
Loop Summarization

using Abstract Transformers⋆

Daniel Kroening1, Natasha Sharygina2,5, Stefano Tonetta3, Aliaksei Tsitovich2,
and Christoph M. Wintersteiger4

1 Oxford University, Computing Laboratory, UK
2 University of Lugano, Switzerland

3 Fondazione Bruno Kessler, Trento, Italy
4 Computer Systems Institute, ETH Zurich, Switzerland

5 School of Computer Science, Carnegie Mellon University, USA

Abstract. Existing program analysis tools that implement abstraction
rely on saturating procedures to compute over-approximations of fix-
points. As an alternative, we propose a new algorithm to compute an
over-approximation of the set of reachable states of a program by replac-
ing loops in the control flow graph by their abstract transformer. Our
technique is able to generate diagnostic information in case of property
violations, which we call leaping counterexamples. We have implemented
this technique and report experimental results on a set of large ANSI-
C programs using abstract domains that focus on properties related to
string-buffers.

1 Introduction

Abstract Interpretation [1] is a framework for the approximative analysis of dis-
crete transition systems, and is based on fixpoint computations. It is frequently
applied to verify reachability properties of software programs. Abstract interpre-
tation is performed with respect to an abstract domain, which is an approximate
representation of sets of concrete values. Instances are numerical abstract do-
mains such as intervals [1] and polyhedra [2], or specialized domains as, for
example, a domain specific for heap-manipulating programs. In abstract inter-
pretation, the behavior of a program is evaluated over the abstract domain using
an abstract transformer. This is iterated until the set of abstract states saturates,
i.e., an abstract fixpoint is reached. If certain formal constraints between the ab-
stract and concrete domains are met, this abstract fixpoint is guaranteed to be
an over-approximation of the set of reachable states of the original program.

A main issue in abstract interpretation is the number of iterations required
to reach the abstract fixpoint. On large benchmarks, a thousand iterations is
commonly observed, even when using simplistic abstract domains. Thus, many
tools implementing abstract interpretation apply widening in order to accelerate

⋆ Supported by the Swiss National Science Foundation grant no. 200021-111687 and
an award from IBM research.

1

convergence. Widening, however, may yield imprecision, and thus, the abstract
fixpoint may not be strong enough to prove the desired property [3].

We propose a novel technique to address this problem, which uses a symbolic
abstract transformer [4]. A symbolic abstract transformer for a given program
fragment is a relation over a pair of abstract states ŝ, ŝ′ that holds if the fragment
transforms ŝ into ŝ′. We propose to apply the transformer to perform sound
summarization, i.e., to replace parts of the program by a smaller representative.
In particular, we use the transformer to summarize loops and (recursion-free)
function calls.

The symbolic abstract transformer is usually computed by checking if a given
abstract transition is consistent with the semantics of a statement [4, 5]. Our
technique generalizes the abstract transformer computation and applies it to
program fragments: given an abstract transition relation, we check if it is con-
sistent with the program semantics. This way, we can tailor the abstraction to
each program fragment. In particular, for loop-free programs, we precisely en-
code their semantics into symbolic formulas. For loops, we exploit the symbolic
transformer of the loop body to infer invariants of the loop. This is implemented
by means of a sequence of calls to a decision procedure for the program logic.

When applied starting from the inner-most loops and the leaves of the call
graph, the run-time of the resulting procedure becomes linear in the number
of looping constructs in the program, and thus, is often much smaller than the
number of iterations required by the traditional saturation procedure. We show
soundness of the procedure and discuss its precision compared to the conven-
tional approach on a given abstract domain. In case the property fails, a diag-
nostic counterexample can be obtained, which we call leaping counterexample.
This diagnostic information is often very helpful for understanding the nature
of the problem, and is considered a major plus for program analysis tools. Addi-
tionally, our technique localizes the abstract domains: we use different abstract
domains for different parts of the code. This further improves the scalability of
the analysis.

We implemented the procedure in a tool called LoopFrog and applied it
to search for buffer-overflow errors in well-known UNIX programs. Our exper-
imental results demonstrate that the procedure is more precise than any other
tool we compared with. Moreover, it scales to large programs even if complex
abstract domains are used. In summary, the contributions of this paper are:

– We introduce a new technique for program abstraction by using symbolic
abstract transformers for summarization of loops and function calls. The
technique is sound and has the advantage that the run-time is linear in the
number of looping constructs.

– In contrast to most other implementations of abstract interpretation, our
analysis technique produces counterexamples which can be used to diagnose
the property violation. Moreover, the counterexamples can be used to refine
the abstract domains.

Related work. Other work on analysis using summaries of functions is quite
extensive (see a nice survey in [6]) and dates back to Cousot and Halbwachs [2],

2

and Sharir and Pnueli [7]. In a lot of projects, function summaries are created for
alias analysis or points-to analysis, or are intended for the analysis of program
fragments. As a result, these algorithms are either specialized to particular prob-
lems and deal with fairly simple abstract domains or are restricted to analysis
of parts of the program. An instance is the summarization of library functions
in [6]. In contrast, our technique aims at computing a summary for the entire
program, and is applicable to complex abstract domains. The principal novelty
of our technique is that it is a general-purpose loop summarization method that
(unlike many other tools) is not limited to special classes of faults.

Similarly to our technique, the Saturn tool [8] computes a summary of a
function with respect to an abstract domain using a SAT-based approach to
improve scalability. However, in favor of scalability, Saturn simply unwinds loops
a constant number of times, and thus, bugs that require more iterations are
missed. Similarly to Saturn, the Spear tool [9] summarizes the effect of larger
functions, which improves the scalability of the tool dramatically. However, as
in the case of Saturn, loops are unwound only once.

SAT-solvers, SAT-based decision procedures, and constraint solvers are fre-
quently applied in program verification. Instances are the tools Alloy [10] and
CBMC [11]. The SAT-based approach is also suitable for computing abstractions,
as, for example, in [8, 5, 4] (see detailed discussion in Sec. 2.3). The technique
reported in this paper also uses the flexibility of a SAT-based decision procedure
for a combination of theories to compute loop summaries.

One of the benefits of our approach is its ability to generate diagnostic infor-
mation for failed properties. This is usually considered a distinguishing feature
of model checking [12], and is rarely found in tools based on abstract interpreta-
tion. Counterexamples aid the diagnosis of errors, and may also be used to filter
spurious warnings.

2 Background

2.1 Notation

In this section we introduce the basic concepts of abstract interpretation [1, 13].
Let U denote the universe where the values of the program variables are drawn
from. The set L of elementary commands consists of tests LT and assignments
LA, i.e., L = LT ∪̇LA, where a test q ∈ LT is a predicate over dom(q) ⊆ U .
An assignment e ∈ LA is a total map from dom(e) ⊆ U to U . Given q ∈ LT ,
we denote with q the predicate over dom(q) such that q(u) = ¬q(u) for all
u ∈ dom(q).

A program π is formalized as the pair 〈U,G〉, where U is the universe and G
is a program graph [13]. A program graph is a tuple 〈V,E, vi, vo, C〉, where

– V is a finite non-empty set of vertices called program locations.
– vi ∈ V is the initial location.
– vo ∈ V is the final location.

3

p=a;

while(*p!=0){

if(*p==’/’)

*p=0;

p++;

}

p++
*p==0

p=a

vo

vi

*p=0

*p==’/’*p!=0

*p!=’/’

Fig. 1. The running example

– E ⊆ V ×V is a non-empty set of edges; E∗ denotes the set of paths, i.e., the
set of finite sequences of edges.

– C : E → L associates a command with each edge.

We write L∗ for the set of sequences of commands. Given a program π, the set
paths(π) ⊆ L∗ contains the sequence C(e1), . . . , C(en) for every 〈e1, .., en〉 ∈ E∗.

Example 1. We use the program fragment in Figure 1 as running example. On the
left-hand side, we provide the C version. On the right-hand side, we depict its program
graph.

The (concrete) semantics of a program is given by the pair 〈A, τ〉, where

– A is the set of assertions of the program, where each assertion P ∈ A is a
predicate over U ; A(⇒, false, true,∨,∧) is a complete Boolean lattice;

– τ : L→ (A→ A) is the (concrete) predicate transformer.

In forward semantic analysis, τ represents the strongest post-condition. The
analysis of a program determines which assertions are true in each program
location by simulating the program from the initial location to that particular
program location.

2.2 Abstract Interpretation

An abstract interpretation is a pair 〈Â, t〉, where Â is a complete lattice Â(⊑
,⊥,⊤,⊔,⊓), and t : L → (Â → Â) is a predicate transformer. Note that 〈A, τ〉
is a particular abstract interpretation called the concrete interpretation. In the
following, we assume that for every command c ∈ L, the function t(c) is mono-
tone (which is the case for all natural predicate transformers). Given a predicate
transformer t, the function t̃ : L∗ → (Â→ Â) is recursively defined as follows:

t̃(p)(φ) =

{

φ if p is empty
t̃(e)(t(q)(φ)) if p = q; e for some q ∈ L, e ∈ L∗.

Example 2. We continue the running example (Fig. 1). Consider an abstract domain
where abstract states are a four-tuple 〈pa, za, sa, la〉. The first member, pa is the offset
of the pointer p from the base address of the array a (i.e. p − a in our example), the
Boolean za holds if a contains the zero character, the Boolean sa holds if a contains

4

the slash character, la is the index of the first zero character if present. The predicate
transformer t is defined as follows:
t(p = a)(φ) = φ[pa := 0] for any assertion φ;
t(∗p != 0)(φ) = φ ∧ (pa 6= la) for any assertion φ;
t(∗p == 0)(φ) = φ ∧ za ∧ (pa ≥ la) for any assertion φ;
t(∗p ==′ /′)(φ) = φ ∧ sa for any assertion φ;
t(∗p !=′ /′)(φ) = φ for any assertion φ;

t(∗p = 0)(φ) =

8

<

:

⊥ if φ⇒ ⊥;
φ[za := true, la := pa] if φ⇒ (pa < la), φ 6= ⊥;
φ[za := true] otherwise

t(p++)(φ) = φ[pa := pa + 1] for any assertion φ.
(We used φ[x := v] to denote an assertion equal to φ apart from the variable x that
takes value v.)

Given a program π, an abstract interpretation 〈Â, t〉, and an element φ ∈ Â,
we define the Merge Over all Paths MOPπ(t, φ) as the element

⊔

p∈paths(π) t̃(p)(φ).

Given two complete lattices Â(⊑,⊥,⊤,⊔,⊓) and Â′(⊑′,⊥′,⊤′,⊔′,⊓′), the
pair of functions 〈α, γ〉, with α : Â→ Â′ and γ : Â′ → Â is a Galois connection
iff α and γ are monotone and 1) for all φ ∈ Â, φ ⊑ γ(α(φ)), and 2) for all
φ′ ∈ Â′, α(γ(φ′)) ⊑′ φ′.

An abstract interpretation 〈Â, t〉 is a correct over-approximation of the con-
crete interpretation 〈A, τ〉 iff there exists a Galois connection 〈α, γ〉 such that
for all φ ∈ Â and P ∈ A, if P ⇒ γ(φ), then α(MOPπ(τ, P)) ⊑ MOPπ(t, φ) (i.e.,
MOPπ(τ, P) ⇒ γ(MOPπ(t, φ))).

2.3 A SAT-based Abstract Transformer

In order to implement abstract interpretation for a given abstract domain, an
algorithmic description of the abstract predicate transformer t(p) for a specific
command p ∈ L is required. Reps et al. describe an algorithm that implements
the best possible (i.e., most precise) abstract transformer for a given finite-height
abstract domain [4]. Graf and Säıdi’s algorithm for constructing predicate ab-
stractions [14] is identified as a special case.

The algorithm has two inputs: a formula Fτ(q), which represents a command

q ∈ L symbolically, and an assertion φ ∈ Â. It returns the image of the predicate
transformer t(q)(φ). The formula Fτ(q) is passed to a decision procedure, which
is expected to provide a satisfying assignment to the variables. The assignment
represents one concrete transition P, P ′ ∈ A. The transition is abstracted into
a pair φ, φ′ ∈ Â, and a blocking constraint is added to remove this satisfying
assignment. The algorithm iterates until the formula becomes unsatisfiable. An
instance of the algorithm for the case of predicate abstraction is the implemen-
tation of SatAbs described in [5]. SatAbs uses a propositional SAT-solver as
decision procedure for bit-vector arithmetic. The procedure is worst-case expo-
nential in the number of predicates, and thus, alternatives have been explored.
In [15, 16] a symbolic decision procedure generates a symbolic formula that rep-
resents the set of all solutions. In [17], a first-order formula is used and the
computation of all solutions is carried out by a SAT modulo theories (SMT)

5

solver. In [18], a similar technique is proposed where BDDs are used in order to
efficiently deal with the Boolean component of Fτ(q).

3 Summarization using Symbolic Abstract Transformers

3.1 Abstract Summarization

The idea of summarization is to replace a code fragment, e.g., a procedure of
the program, by a summary, which is a (smaller) representation of the behavior
of the fragment. Computing an exact summary of a program (fragment) is in
general undecidable. We therefore settle for an over-approximation. We formalize
the conditions the summary must fulfill in order to have a semantics that over-
approximates the original program.

We extend the definition of a correct over-approximation (see Sec. 2) to
programs. Given two programs π and π′ on the same universe U , we say that
π′ is a correct over-approximation of π iff for all P ∈ A(⇒, false, true,∨,∧),
MOPπ(τ, P) ⇒MOPπ′(τ, P).

Definition 1 (Abstract Summary). Given a program π, and an abstract in-
terpretation 〈Â, t〉 with a Galois connection 〈α, γ〉 with 〈A, τ〉, we denote the ab-
stract summary of π by Sum〈Â,t〉(π). It is defined as the program 〈U,G〉, where

G = 〈{vi, vo}, {〈vi, vo〉}, vi, vo, C〉 and C(〈vi, vo〉) is a new (concrete) command
a such that τ(a)(P) = γ(MOPπ(t, α(P))).

Lemma 1. If 〈Â, t〉 is a correct over-approximation of 〈A, τ〉, the abstract sum-
mary Sum〈Â,t〉(π) is a correct over-approximation of π.

We now discuss algorithms for computing abstract summaries. Our sum-
marization technique is first applied to particular fragments of the program,
specifically to loop-free and single-loop programs. In Section 3.4, we use these
procedures as subroutines to obtain the summarization of an arbitrary program.
We formalize code fragments as program sub-graphs.

Definition 2. Given two program graphs G = 〈V,E, vi, vo, C〉 and G′ = 〈V ′, E′,

v′i, v
′
o, C

′〉, G′ is a program sub-graph of G iff V ′ ⊆ V , E′ ⊆ E, and C ′(e) = C(e)
for every edge e ∈ E′.

3.2 Summarization of Loop-Free Programs

Obtaining MOPπ(t, φ) is as hard as assertion checking on the original pro-
gram. Nevertheless, there are restricted cases where it is possible to represent
MOPπ(t, φ) using a symbolic predicate transformer.

Let us consider a program π with a finite number of paths, in particular,
a program whose program graph does not contain any cycle. A program graph
G = 〈V,E, vi, vo, C〉 is loop free iff G is a directed acyclic graph.

In the case of a loop-free program π, we can compute a precise (not abstract)
summary by means of a formula Fπ that represents the concrete behavior of π.

6

This formula is obtained by converting π to a static single assignment (SSA)
form, whose size is linear in the size of π. The details of this step are beyond the
scope of this paper; see [11].

Example 3. We continue the running example (Fig. 1). The symbolic transformer of
the loop body π′ is represented by:
((∗p =′ /′ ∧ a′ = a[∗p = 0]) ∨ (∗p 6=′ /′ ∧ a′ = a)) ∧ (p′ = p+ 1).

Recall the abstract domain from Ex. 2. We can deduce that:

1. if m < n, then MOPπ′(t, (pa = m∧ za ∧ (la = n)∧¬sa)) = (pa = m+1∧ za ∧ la =
n ∧ ¬sa)

2. MOPπ′(t, za) = za.

This example highlights the generic nature of our technique. For instance,
case 1 of the example cannot be obtained by means of predicate abstraction be-
cause it requires an infinite number of predicates. Also, the algorithm presented
in [4] cannot handle this example because assuming the string length has no
a-priori bound, the lattice of the abstract interpretation has infinite height.

3.3 Summarization of Single-Loop Programs

We now consider a program that consists of a single loop.

Definition 3. A program π = 〈U,G〉 is a single-loop program iff G = 〈V,E, vi,
vo, C〉 and there exists a program sub-graph G′ and a test q ∈ LT such that

– G′ = 〈V ′, E′, vb, vi, C
′〉 with

• V ′ = V \ {vo},
• E′ = E \ {〈vi, vo〉, 〈vi, vb〉},
• C ′(e) = C(e) for all e ∈ E′,
• G′ is loop free.

– C(〈vi, vb〉) = q, C(〈vi, vo〉) = q.

vo

vb

q
q

G′

vi

The following can be seen as the “abstract interpretation analog” of Hoare’s
rule for while loops.

Theorem 1. Given a single-loop program π with guard q and loop body π′, and
an abstract interpretation 〈Â, t〉, let ψ be an assertion satisfying MOPπ′(t, t(q)(ψ))
⊑ ψ and let 〈Â, tψ〉 be a new abstract interpretation s.t.

MOPπ(tψ, φ) =

{

t(q)(ψ) if φ ⊑ ψ

⊤ elsewhere.

If 〈Â, t〉 is a correct over-approximation, then 〈Â, tψ〉 is a correct over-approxi-
mation as well.

7

In other words, if we apply the predicate transformer of the test q and then
the transformer of the loop body π′ to the assertion ψ, and we obtain an as-
sertion at least as strong as ψ, then ψ is an invariant of the loop. If a stronger
assertion φ holds before the loop, the predicate transformer of q applied to φ

holds afterwards.

Theorem 1 gives rise to a summarization algorithm. Given a program frag-
ment and an abstract domain, we heuristically provide a set of formulas that
encode that a (possibly infinite) set of assertions ψ are invariant (for example,
x′ = x encodes that every ψ defined as x = c, with c a value in the domain
U , is an invariant); we apply a decision procedure to check if the formulas are
satisfiable. The construction of the summary is then straightforward: given a
single-loop program π, an abstract interpretation 〈Â, t〉, and an invariant ψ for
the loop body, let 〈Â, tψ〉 be the abstract interpretation as defined in Theorem 1.

We denote the summary Sum〈Â,tψ〉
(π) by SlS(π, Â, tψ) (Single-Loop Summary).

Corollary 1. If 〈Â, t〉 is a correct over-approximation of 〈A, τ〉, then SlS(π, Â,
tψ) is a correct over-approximation of π.

Example 4. We continue the running example. Recall the abstract domain in Ex. 2.
Let π′ denote the loop body of the example program and let q denote the loop guard.
By applying the symbolic transformer from Ex. 3, we can check that the following
conditions hold:

1. MOPπ′(t, t(q)(φ)) ⊑ φ for any assertion ((pa ≤ la) ∧ za ∧ ¬sa).

2. MOPπ′(t, t(q)(φ)) ⊑ φ for the assertion za.

Thus, we summarize the loop with the following predicate transformer:

(za → z′a) ∧ (((pa ≤ la) ∧ za ∧ ¬sa) → ((p′a = l′a) ∧ z
′
a ∧ ¬s′a)) .

3.4 Summarization for Arbitrary Programs

We now describe an algorithm for over-approximating an arbitrary program. Like
traditional algorithms (e.g. [19]), the dependency tree of program fragments is
traversed bottom-up, starting from the leaves. The code fragments we consider
may be function calls or loops. We treat function calls as arbitrary sub-graphs
(see Def. 2) of the program graph, and do not allow recursion. We support
irreducible graphs using loop simulation [20].

Specifically, we define the sub-graph dependency tree of a program π = 〈U,G〉
as the tree 〈T,>〉, where

– the set of nodes of the tree are program sub-graphs of G;

– for G1, G2 ∈ T , G1 > G2 iff G2 is a program sub-graph of G1 with G1 6= G2;

– the root of the tree is G;

– every leaf is a loop-free or single-loop sub-graph;

– every loop sub-graph is in T .

8

Summarize(π)1

input : program π = 〈U,G〉
output : over-approximation π′ of π
begin2

〈T,>〉 :=sub-graph dependency tree of π;3

πr := π;4

for each G′ such that G > G′ do5

〈U,G′′〉:=Summarize(〈U,G′〉);6

πr := πr where G′ is replaced with G′′;7

update 〈T,>〉;8

if πr is a single loop then9

〈Â, t〉 := choose abstract interpretation for πr;10

ψ := test invariant candidates for t on πr;11

π′ := SlS(πr, Â, tψ);12

else13

/* πr is loop-free */

π′ := Sum〈A,τ〉(πr);14

return π′
15

end16

Algorithm 1: Generic program summarization

Algorithm 1 takes a program as input and computes its summary by following
the structure of the sub-graph dependency tree (Line 3). Thus, the algorithm
is called recursively on the sub-program until a leaf is found (Line 5). If it is
a single loop, an abstract domain is chosen (Line 10) and the loop is summa-
rized as described in Section 3.3 (Line 12). If it is a loop-free program, it is
summarized with a symbolic transformer as described in Section 3.2 (Line 14).
The old sub-program is then replaced with its summary (Line 7) and the sub-
graph dependency tree is updated (Line 8). Eventually, the entire program is
summarized.

Theorem 2. Summarize(π) is a correct over-approximation of π.

The precision of the over-approximation is controlled by the precision of
the symbolic transformers. However, in general, the computation of the best
abstract transformer is an expensive iterative procedure. We use the inexpensive
syntactic procedure for loop-free fragments. Loss of precision only happens when
summarizing loops, and greatly depends on the abstract interpretation chosen
in Line 10.

Note that Algorithm 1 does not limit the selection of abstract domains to any
specific type of domains, and that it does not iterate the predicate transformer
on the program. Furthermore, this algorithm allows for localization of the sum-
marization procedure, as a new domain may be chosen for every loop. Once the
domains are chosen, it is also easy to monitor the progress of the summarization,
as the number of loops and the cost of computing the symbolic transformers are
known – another distinguishing feature of our algorithm.

9

The summarization can serve as an over-approximation of the program. It can
be trivially analyzed to prove unreachability, or equivalently, to prove assertions.

3.5 Leaping Counterexamples

Let π′ denote the summary of the program. The program π′ is a loop-free se-
quence of symbolic summaries for loop-free fragments and loop summaries. A
counterexample for an assertion in π′ follows this structure: when traversing
symbolic summaries for loop-free fragments, it is identical to a concrete coun-
terexample. Upon entering a loop summary, the effect of the loop body is given
as a single transition in the counterexample: we say that the counterexample
leaps over the loop.

Example 5. Consider the summary from Ex. 4. Suppose that in the initial condition,
the buffer a contains a null terminating character in position n and no ′/′ character. If
we check that, after the loop, pa is greater than the size n, we obtain a counterexample
with p0

a = 0, p1

a = n.

The leaping counterexample may only exist with respect to the abstract in-
terpretations used to summarize the loops, i.e., they may be spurious in the
concrete interpretation. Nevertheless, they provide useful diagnostic feedback to
the programmer, as they show a (partial) path to the violated assertion, and
contain many of the input values the program needs to read to violate the as-
sertion. Furthermore, spurious counterexamples can be eliminated by combining
our technique with counterexample-guided abstraction refinement, as we do have
an abstract counterexample.

4 Experimental Evaluation

We implemented our loop summarization technique in a tool called LoopFrog

and report our experience using abstract domains tailored to the discovery of
buffer overflows on a large set of ANSI-C benchmarks.1 The loop summarization
(as described in Section 3.3) relies on the symbolic execution engine of CBMC.
We use bit-blasting to SAT as a decision procedure, but any SMT-BV solver is
applicable as well.

We use Goto-CC2 to extract model files from C source code; full ANSI-C is
supported. The model files essentially contain a symbol table and a control flow
graph. LoopFrog performs a field-sensitive pointer analysis, which is used to
add assertions about pointers. The program is then passed to the loop summa-
rization and, finally, the CBMC assertion checker.

The current implementation of LoopFrog is able to automatically check
user-supplied assertions of arbitrary form. In addition to these, array and dy-
namic object bounds checks, pointer validity, and string termination assertions

1 Note that our technique is a general-purpose loop and function call summarization
method. It is not limited to special classes of faults such as buffer overflows.

2 http://www.cprover.org/goto-cc/

10

are added automatically, where required. Also, abstract models for string-related
functions from the ANSI-C library are provided and added if necessary.

4.1 An Abstract Domain for Strings

The choice of the abstract domain for the loop summarization has a significant
impact on the performance of the algorithm. A carefully selected domain gen-
erates fewer invariant candidates and thus speeds up the computation of a loop
summary. Besides, the abstract domain has to be sufficiently expressive to retain
enough of the semantics of the original loop to show the property.

In order to evaluate the effectiveness of the summarization algorithm, we use
programs that manipulate string buffers as benchmarks. We therefore implement
the following string-related abstract domain, similar to the instrumentation sug-
gested by Dor et al. [21]: for each string buffer s, a Boolean value zs and integers
ls and bs are tracked. The Boolean zs holds if s contains the zero character within
the buffer size bs. If so, ls is the index of the first zero character, otherwise, ls
has no meaning.

In our experiments, we use the following assertions for the abstract states,
which we call invariant templates:

– Arithmetic relations between i and ls, where i is an integer type expression,
and s is a string buffer. Currently, we use 0 ≤ i < ls.

– String termination, i.e., zs holds.
– String length, i.e., ls < bs holds.
– Pointer validity: p points to a specific object. Currently, we use the weaker
p 6= NULL.

These templates are instantiated according to variables occurring in the code
fragment taken into account. To lower the amount of template instantiations,
the following set of simple heuristics is used:

1. Only variables of appropriate type are considered (we concentrate on string
types).

2. Indices and string buffers are combined in one invariant only if they are used
in the same expression, i.e., we detect instructions which contain p[i] and
build invariants that combine i with all string buffers pointed by p.

These templates have proven to be effective in our experiments. Other appli-
cations likely require different abstract domains. However, new domain templates
may be added quite easily: they usually can be implemented with less than a
hundred lines of code.

4.2 Results on Small Benchmarks

We use metrics proposed by Zitser et al. [22] to evaluate and compare the pre-
cision of our implementation. We report the detection rate R(d) and the false
positive rate R(f). The discrimination rate R(¬f |d) is defined as the ratio of

11

test cases on which an error is correctly reported, while it is, also correctly,
not reported in the corresponding fixed test case. Using this measure, tools are
penalized for not finding a bug, but also for not reporting a fixed program as
safe.

The experiments are performed on two recently published benchmark sets.
The first one, by Zitser et al. [22], contains 164 instances of buffer overflow prob-
lems, extracted from the original source code of sendmail, wu-ftpd, and bind.
The test cases do not contain complete programs, but only those parts required
to trigger the buffer overflow. According to Zitser et al., this was necessary be-
cause the tools in their study were all either unable to parse the test code, or the
analysis used disproportionate resources before terminating with an error ([22],
pg. 99). In this set, 82 tests contain a buffer overflow, and the rest represent a
fix of a buffer overflow.

R(d) R(f) R(¬f |d)

LoopFrog 1.00 0.38 0.62
=, 6=, ≤ 1.00 0.44 0.56

Interval Domain 1.00 0.98 0.02
Polyspace 0.87 0.50 0.37
Splint 0.57 0.43 0.30
Boon 0.05 0.05 0
Archer 0.01 0 0
Uno 0 0 0

LoopFrog [23] 1.00 0.26 0.74
=, 6=, ≤[23] 1.00 0.46 0.54

Table 1. Effectiveness: Detection
rate R(d), false positive rate R(f),
and discrimination rate R(¬f |d)
for various static analysis tools.

The results of a comparison with a
wide selection of static analysis tools3

are summarized in Table 1. Almost all of
the test cases involve array bounds vio-
lations. Even though Uno, Archer and
BOON were designed to detect these
type of bugs, they hardly report any er-
rors. The source code of the test cases
was not annotated, but nevertheless, the
annotation-based Splint tool performs
reasonably well on these benchmarks.
LoopFrog is the only tool that reports
all buffer overflows correctly (a detec-
tion rate of R(d) = 1) and with 62%,
LoopFrog also has the highest discrim-
ination rate among all the tools. It is
also worth noticing that our summariza-
tion technique performs quite well, when
only a few relational domains are used (the second line of Table 1). The third line
in this table contains the data for a simple interval domain, not implemented in
LoopFrog, but as a traditional abstract domain; it reports almost everything
as unsafe.

The second set of benchmarks was proposed by Ku et al. [23]. It contains
568 test cases, of which 261 are fixed versions of buffer overflows. This set partly
overlaps with the first one, but contains source code of a greater variety of appli-
cations, including the Apache HTTP server, Samba, and the NetBSD C system
library. Again, the test programs are stripped down, and are partly simplified to
enable current model checkers to parse them. Our results on this set confirm the
results obtained using the first set; the corresponding numbers are given in the
last two lines of Table 1. On this set the advantage of selecting property-specific

3 The data for all tools but LoopFrog, “=, 6=, ≤” and the Interval Domain is
from [22].

12

domains is clearly visible, as a 20% increase in the discrimination rate over the
simple relational domains is witnessed. Also, the performance of LoopFrog

is much better if specialized domains are used, simply because there are fewer
candidates for the invariants.

The leaping counterexamples computed by our algorithm are a valuable aid in
the design of new abstract domains that decrease the number of false positives.
Also, we observe that both test sets include instances labelled as unsafe that
LoopFrog reports to be safe (1 in [22] and 9 in [23]). However, by manual
inspection of the counterexamples for these cases, we find that our tool is correct,
i.e., that the test cases are spurious.4 For most of the test cases in the benchmark
suites, the time and memory requirements of LoopFrog are negligible. On
average, a test case finishes within a minute.

4.3 Large-Scale Benchmarks

We also evaluated the performance of LoopFrog on a set of large-scale bench-
marks, that is, complete un-modified program suites. Table 2 contains a se-
lection of the results.5 Further experimental data, an in-depth description of
LoopFrog, the tool itself, and all our benchmark files are available on-line for
experimentation by other researchers.6 Due to the problems reported by Zitser
et al., we were unable to apply other tools to the large-scale benchmarks.

These experiments clearly show that the algorithm scales reasonably well in
both memory and time, depending on the program size and the number of loops
contained. The time required for summarization naturally depends on the com-
plexity of the program, but also to a large degree on the selection of (potential)
invariants. As experience has shown, unwisely chosen invariant templates may
generate many useless potential invariants, each requiring to be tested by the
SAT-solver. This is a problem that we seek to remedy in the future, by leveraging
incremental SAT-solver technology.

In general, the results regarding the program assertions shown to hold are not
surprising; for many programs (e.g., texindex, ftpshut, ginstall), our selection of
string-specific domains proved to be quite useful. It is also interesting to note that
the results on the ftpshut program are very different on program versions 2.5.0
and 2.6.2: This program contains a number of known buffer-overflow problems in
version 2.5.0, and considerable effort was spent on fixing it for the 2.6.2 release;
an effort clearly reflected in our statistics. Just like in this benchmark, many of
the failures reported by LoopFrog correspond to known bugs and the leaping
counterexamples we obtain allow us to analyze those faults. Merely for reference
we list CVE-2001-1413 (a buffer overflow in ncompress) and CVE-2006-1168 (a
buffer underflow in the same program), for which we are easily able to produce
counterexamples.7 On the other hand, some other programs (such as the ones

4 We exclude those instances from our benchmarks.
5 All data was obtained on an 8-core Intel Xeon 3.0 GHZ. We limited the runtime to

4 hours and the memory per process to 4 GB.
6 http://www.cprover.org/loopfrog/
7 The corresponding bug reports may be obtained from http://cve.mitre.org/.

13

Time Assertions

Suite Program In
s
t
r
u
c
t
io

n
s

#
L
o
o
p
s

S
u
m

m
a
r
i-

z
a
t
io

n
C

h
e
c
k
in

g

A
s
s
e
r
t
io

n
s

T
o
t
a
l

P
e
a
k

M
e
m

o
r
y

T
o
t
a
l

P
a
s
s
e
d

V
io

la
t
e
d

freecell-solver aisleriot-board-2.8.12 347 26 10s 295s 305s 111MB 358 165 193
freecell-solver gnome-board-2.8.12 208 8 0s 3s 4s 13MB 49 16 33
freecell-solver microsoft-board-2.8.12 168 4 2s 9s 11s 32MB 45 19 26
freecell-solver pi-ms-board-2.8.12 185 4 2s 10s 13s 33MB 53 27 26
gnupg make-dns-cert-1.4.4 232 5 0s 0s 1s 9MB 12 5 7
gnupg mk-tdata-1.4.4 117 1 0s 0s 0s 3MB 8 7 1
inn encode-2.4.3 155 3 0s 2s 2s 6MB 88 66 22
inn ninpaths-2.4.3 476 25 5s 40s 45s 49MB 96 47 49
ncompress compress-4.2.4 806 12 45s 4060s 4106s 345MB 306 212 94
texinfo ginstall-info-4.7 1265 46 21s 326s 347s 127MB 304 226 78
texinfo makedoc-4.7 701 18 9s 6s 16s 28MB 55 33 22
texinfo texindex-4.7 1341 44 415s 9336s 9757s 1021MB 604 496 108
wu-ftpd ckconfig-2.5.0 135 0 0s 0s 0s 3MB 3 3 0
wu-ftpd ckconfig-2.6.2 247 10 13s 43s 57s 27MB 53 10 43
wu-ftpd ftpcount-2.5.0 379 13 10s 32s 42s 37MB 115 41 74
wu-ftpd ftpcount-2.6.2 392 14 8s 24s 32s 39MB 118 42 76
wu-ftpd ftprestart-2.6.2 372 23 48s 232s 280s 55MB 142 31 111
wu-ftpd ftpshut-2.5.0 261 5 1s 9s 10s 13MB 83 29 54
wu-ftpd ftpshut-2.6.2 503 26 27s 79s 106s 503MB 232 210 22
wu-ftpd ftpwho-2.5.0 379 13 7s 23s 30s 37MB 115 41 74
wu-ftpd ftpwho-2.6.2 392 14 8s 27s 35s 39MB 118 42 76
wu-ftpd privatepw-2.6.2 353 9 4s 17s 22s 32MB 80 51 29

Table 2. Large-Scale Evaluation.

from the freecell-solver suite) clearly require different abstract domains, suitable
for other heap structures than strings. The development of suitable domains and
subsequent experiments, however, are left for future research.

5 Conclusion and Future Work

We presented a novel algorithm for program verification using symbolic abstract
transformers. The algorithm computes an abstraction of a program with respect
to a given abstract interpretation by replacing loops and function calls in the
control flow graph by their symbolic transformers. The runtime of our algo-
rithm is linear in the number of looping constructs. It addresses the perennial
problem of the high complexity of computing abstract fixpoints. The proce-
dure over-approximates the original program, which implies soundness of our
analysis. An additional benefit of the technique is its ability to generate leap-
ing counterexamples, which are helpful for diagnosis of the error or for filtering
spurious warnings. Experimental results show the best error-detection and error-
discrimination rates comparing to a broad selection of static analysis tools. As
future work, we plan to analyze the leaping counterexamples automatically in
order to rule out spurious traces and to refine the abstract domain.

14

References

1. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
(1977) 238–252

2. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: POPL. (1978) 84–96

3. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: PLILP. LNCS, Springer (1992) 269–295

4. Reps, T.W., Sagiv, S., Yorsh, G.: Symbolic Implementation of the Best Trans-
former. In: VMCAI. LNCS, Springer (2004) 252–266

5. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. FMSD 25 (2004) 105–127

6. Gopan, D., Reps, T.W.: Low-level library analysis and summarization. In: CAV.
LNCS, Springer (2007) 68–81

7. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis.
Program Flow Analysis: theory and applications. Prentice-Hall (1981)

8. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview
of the Saturn project. In: PASTE, ACM (2007) 43–48

9. Babic, D., Hu, A.J.: Calysto: scalable and precise extended static checking. In:
ICSE, ACM (2008) 211–220

10. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA. (2000)
14–25

11. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. LNCS, Springer (2004) 168–176

12. Clarke, E., Grumberg, O., Peled, D.A.: Model checking. MIT Press (1999)
13. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:

POPL. (1979) 269–282
14. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV.

LNCS, Springer (1997) 72–83
15. Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic decision pro-

cedures. In: CAV. LNCS, Springer (2005) 24–38
16. Kroening, D., Sharygina, N.: Approximating predicate images for bit-vector logic.

In: TACAS. LNCS, Springer (2006) 242–256
17. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predicate

abstraction. In: CAV. LNCS, Springer (2006) 424–437
18. Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shyama-

sundar, R.K.: Computing predicate abstractions by integrating BDDs and SMT
solvers. In: FMCAD, IEEE (2007) 69–76

19. Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM 28 (1981) 594–
614

20. Ashcroft, E., Manna, Z.: The translation of ’go to’ programs to ’while’ programs.
(1979) 49–61

21. Dor, N., Rodeh, M., Sagiv, S.: CSSV: towards a realistic tool for statically detecting
all buffer overflows in C. In: PLDI. (2003) 155–167

22. Zitser, M., Lippmann, R., Leek, T.: Testing static analysis tools using exploitable
buffer overflows from open source code. In: SIGSOFT FSE. (2004) 97–106

23. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software
model checkers. In: ASE ’07, ACM Press (2007) 389–392

15

