009) Automatic modular static safety checking for C programs. PhD
thesis, Université Paris-Sud

49. Podelski A, Rybalchenko A (2004) Transition invariants. In: IEEE Symposium
on Logic in Computer Science (LICS), IEEE Computer Society, pp 32–41

50. Podelski A, Rybalchenko A (2007) ARMC: The logical choice for software
model checking with abstraction refinement. In: Practical Aspects of Declara-
tive Languages (PADL), Springer, pp 245–259

51. Reps T, Horwitz S, Sagiv M (1995) Precise interprocedural dataflow anal-
ysis via graph reachability. In: POPL ’95: Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
ACM, New York, NY, USA, pp 49–61

52. Reps TW, Sagiv S, Yorsh G (2004) Symbolic implementation of the best trans-
former. In: Verification, Model Checking, and Abstract Interpretation (VM-
CAI), Springer, Lecture Notes in Computer Science, vol 2937, pp 252–266

53. Scott J, Lee LH, Chin A, Arends J, Moyer B (1999) Designing the m·coretm m3
cpu architecture. In: International Conference on Computer Design (ICCD),
pp 94–101

54. Sharir M, Pnueli A (1981) Two approaches to interprocedural data flow anal-
ysis. Program Flow Analysis: theory and applications, Prentice-Hall

55. Suzuki N, Ishihata K (1977) Implementation of an array bound checker. In:
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, ACM, New York, NY, USA, POPL ’77, pp 132–143

56. Tarjan RE (1981) Fast algorithms for solving path problems. Journal of ACM
28(3):594–614

57. Turing AM (1936) On computable numbers, with an application to the
Entscheidungsproblem. Proceedings London Mathematical Society 2(42):230–
265

58. Turing AM (1949) Checking a large routine. In: Report of a Conference on
High Speed Automatic Calculating Machines, Cambridge, pp 67–69

59. Zitser M, Lippmann R, Leek T (2004) Testing static analysis tools using ex-
ploitable buffer overflows from open source code. In: International Symposium
on Foundations of Software Engineering, ACM, pp 97–106

	Introduction
	Loop Invariants
	Loop Summarization with State Invariants
	Summarization using Symbolic Abstract Transformers
	Termination Analysis using Loop Summarization
	Experimental Evaluation
	Related Work
	Conclusion and Future Work

