
Automated Incremental Software Verification

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Grigory Fedyukovich

under the supervision of

Prof. Natasha Sharygina

December 2015

Dissertation Committee

Prof. Rupak Majumdar Max Planck Institute for Software Systems, Germany
Prof. Thomas Wahl Northeastern University, USA
Prof. Igor Pivkin USI, Switzerland
Prof. Walter Binder USI, Switzerland

Dissertation accepted on 10 December 2015

Research Advisor PhD Program Director

Prof. Natasha Sharygina Prof. Walter Binder and Prof. Michael Bronstein

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Grigory Fedyukovich
Lugano, 10 December 2015

ii

Abstract

Software continuously evolves to meet rapidly changing human needs. Each
evolved transformation of a program is expected to preserve important correct-
ness and security properties. Aiming to assure program correctness after a change,
formal verification techniques, such as Software Model Checking, have recently
benefited from fully automated solutions based on symbolic reasoning and ab-
straction. However, the majority of the state-of-the-art model checkers are de-
signed that each new software version has to be verified from scratch.

In this dissertation, we investigate the new Formal Incremental Verification
(FIV) techniques that aim at making software analysis more efficient by reusing
invested efforts between verification runs. In order to show that FIV can be built
on the top of different verification techniques, we focus on three complementary
approaches to automated formal verification.

First, we contribute the FIV technique for SAT-based Bounded Model Check-
ing developed to verify programs with (possibly recursive) functions with re-
spect to the set of pre-defined assertions. We present the function-summarization
framework based on Craig interpolation that allows extracting and reusing over-
approximations of the function behaviors. We introduce the algorithm to revali-
date the summaries of one program locally in order to prevent re-verification of
another program from scratch.

Second, we contribute the technique for simulation relation synthesis for
loop-free programs that do not necessarily contain assertions. We introduce an
SMT-based abstraction-refinement algorithm that proceeds by guessing a relation
and checking whether it is a simulation relation. We present a novel algorithm
for discovering simulations symbolically, by means of solving ∀∃-formulas and
extracting witnessing Skolem relations.

Third, we contribute the FIV technique for SMT-based Unbounded Model
Checking developed to verify programs with (possibly nested) loops. We present

iii

iv

an algorithm that automatically derives simulations between programs with dif-
ferent loop structures. The automatically synthesized simulation relation is then
used to migrate the safe inductive invariants across the evolution boundaries.

Finally, we contribute the implementation and evaluation of all our algorith-
mic contributions, and confirm that the state-of-the-art model checking tools can
successfully be extended by the FIV capabilities.

Contents

Contents iv

1 Introduction 1
1.1 Automated Formal Verification . 2
1.2 Challenges and Contributions . 5

1.2.1 SAT-Based Bounded Model Checking by means of Function
Summarization . 6

1.2.2 SMT-Based Simulation Discovery 8
1.2.3 SMT-Based Unbounded Model Checking via Abstract Sim-

ulation . 9

2 SAT-Based Bounded Model Checking by means of Function Summa-
rization 11
2.1 Background . 12

2.1.1 SAT Solving and Craig Interpolation 12
2.1.2 Interpolants in Model Checking 14
2.1.3 Software Bounded Model Checking and Symbolic Execution 16

2.2 Bounded Model Checking by means of Function Summarization . 18
2.2.1 Handling (Recursive) Functions 19
2.2.2 PBMC Encoding . 20
2.2.3 Bounded Model Checking with Automated Detection of Re-

cursion Depth . 21
2.2.4 Function Summaries . 25
2.2.5 Interpolation-Based Function Summaries 27
2.2.6 Using Function Summaries to Verify Different Assertions . 29
2.2.7 Detecting and Exploiting the Assertion Implication Relation 31

2.3 Checking Software Versions within Bounded Model Checking . . . 34

v

vi Contents

2.3.1 Incremental BMC Algorithm 36
2.3.2 Tree Interpolation for SAT Equisatisfiability 39
2.3.3 Optimization and Refinement 41
2.3.4 Soundness of the Incremental BMC Algorithm 42

2.4 Related Work to Function Summarization 44
2.5 Summary of Contributions . 46

3 SMT-Based Simulation Discovery 49
3.1 Background . 50

3.1.1 SMT Solving and Quantifier Elimination 50
3.1.2 Model-Based Projection for Linear Rational Arithmetic . . 51
3.1.3 Programs and Abstractions . 52

3.2 From Simulation to Validity . 54
3.2.1 Deciding Simulation Symbolically 54
3.2.2 Abstract Simulation . 55
3.2.3 Refining Simulation by Skolem Relations 56

3.3 Validity and Skolem Extraction . 58
3.3.1 Deciding Validity of ∀∃-Formulas 58
3.3.2 Extracting Skolem Relation 60
3.3.3 Towards Minimal Skolem Refinement 61

3.4 Related Work to Simulation Synthesis 65
3.5 Summary of Contributions . 66

4 SMT-Based Unbounded Model Checking via Abstract Simulation 69
4.1 Background . 70

4.1.1 Large-Block Encoding for Unbounded Model Checking . . 70
4.1.2 Verification Based on Horn Solving 72

4.2 Simulation Relations for Proof Lifting 74
4.2.1 Simulation Relations in Large-Block Encoding with Invari-

ants . 75
4.2.2 SIMABS: Simulation-Abstraction-Refinement Loop 79
4.2.3 Horn Solving for Skolem Extraction 82

4.3 Migrating Proofs between Programs 84
4.3.1 Abstract Simulations for Proof Lifting 84
4.3.2 Basic Proof Lifting Algorithm 85
4.3.3 Counter-Example Guided Inductive Weakening 87
4.3.4 Eliminating Quantifiers from Lifted Invariants 90

vii Contents

4.3.5 Strengthening Inductive Invariants without Quantifier Elim-
ination . 90

4.3.6 Calculating the Change Impact 91
4.4 Related Work to Incremental Verification 92
4.5 Summary of Contributions . 94

5 Tool Support 95
5.1 FUNFROG Bounded Model Checker 96

5.1.1 Evaluating Recursion Depth Detection 99
5.1.2 Evaluating Summarization-Based Recursion Depth Detection101
5.1.3 Evaluating Assertion Implication Checking 102

5.2 EVOLCHECK Incremental Bounded Model Checker 106
5.2.1 Evaluating EVOLCHECK . 108

5.3 NIAGARA Framework for Simulation Discovery and Proof Lifting . 110
5.3.1 Evaluating SIMABS . 112
5.3.2 Evaluating PROOFADAPT . 116

6 Conclusions 121
6.1 Future Work . 123

6.1.1 SMT-Based Function Summarization 123
6.1.2 Automated Program Repair 124

Bibliography 127

viii Contents

Chapter 1

Introduction

Software development is a continuous process that repeatedly iterates between
the stages of implementing a program and checking its safety. To satisfy qual-
ity standards, a software product should pass through a myriad of intermediate
verification stages, each of which assures safety of a particular change with re-
spect to its baseline version. Motivated by the need to make the software analysis
exhaustive and fully automated, the formal verification techniques, such as Soft-
ware Model Checking [45], have recently benefited from efficient and sound so-
lutions that were acknowledged with prestigious recognitions, such as the Turing
award [1].

Without detracting from the merits of the state-of-the-art model checking an-
alyzing individual program versions, there is a further demand for new methods
to make other steps in the typical “verify-bugfix-verify” workflow automated and
exhaustive. In particular, there is a clear need for new techniques that would
make the software analysis more efficient by reusing invested efforts between
verification runs. This aspiration gives rise to two research questions that we
address in this dissertation. First, one should find a reusable specification of the
already verified program version to be used while verifying another program
version. Second, one should find a relational specification between program ver-
sions that describes how the versions relate to each other. These specifications
are essential ingredients of the Formal Incremental Verification (FIV) approach
and can be used for various tasks such as upgrade checking, incremental analysis
of different properties of the same code, change impact calculation, etc.

Nowadays there exist various automated approaches to formal verification,
the underlying methods of which are orthogonal to each other. The techniques

1

2 1.1 Automated Formal Verification

may treat a given verification condition unequally and discover the incompati-
ble verification certificates. The underlying conceptual differences decrease the
chances for a possible FIV solution to support different model checkers. The in-
tention of this dissertation is to develop innovative FIV approaches which would
be generic and could be used complementary by different model checking tools.

Having its goal of enhancing various automated verification techniques by
the FIV capabilities, this dissertation considers three complementary approaches
to model checking with three application domains respectively. First, we develop
a FIV technique for Bounded Model Checking designed to verify programs with
(possibly recursive) functions. Second, we develop a technique for simulation
relation synthesis for loop-free programs that do not require using pre-defined
assertions. Finally, we develop a FIV technique for Unbounded Model Checking
designed to verify programs with (possibly nested) loops. In the rest of this
chapter, we will state the main contributions of this dissertation and prepare the
reader to a more formal description in the following chapters.

1.1 Automated Formal Verification

Almost a half century has passed after the rise of program verification. The formal
verification approach offered strict mathematical reasoning about programs and
some desired properties about program variables in a particular program state.
Apart from testing the program with respect to some particular inputs, formal
verification allowed proving that properties hold in the program for any possi-
ble inputs. Thus the process of analyzing the constructed formalism has to be
performed statically, i.e., without actual running the program, but dealing only
with its source code. One of the first mentionings of such analysis appears in the
seminal work on Hoare logic [78]. The idea is to construct so called Hoare triples
by annotating a program with a pair of predicates, a pre- and a post-condition.
To check correctness of the program means to deductively prove that if the pre-
condition holds, and the program terminates, then the post-condition has to hold.
Hoare logic inspired a large number of semi-automated formal techniques based
on type inference and interactive theorem proving.

Model checking, an alternative formal verification approach to Hoare-style
derivation, was proposed in the early eighties by [44; 116]. The main idea is to
convert the actual program to a formal model by means of a transition system,
a directed acyclic graph (DAG) with program states as nodes and transitions as

3 1.1 Automated Formal Verification

edges. Each transition in the DAG is coupled with the state from which the tran-
sition starts (called a pre-state) and a state reachable after this transition (called
a post-state). This formalism allows traversing the model and checking whether
a bad state is reachable, and thus, can obviously be automatized. Another self-
explanatory benefit of model checking is its ability to provide counter-examples
witnessing the reachability of the bad state. Evidently, it is a path in the DAG
starting from the initial state and leading to the bad state.

The drawback of the original approaches to model checking (nowadays called
explicit-state model checking) is in its high computational burden (also referred
to as state-space explosion). Moreover, program statements such as loops, nested
function calls and recursion force the state space to grow rapidly, which makes
explicit-state model checking inefficient (if not completely impossible). Until
recently, classical model checkers were used mainly for verification of protocols,
written in restrictive domain-specific languages [81; 8; 28].

To combat the state-space explosion, in the early nineties the focus in model
checking turned to symbolic reasoning. To bridge the gap between a DAG rep-
resenting the transition system and a Boolean function, the authors of [32] pro-
posed to use Binary-Decision Diagrams (BDD) [30], a canonical form for Boolean
expressions. With BDDs, as opposed to explicit representation, each state is en-
coded into a Boolean formula, and computing the post-states requires expensive
quantifier elimination. Nowadays, due to the high cost, BDDs are not widely
used, but the symbolic reasoning is performed by SAT, SMT or Horn solvers.
The rise of various methods for symbolic reasoning made it easier for the model
checkers to construct over-approximations and under-approximations of pro-
grams, and that in turn provided the research area with new revolutionary solu-
tions.

The key insight behind over-approximations used in symbolic model checking
is that they allow representing a larger set of program states in a more compact
way. Whenever the unreachability of an error is happened to be proven in an
over-approximated model, it immediately implies the error unreachability in the
precise model. However, the use of over-approximation may cause emergence
of spurious errors, requiring to refine the over-approximation and iteratively re-
peat the check. If this approach succeeds, it produces the proofs of program
safety, namely safe inductive invariants. Safe means that the invariant defines an
over-approximation of the set of reachable program states excluding those that
violate the given assertion. Inductive means that the invariant covers all the ini-

4 1.1 Automated Formal Verification

tial program states, and any computation starting from a state described by the
invariant can only reach states still represented by the invariant.

Nowadays both, creating over-approximation and refining it on demand, are
done automatically. This paradigm to symbolic model checking, called Counter-
Example-Guided Abstraction Refinement (CEGAR) [41], allows multiple ways for
handling abstractions, including the Lazy Abstraction [76] and the Predicate Ab-
straction [68]. One of the most useful techniques for the refinement is Craig in-
terpolation [48]. Given a pair of unsatisfiable formulas A∧B, a Craig interpolant I
is a formula implied by A which is still unsatisfiable with B and expressed over the
common alphabet of A and B. The refinement procedure is of great importance
for the CEGAR-based model checkers, and the systematic failures to succeed in
refinement often lead to diverging the model checker.

The most recent breakthrough in symbolic model checking is Property Di-
rected Reachability (PDR/IC3) [26; 53]. Similarly to CEGAR, the goal of PDR
can be formulated as searching for a safe inductive invariant. However, PDR
is based on a backward search and starts with the set of bad states. It uses a
SAT/SMT solver to iteratively extend the bad suffix towards the initial state until
a pre-state for some transition and some suffix does not exist. Thus, if the bad
suffix is extended to the initial state then a counter-example is found. Otherwise
PDR requires a generalization procedure to learn a set of unreachable states that
blocks the current suffix. The intersection of all such learned sets is in fact a safe
inductive invariant. The generalization is analogous to the refinement in CEGAR,
and some SMT-based extensions of PDR perform the generalization using Craig
interpolation [80; 23].

Like classical BDD-based model checking, PDR requires symbolic computa-
tion of the sets of states that need to be processed in the next iteration. However
the former does the good post-states, and the latter does the bad pre-states of
some transitions. PDR earns some benefits from this fundamental difference,
since in contrast to BDD-based model checking, it does not necessarily require a
computed set of states to be complete. While blocking a strict subset of bad pre-
states, PDR does not break soundness of the entire approach, but just considers a
coarser over-approximation of the program. On the other hand, while exploring
a strict subset of good post-states, a BDD-based model checker might miss some
counter-examples, thus making the analysis incomplete. This observation is ex-
ploited by the state-of-the-art PDR-based model checkers that under-approximate
pre-state computation, in particular, using a Model-Based Projection [86; 52].

5 1.2 Challenges and Contributions

Despite leading to incomplete results, symbolic model checking that under-
approximates the set of good post-states is still practically important. Indeed,
none of the BDD-, CEGAR- or PDR-based sound and complete model checkers are
guaranteed to terminate while dealing with programs with infinite state space. In
contrast, when the state space is bounded to contain all program states reachable
within k transitions starting from the initial state then it can always be possible
to find all counter-examples with the length at most k. This approach to symbolic
model checking, called Bounded Model Checking (BMC) [21], also relies on the
power of the state-of-the art SAT and SMT solvers and thus is widely used in
academia and industry.

Unlike this rich line of research on automated formal verification of the in-
dividual programs, the area of incremental program verification is still a young
and underdeveloped field. Existing automated and semi-automated techniques
to conduct equivalence checking are based on Hoare Logic [87; 14], BDDs [110],
BMC [43; 67; 92], CEGAR [35], symbolic execution [112; 137] and translation
validation [109; 108] (to be discussed in Sect. 4.4). However, these approaches
are not designed to efficiently cooperate with existing formal verification tech-
niques, and thus, do not benefit from the analysis already performed for individ-
ual programs. In this dissertation, we focus on the equivalence checking problem
from the model checking point of view, and propose several innovative solutions
that make the FIV approach practical and general for reuse. The remaining of
this chapter discusses the important challenges and our contributions.

1.2 Challenges and Contributions

In the previous section, we gave an overview of the techniques on the cutting
edge of automated formal verification used for validation of individual programs.
The overall contribution of this dissertation is a collection of new Formal Incre-
mental Verification (FIV) techniques that allow migrating the verification cer-
tificates across sequences of program versions. The classification of the individ-
ual contributions with respect to the state-of-the-art verification technologies is
depicted in Fig. 1.1. For each considered verification approach (i.e, Bounded
Model Checking, Simulation Discovery, and Unbounded Model Checking), we
conducted research in two directions (represented by the left and the right ar-
rows). First, we manipulated an individual program version in order to obtain a
reusable specification. Second, we manipulated a pair of program versions in or-

6 1.2 Challenges and Contributions

Bounded
Model

Checking

Safe
Inductive
Invariants

Simulation
Relation and
Abstraction

for LBE

Simulation
Discovery

Abstraction
Function

Automated Formal Verification

Itp-based
Function

Sumarization

Recursion
Depth

Detection

Assertion
Implication
Detection

Migrating
Invariants

Implicit
Existential

Abstractions

MBP-based
Skolemization

Solving
 -formulas89

Abstractions-
Refinement-

driven
Synthesis

Unbounded
Model

Checking

Local
Summaries

Revalidation

re
us

ab
le

 sp
ec

.

re
us

ab
le

 sp
ec

.relational spec.

relational spec.

Figure 1.1. Main contributions of the dissertation (green boxes) built on the top of existing
techniques (yellow boxes).

der to revalidate the reusable specification or establish a relational specification.
In the following sections, we discuss the contributions in more detail.

1.2.1 SAT-Based Bounded Model Checking by means of Function
Summarization

BMC is one of the most successful formal techniques in academia and industry.
In a nutshell, a classical BMC tool proceeds in 3 main steps. First, it unwinds
all loops and recursive function calls up to a given number of iterations and a
given recursion depth respectively. This phase results in the unwound program
represented by the so called Static Single Assignment (SSA) form in which all
variables are assigned at most once. The SSA form is then conjoined with the

7 1.2 Challenges and Contributions

negation of the assertion. Second, the constructed SSA form is encoded to a so
called BMC formula and sent to the appropriate SAT or SMT solver. Finally, the
rest of the job is done by the solver: if the formula is proven unsatisfiable then
the program is safe up to the given bound; otherwise each model of the formula
witnesses a counter-example.

The biggest challenge in BMC related to FIV is searching for a reusable spec-
ification. Unlike CEGAR- or PDR-based model checking, BMC is not typically
driven by maintaining a safe inductive invariant. Thus, the synthesis of the
reusable specification should be performed after the verification has terminated.
We propose to exploit the fact that the bounded safety of the program is indi-
cated by the unsatisfiability of the BMC formula. In the context of SAT-based
BMC, we show that the proof of unsatisfiability can be further used to discover
over-approximating function summaries that gather all important information of
the function’s behavior to prove the bounded safety. Finally, we present a novel
technique based on Craig interpolation to achieve cheap and flexible function
summarization. The details of this contribution are in Chap. 2, Sect. 2.2.

The next challenge in BMC related to FIV is searching for an algorithm that
effectively reuses the summaries synthesized after the verification of one pro-
gram version to verify another program version. We propose to revalidate the
existing summaries locally in order to prevent re-verification of the entire code
from scratch. If the check fails for some function call, it needs to be propagated
by the call tree traversal to the caller of the function. If the check fails for the
root of the call tree (i.e., the “main” function of the program), the whole program
should be verified from scratch. On the other side, if for each function call there
exists an ancestor function with the valid old summary then the new program
version is safe up to the predefined bound. Finally, for functions whose old sum-
maries are not valid any longer, the new summaries are synthesized using Craig
interpolation. The details of this contribution are in Chap. 2, Sect. 2.3.

As a consequence, there is a straightforward challenge of constructing func-
tion summaries of a better quality in cases when the program is supplied with
a sequence of pre-defined assertions. Based on the natural reliance of the sum-
maries on the assertions, we observe that function summarization can be per-
formed iteratively, i.e., checking each assertion at a time and refining the sum-
maries if needed. Furthermore, if there exist some redundant assertions then
some model checking tasks might be even skipped. Thus, for programs with
multiple assertions, in the preprocessing step to BMC, we propose to perform a

8 1.2 Challenges and Contributions

lightweight analysis of the set of assertions to optimize the generation of sum-
maries. The details of this contribution are in Chap. 2, Sect. 2.2.7.

In addition, function summarization offers solutions for the other challenges
in BMC that are not directly related to the FIV problem, namely speeding-up
BMC for an individual program version and finding a proper loop and recursion
bound for BMC. The bigger bound the more counter-examples can be found.
Moreover, if the bound is sufficiently big, it indicates that no bugs are missed
after the analysis has terminated. We propose an algorithm which uses function
summaries for a fully automated detection of recursion depth. It proceeds in an
iterative manner by refining the computed function summaries until the bound
is detected or it becomes clear that the bound detection is infeasible. The details
of this contribution are in Chap. 2, Sect. 2.2.3.

We refer the reader to Sect. 5.1-5.2 for the description of the tools imple-
menting all the proposed algorithms. The new techniques and their evaluation
have been published in the following papers: [126], [124], [125], [58], [59],
[60], and [56].

1.2.2 SMT-Based Simulation Discovery

Simulation [104] is one of the oldest concepts in program analysis, introduced as
early as Hoare logic. A simulation relation represents a condition under which
the complete set of behaviors of one program (later referred to as source and
denoted by S) is included into the set of behaviors of another program (later re-
ferred to as target and denoted by T). Simulation discovery is a useful procedure
for the automated FIV since it does not require any assertions to be specified at
the programs. If S is simulated by T then all assertions that hold in T will also
hold in S. Thus, a discovered simulation provides a more precise verification cer-
tificate (namely, relational specification) than the function-summarization BMC
approach from Sect. 1.2.1. When synthesized, this relational specification is an
important ingredient for another class of FIV (to be discussed in Sect. 1.2.3),
since it allows lifting the safe inductive invariants from T to S.

In realistic applications, there might be a sufficient semantic gap between S
and T that essentially raises two challenges of finding an appropriate simulation
relation between S and T : (1) the challenge of constructing a total simulation
relation between two programs, and (2) whenever the target T does not simulate
the source S, the challenge of finding an abstraction of the target T that simulates

9 1.2 Challenges and Contributions

the source S.
We propose an SMT-based solution for these challenges. Our algorithm uses

an abstraction-refinement reasoning which proceeds by guessing a relation and
checking whether it is a simulation relation. We propose to reduce the problem
of checking simulation to deciding validity of formulas of the form ∀x . S(x) =⇒
∃y . T (x , y). Intuitively, the formulas say “for each behavior of S there exists a
corresponding behavior of T”. We manipulate implicit abstractions of T by in-
troducing existential quantifiers to the right-hand-side of the ∀∃-formulas. We
present a novel algorithm AE-VAL for deciding validity of ∀∃-formulas that is
based on efficient computations of the Model-Based Projections. In addition,
AE-VAL extracts a Skolem relation to witness the existential quantifiers. This
Skolem relation is the key to refine the considered abstractions of T , and there-
fore requires to be minimized and factored. As a solution to this challenge, we
propose a technique to post-process the results of AE-VAL that results in a Skolem
relation of the appropriate form.

We refer the reader to Chap. 3 for the detailed description of the contributions
listed in this section, and to Sect. 5.3 for the description of the tools implementing
all the proposed algorithms. These contributions have been published in the
paper [57].

1.2.3 SMT-Based Unbounded Model Checking via Abstract Sim-
ulation

The CEGAR- or PDR-based approaches to Software Model Checking reduce the
verification tasks to finding safe inductive invariants, as pointed out in Sect. 1.1.
The safe inductive invariants play an important role of proof certificates and over-
approximate all safe behaviors of the program. Therefore, these techniques are
served to provide sound analysis of the programs with unbounded (and possibly
nested) loops. To compactly represent such complex programs, model checkers
use a “large-block” encoding (LBE) that collapses the control-flow graph (CFG)
into the Cut-Point Graph (CPG). In CPG, the nodes represent heads of the loops
(called cutpoints), and the edges represent the longest loop-free program frag-
ments. Whenever a program is proven safe, the CPG is labeled by predicates,
such that for each CPG-edge the labeling of the corresponding in- and out- nodes
constitutes a valid Hoare triple.

We refer to the challenge of constructing a FIV technique for Unbounded

10 1.2 Challenges and Contributions

Model Checking as establishing a Property Directed Equivalence (PDE) between
programs, i.e., to check whether the programs both satisfy the same property
(and consequently, are happy with the same safe inductive invariant). Clearly, in
contrast to BMC-based FIV (outlined in Sect. 1.2.1), PDE does not have a chal-
lenge for synthesizing a reusable specification, since the safe inductive invari-
ants perfectly fit this goal. However, there still remains a challenge of migrating
the existing invariant between two programs (the already verified one, and the
modified another one). We propose a solution based on the concept of Abstract
Simulation outlined in Sect. 1.2.2. We contribute an algorithm that performs an
iterative abstract-refinement reasoning to automatically derive an abstraction of
the already verified program that simulates the precise modified program .

One important feature of the contributed algorithm is that it guides the ab-
straction generation by the safe inductive invariant. If a simulation for such a
proof-based abstraction is found then the proof can be migrated directly. Another
distinguishing feature of the algorithm is the ability to migrate the invariants
through abstractions even if the abstractions do not preserve safety. It attempts
to lift as much information from the invariant as possible, and then strengthens
it using a Horn-based unbounded model checker.

We refer the reader to Chap. 4 for the detailed description of the contributions
listed in this section, and to Sect. 5.3 for the description of the tools implementing
all the proposed algorithms. These contributions have been published in the
following papers: [55], and [57].

Chapter 2

SAT-Based Bounded Model Checking
by means of Function Summarization

Incremental verification by means of Bounded Model Checking (BMC) is one
of the most widely-used bug-hunting techniques in academia and industry. It
is served to trade-off completeness of the state-space exploration for finding as
many counter-examples as allowed by the predefined time- and resource con-
straints. BMC problem can be reduced to a SAT problem and be efficiently solved
using state-of-the-art decision procedures. We start this chapter with an overview
of the recent advances in SAT solving (Sect. 2.1) that can be exploited in order
to make BMC reusable.

In Sect. 2.2, we propose the algorithms to create and use function summaries
by means of Craig interpolation, a well-known technique to obtain abstractions
from the proof of unsatisfiability of a SAT formula. We propose solutions for
several challenges occurring in this task, namely: detecting a sufficient depth for
recursive function calls, refinement of summaries with respect to a sequence of
assertions and exploiting the dependencies of assertions.

Finally, Sect. 2.3 proposes a solution to the FIV problem in the BMC setting.
Our algorithm reuses the summaries synthesized after the verification of one
program version to verify another program version. The main novelty of the
approach is its efficient way to revalidate the already existing summaries locally
in order to prevent re-verification of the entire code from scratch.

The results reported in this chapter have been published in the following pa-
pers: [126] (co-authored with Ondrej Sery and Natasha Sharygina), [124] (co-
authored with Ondrej Sery and Natasha Sharygina), [125] (co-authored with

11

12 2.1 Background

Ondrej Sery and Natasha Sharygina), [58] (co-authored with Ondrej Sery and
Natasha Sharygina), [59] (co-authored with Ondrej Sery and Natasha Shary-
gina), [60] (co-authored with Natasha Sharygina), and [56] (co-authored with
Andrea Callia D’Iddio, Antti Eero Johannes Hyvärinen and Natasha Sharygina).
All the presented algorithms are implemented and undergone rigorous evalu-
ation that is shown in the further chapter, and in particular, in Sect. 5.1 and
Sect. 5.2.

2.1 Background

2.1.1 SAT Solving and Craig Interpolation

Given a finite set of propositional variables, a literal is a variable p or its negation
¬p. A clause is a finite set of literals and a formula φ in conjunctive normal form
(CNF) is a set of clauses. We also refer to a clause as the disjunction of its literals
and a CNF formula as the conjunction of its clauses. A variable p occurs in the
clause C , denoted by the pair (p, C), if either p ∈ C or ¬p ∈ C . The set var(φ)
consists of the variables that occur in the clauses of φ. A truth assignment µ
is a function that assigns a Boolean value (> or ⊥) to each variable p. A truth
assignment µ is a satisfying assignment (or a model, denoted µ |= φ) of a formula
φ if φ evaluates to > under µ.

The propositional satisfiability problem (SAT) aims at determining whether
there exists a model of a CNF formula φ. A formula φ implies a formula φ′,
denoted φ =⇒ φ′, if every model of φ is a model of φ′. If there is no model for
a formula φ, φ is called unsatisfiable, denoted φ =⇒ ⊥.

For two clauses C+, C− such that p ∈ C+, ¬p ∈ C−, and for no other variable
q both q ∈ C− ∪ C+ and ¬q ∈ C− ∪ C+, a resolution step is a triple C+, C−,
(C+ ∪ C−) \ {p,¬p}. The first two clauses are called the antecedents, the latter is
the resolvent and p is the pivot of the resolution step. A resolution refutation (also
referred to as proof of unsatisfiability) R of an unsatisfiable formulaφ is a directed
acyclic graph where the nodes are clauses and the edges are directed from the
antecedents to the resolvent. The nodes of a refutation R with no incoming edge
are the clauses of φ, and the rest of the clauses are resolvents derived with a
resolution step. The unique node with no outgoing edges is the empty clause ⊥.

Definition 1 (cf. [48]). Given formulas A and B such that A∧ B =⇒ ⊥, Craig

13 2.1 Background

interpolant of (A, B) is a formula I such that A =⇒ I , I ∧ B =⇒ ⊥, and var(I) ⊆
var(A)∩ var(B).

For a pair of inconsistent formulas (A, B), an interpolant always exists [115].
Furthermore, interpolation can be efficiently handled over the resolution refu-
tation witnessing A∧ B =⇒ ⊥. As shown in [98], an interpolant formula can
be synthesized by traversing the resolution refutation bottom-up and analyzing
whether the pivot variables are contained only in A or also in B. Thus, the size
of interpolants is linear in the number of nodes of the resolution refutation (but
the size of the resolution refutation can be exponential in the size of variables of
A and B).

A commonly used framework for computing the interpolant from a given
resolution refutation is the labeled interpolation system (LIS) [51], a generaliza-
tion of several interpolation algorithms (including the widely used algorithms
McM (McMillan [98]), Pud (Pudlák [115]), and McP ([51], dual to McM) param-
eterized by a labeling function. Given a labeling function and a refutation, LIS
uniquely determines the interpolant. LIS induces a partial order over the labeling
functions which relates the corresponding interpolants by strength. That is, the
collection of the interpolating algorithms represents a complete lattice, where
McM is the greatest element (i.e., it generates the strongest interpolant), McP
is the least (i.e., it generates the weakest interpolant) and Pud is in between.
Furthermore, various adjustments of the labeling function and the resolution
refutation can be made in order to produce smaller interpolants [119; 83; 7].

Classical interpolation can be generalized so the partitions of an unsatisfiable

formula naturally correspond to a tree structure. Let Φ=
n
∧

i=1
φi and K ⊆ {0 . . . n},

then a partitioning of Φ with respect to K allows representing Φ in the following
form: Φ ≡ ΦK ∧ΦK , where ΦK =

∧

k∈K
φk and ΦK =

∧

6̀∈K
φ`. An interpolation system

is a function that, given Φ and K , returns an interpolant IΦ,K , a formula implied
by ΦK , inconsistent with ΦK and defined over the common language of ΦK and
ΦK .

Now consider a tree T = (V, E) with n nodes V = {0, . . . , n} imposed on Φ.
Then, the subsets Ki of V can be identified with respect to the tree structure:
Ki = { j | i v j}, where i v j denotes that j is a descendant node of i. Formally,
a sequence of n interpolation systems has the T -tree interpolation property [72]
iff for any node i and all its descendant nodes j,

∧

(i, j)∈E
IΦ,K j
∧φi =⇒ IΦ,Ki

. Notice

14 2.1 Background

that for the root node in T , Kroot = V and IΦ,V =⇒ ⊥.
Rollini et al. [120; 70] proved that the interpolants generated from the same

resolution refutation using the algorithm Pud have the tree-interpolation prop-
erty. Furthermore, this property propagates to other algorithms (e.g., McM)
which are stronger than Pud.

2.1.2 Interpolants in Model Checking

Craig interpolation is commonly used as a means of abstraction in various auto-
mated formal methods [98; 74; 99; 33; 130; 72; 100; 88; 4; 102; 5; 34; 131;
101; 132; 123; 2]. While it was originally exploited in a purely propositional
context (e.g., as formalized in the previous Sect. 2.1.1), it is the rapid rise of
state-of-the-art model checkers that demanded interpolants to be efficiently cre-
ated and manipulated within first-order logic. However, in this section we give a
brief historical overview of the interpolation-based formal methods regardless of
the background theory and a particular algorithm with which interpolants were
created.

The first application of interpolation to formal verification was pioneered by
McMillan [98] in his complete technique for finite-state model checking (e.g., for
hardware designs). This BMC-based approach unrolls the entire program up to
first k steps and encodes this unrolling to a SAT formula to be further checked
for satisfiability. If the formula is unsatisfiable, proving that no counter-example
of length k exists, interpolation is used to over-approximate the set of states
reachable within k steps. Thus, the synthesized interpolant can be treated as a
safe invariant. If, in addition, this invariant is also inductive then the program is
correct. Otherwise, the model checker increments k and iterates. Nowadays, this
method is considered highly influential to model checking in general. It inspired
a number of followers who proposed several ways of its improvement [33; 130;
34].

In the later work [99], McMillan turned this approach into the abstraction-
refinement fashion [41], thus allowing to verify infinite-state systems (e.g., pro-
grams with loops). As in [98], interpolants are served to over-approximate the
sets of reachable states, but now interpolation is applied on demand and only
to individual program paths. Therefore, no unrolling of the entire program is
needed, and some paths may remain abstracted away as long as it does not pre-
vent proving safety. This idea of lazy abstraction with interpolants (LAWI) also

15 2.1 Background

attracted the great attention in the model checking community and gave rise
to a number of extensions, e.g., to handle bit-vector operations [88], function
calls [100], recursion [72; 4], arrays [6], numerical [5] and heap-manipulating
programs [2].

An alternative way of applying interpolants to the CEGAR loop was proposed
in the scope of predicate abstraction [74]. It helped deriving new predicates to
make an abstraction more precise, while the creation of the initial abstraction
was performed without interpolation. In particular, sets of predicates are ex-
tracted from interpolants of the formulas corresponding to a prefix and suffix
of a spurious error trace. This results in predicates associated with program lo-
cations along the spurious error trace yielding a more fine-grained abstraction.
The authors also propose reordering of a path formula to generate interpolants
with local variables suitable for inter-procedural analysis. This method of re-
finement is implemented in the software model checker BLAST [76] and later in
CPACHECKER [19].

Recently interpolants were applied to IC3/PDR [80; 23] to leverage the gen-
eralization procedure. Similarly to the refinement in CEGAR-based techniques,
whenever a spurious counter-example is found, interpolation is used to refine
the sets of reachable states. The orthogonal work [38] proposes to combine PDR
with predicate abstraction, in which the refinement is also performed using in-
terpolation. Finally, a new technique AVY [131; 132] proposes to interleave the
forward BMC-style global reasoning and the backward PDR-style local reasoning.
As in [98], AVY interpolates the unfeasible fixed-length unrolling of the entire
program to construct a candidate invariant which is important for two purposes.
First, if successfully generalized to become inductive, it could indicate that the
program is correct. Second, it could be conjoined with the encoding of a longer
program unrolling in the next steps of the algorithm, and thus, accelerate the
SAT-solving phases of the technique and its entire convergency.

Notably, model checking is not the only formal approach in which interpolants
are used (and describe the sets of good states). Simultaneously they can be pro-
duced to describe also the sets of bad states [123]. This application is particularly
useful in software debugging when a certain error trace needs to be analyzed.
Interpolants are generated over the unfeasible symbolic encoding of such a trace
providing so called error invariants. The computed error invariants explain the
error and shrink the search space of the program statements to be potentially
fixed.

16 2.1 Background

In this dissertation, we contribute yet another application of interpolants: to
over-approximate behaviours of the program functions and reuse them for check-
ing safety of sequences of software versions. We construct interpolants from a
resolution refutation generated by a SAT solver for an unsatisfiable BMC for-
mula. Such BMC formula encodes unreachability of an error in one version of a
given program unwound up to a given bound. The key insight in our contribu-
tion is to delegate checking whether the error is unreachable in another version
of the program to checking whether the previously constructed interpolants still
over-approximate the new program behaviors unwound up to the same bound.
Details of our advanced interpolation-based techniques can be found in Sect. 2.2
and 2.3, while the basic BMC encoding is detailed in the rest of this section.

2.1.3 Software Bounded Model Checking and Symbolic Execution

Bounded Model Checking (BMC) [22] is aimed at searching for errors in a pro-
gram within the given bound of loop iterations and recursion depth. Thus, BMC
can only show existence of counter-examples, but it is not suitable for complete
verification. However, as shown in the previous Sect. 2.1.2, it is a subroutine in
several complete interpolation-based model checking algorithms. Furthermore,
due to its performance, scalability and ease of use, BMC without a doubt is one
of the most successful verification approaches in safety analysis of software and
has been implemented in a dozen of tools including CBMC [40], ESBMC [47],
SATURN [136], VERISOFT [82], CALYSTO [9], LLBMC [103] and LAV [133].

In this section, we provide conceptual and engineering details of Software
SAT-based BMC. Given the unwinding bound ν, BMC unrolls the loops and re-
cursion up to ν, encodes the program symbolically and delegates the checking
to a SAT solver. If the number is not provided a priori, BMC may go into an in-
finite loop and not terminate. Typically in the absence of the bound number or
when the number is set too high, a predefined timeout is used to cope with this
problem.

BMC encodes the program into the Static Single Assignment (SSA) [49] form,
in which every variable is assigned exactly once. Instead of program variables,
the SSA form operates by versioned logical variables that are distinguished from
the original program variables by the subscripts. In addition, each return value of
nondeterministically treated functions is also encoded into a separate subscripted
logical variable. Such a representation allows to track changes of the value of

17 2.1 Background

f(int a) {
if (a < 10)

return f(a + 1);
return a - 10;

}

main() {
int y = 1;
int x = nondet();

if (x > 5)
y = f(x);

assert(y >= 0);
}

(a) C code

y0 = 1;
x0 = nondet0;
if (x0 > 5) {

a0 = x0;
if (a0 < 10)
...
ret0 = ...;

else
ret1 = a0 - 10;

ret2 = phi(ret0,
ret1, a0 < 10);

y1 = ret2;
}
y2 = phi(y0, y1,

x0 > 5);
assert(y2 >= 0);

(b) SSA form

y0 = 1∧
x0 = nondet0 ∧
a0 = x0 ∧
ret0 = ...∧
...∧
ret1 = a0 − 10∧
(x0 > 5∧ a0 < 10 =⇒

ret2 = ret0)∧
(x0 > 5∧ a0 ≥ 10 =⇒

ret2 = ret1)∧
y1 = ret2 ∧
(x0 > 5 =⇒ y2 = y1)∧
(x0 ≤ 5 =⇒ y2 = y0)∧
y2 < 0

(c) BMC formula

Figure 2.1. BMC formula generation

each variable during program execution. Whenever a variable is assigned, the
correspondent subscript is incremented, and a new logical variable is introduced.

Given an unwinding bound ν, a while loop is transformed into a chain of ν
nested if conditionals in order to represent at most ν iterations of the loop. To
encode values which depend on if branches and while loops we use the phi-
function, which returns its first or second argument depending on the truth value
of its third argument as follows:

phi(e1, e2, e3) =

(

e1 if e3 is true;

e2 otherwise.

Example 1. Fig. 2.1(a)-2.1(b) show an example of the SSA encoding of a simple C
program. The program consists of two functions main and f in addition to a nonde-
terministically treated function nondet. Notably, f is recursive and is unwound 5
times. During unwinding, a call of the function is substituted by its body. Thus, in
the example there will be five such nested substitutions, and the sixth call is simply
skipped.

Finally, the SSA form is encoded into a logical formula, called a BMC formula

18 2.2 Bounded Model Checking by means of Function Summarization

(we refer to Fig. 2.1(c) as an example) represented by a conjunction of clauses
in first-order Logic. Each clause corresponds to a separate SSA step. The last
conjunct in the BMC formula is negation of the assertion condition guarded by
its path condition. Then the BMC formula is bit-blasted and checked for satis-
fiability using an off-the-shelf SAT solver. If a satisfying assignment is detected,
it identifies an error trace. Otherwise, the program is safe up to the predefined
unwinding bound. Notably, this unwinding bound may not be sufficient for com-
plete verification. A program can be proven safe for the unwinding bound ν, but
buggy for the unwinding bound ν+ 1.

In order to check completeness of the current unwinding, BMC tools automat-
ically derive and implant so called unwinding assertions. Unwinding assertions
are located after an unwound loop (or a recursive function call) and contain the
negation of the loop (or call) condition as the argument. If all of the unwinding
assertions hold then the corresponding unwinding bound is enough to guarantee
completeness of the verification.

Classical BMC algorithms use a monolithic BMC formula (e.g., [40; 103; 82]).
However, for advanced BMC-based algorithms that are based on Craig interpo-
lation, it is convenient to use a so called Partitioned BMC formula, which is pre-
sented in Sect. 2.2.

2.2 Bounded Model Checking by means of Function Sum-
marization

This section proposes a new approach to BMC which is aimed not only to verify
the given program, but also to extract function summaries by means of Craig
Interpolation. By function summary we mean an abstraction of the function
behavior defined as a relation over its input and output variables, which over-
approximates the precise behavior of the given function.

In contrast to classic BMC, we propose encoding the program to a so called
partitioned BMC (PBMC) representation where each partition represents the body
of a function called in a specific context. If the PBMC formula is unsatisfiable then
the program is correct. Using the proof of unsatisfiability, Craig interpolation can
be iteratively applied to generate an interpolant for each partition in the PBMC
formula. By construction, such interpolants are the summaries of all the func-
tion calls in the program. If the PBMC formula is satisfiable then the program is

19 2.2 Bounded Model Checking by means of Function Summarization

buggy and a satisfying assignment witnesses an error trace reported back to the
user.

We proceed by presenting how the constructed function summaries can be
gradually while checking a sequence of assertions. First, we define the iterative
summarization-refinement procedure to deal with function summaries. Second
we propose a technique to decrease the number of possible refinements before
the actual verification of a program with respect to a sequence of assertions.

2.2.1 Handling (Recursive) Functions

Definition 2. An unwound program for a depth ν is a tuple Pν = (F̂ν, f̂main, child),
s.t. F̂ν is a finite set of function calls, unwound up to the depth ν, f̂main ∈ F̂ν is a
program entry point and child ⊆ F̂ × F̂ relates each function call f̂ to all function
calls invoked directly from it.

There is a fixed set F to represent functions declared in the program and a
possibly unbounded set F̂ to represent function calls. F̂ together with the relation
child can be represented by a corresponding call tree with a root marked by f̂main.
We also use relation subtree ⊆ F̂ × F̂ , a reflexive transitive closure of child.

A subset F̂ν ⊆ F̂ collects all function calls that are located on the depth ν
from the root of the cal-tree f̂main or closer. A call f̂ ∈ F̂ corresponds to a call of
a target function, determined by a mapping target : F̂ → F . There is exactly one
call of function fmain, but there may be several calls of the other functions. For
simplicity, later we will use primes (i.e., f̂ ′, f̂ ′′,..) and subscripts (i.e., f̂1, f̂2,..)
to differentiate the calls of the same function f ∈ F in the unwound program.

Definition 3. A function f is recursive if for every call f̂i, there is another call f̂ ′i
in its subtree, and target(f̂i) = target(f̂ ′i) = f .

A recursive function f is said to be unwound ν times if there is a chain of
function calls { f̂i} (i.e., sequence f̂0, f̂1,.. f̂ν), 1≤ i ≤ ν, target(f̂i) = f , and each
f̂i+1 is in the subtree of f̂i.

Example 2. Fig. 2.2a shows an example with a single recursive function f called
two times, once from function g and once from function fmain. In this example, the
call tree contains two chains of calls of function f : the first one consisting of one
function call { f̂2}, the other consisting of ν calls: { f̂1, f̂ ′2 , .. f̂ν}, where the numbers
1 and ν are recursion depths.

20 2.2 Bounded Model Checking by means of Function Summarization

f̂main
f̂main f̂main

f̂1f̂1

f̂2 f̂2 f̂ �
2

f̂ν f̂ν f̂νf̂ �
ν f̂ ��

ν f̂ ���
ν

f̂ �
ν−1f̂ν−1 f̂ν−1 f̂ ��

ν−1
ĝν−1

ĝ1 ĝ1 f̂1ĥ1

f̂ �
2 ĝ2

f̂3 f̂3f̂3 f̂ �
3

1

2

3

0

ν

ν − 1

(a) (b) (c)

Figure 2.2. A program call tree with recursive functions unwound at most ν times:
a) single recursion; b) multiple recursion; c) indirect recursion

Fig. 2.2b shows an example with a recursive function f called multiple times
from itself (in the example, it is called 2 times). There are many chains of function
calls possible for such scenario, and every one consists of at most ν calls of f , as
demonstrated by a sample unwinding in the example. Notably, their unwinding
depths can be different (and our algorithm will be able to detect the longest ones and
stop exploring the chains for which the smaller depth is sufficient for verification).

Fig. 2.2c shows an example with indirect recursive functions f and g, such that
each function is called not by itself, but by another function that it called. In the
example, both f an g are unwound at most bν2 c times (i.e., ν times altogether).

2.2.2 PBMC Encoding

The formula in classical BMC is generally constructed in a monolithical manner.
As we discussed in Sect. 2.1.3, all the function calls are inlined, and the variables
from the calling context tend to leak into the formulas of the called function as
a part of the path condition. For example in Fig. 2.1(c), the variable x0, which is
local in the function main, appears in the encoding of the body of the function f.

To achieve the desired form, we generate the parts of the formula correspond-
ing to the individual functions in separation and bind them together using a
boolean variable callstart f̂ for each function call f̂ . Intuitively, callstart f̂ evalu-

21 2.2 Bounded Model Checking by means of Function Summarization

y0 = 1∧
x0 = nondet0 ∧
a0 = x0 ∧
x0 > 5⇔ callstart f̂1

∧
y1 = ret0 ∧
(x0 > 5⇒ y2 = y1)∧
(x0 ≤ 5⇒ y2 = y0)

(a) formula φ f̂main

y2 ≥ 0⇔ π

(b) assertion formula π

(a0 < 10⇔ callstart f̂2
)∧

a1 = a0 + 1∧
ret1 = ret3 ∧
ret2 = a0 − 10∧
(callstart f̂1

∧ a0 < 10⇒
ret0 = ret1)∧

(callstart f̂1
∧ a0 ≥ 10⇒

ret0 = ret2)

(c) formula φ f̂1

Figure 2.3. PBMC formula generation

ates to> iff the corresponding function call f̂ is reached. Another special variable
is π, which encodes unreachability of an error in the entire program. We call the
resulting formula a partitioned bounded model checking (PBMC) formula.

Example 3. Fig. 2.3 demonstrates creation of a PBMC formula equivalent to the
BMC formula from Ex. 1. In the example program, unwound 5 times, the partitions
for function calls f1,f2,..f5 and main are generated separately. Note that the asser-
tion π is not encoded inside φ f̂main

, as in classical BMC, but separated from the rest
of the formula, such that it helps interpolation.

Formula φ f̂1
that encodes the function call f1 aims to symbolically represent

the function output argument ret0 by means of the function input argument a0,
symbolically evaluated in φ f̂main

. At the same time, φ f̂1
relies on the value of ret3

defined in φ f̂2
by means of a1. Similar reasoning is applied to create each of the

following partitions: φ f̂2
,.. φ f̂5

.

2.2.3 Bounded Model Checking with Automated Detection of Re-
cursion Depth

In reality BMC tools often rely on unwinding bounds that are not proven to be
complete. That is, model checkers need an extra sufficiency check for this bound.
In this section, we present a simple abstraction-refinement algorithm that em-
ploys PBMC encoding to iteratively find (if possible) such bound. While focusing

22 2.2 Bounded Model Checking by means of Function Summarization

Algorithm 1: BMC with automatic detection of recursion depth

Input: Initial recursion depth: ν; program unwound ν times:
Pν = (F̂ν, f̂main, child); assertion to be checked: π

Output: Verification result: {SAFE, BUGGY, TIMEOUT}; detected recursion
depth: ν; error trace: ε

Data: PBMC formula: φ; set of precisely encoded function calls: P; set of
refinement candidates R

1 P← F̂ν;
2 while (¬TIMEOUT) do
3 R← { ĝ /∈ P | child(f̂ , ĝ), f̂ ∈ P}; . get refinement candidates

4 φ←¬π∧
∧

f̂ ∈PCREATEFORMULA(f̂)∧
∧

ĝ∈RNONDET(ĝ);
5 result, sat_assignment← SOLVE(φ); . SAT-solve the PBMC formula

6 if (result = UNSAT) then
7 return SAFE, ν,∅;
8 else
9 ε← EXTRACTCE(sat_assignment); . extract an error trace

10 R← R∩ EXTRACTCALLS(ε); . filter out calls which do not affect the satisfiability

11 if (R=∅) then
12 return BUGGY, ν, ε;
13 else
14 P← P∪R; . unwind the call tree on demand

15 ν←MAXCHAINLENGTH(P); . update the depth

16 end
17 return TIMEOUT;

on recursive programs, we assume they are loop-free (e.g., all loops are converted
to recursion in the pre-processing step of the algorithm).

An overview of the algorithm is depicted in Alg. 1. The algorithm starts with
a preset recursion depth ν (for simplicity, ν= 1) and iterates until it detects the
actual recursion depth, needed for complete proof of the program correctness,
or a predefined timeout is reached. Notably, in each iteration of the algorithm, ν
gets updated and is equal to the length of the longest unwinding chain of recur-
sive function calls. In the end of the algorithm, all recursive calls are unwound
exactly same number of times as they would be called during the execution of
the program.

The details of the computation are given below. First, the algorithm aims at
constructing a PBMC formula φ using the sets P and R. Every function call f̂ ∈ P

23 2.2 Bounded Model Checking by means of Function Summarization

f̂main

f̂1

f̂2

ĝ1 ĥ1 1

2

3

0

⌫

⌫ � 1

(a) (b) (c)

f̂main

f̂1

f̂2

f̂⌫�1

ĝ1 ĥ1

f̂ 0
2

f̂main

f̂1

f̂2

ĝ1 ĥ1

f̂ 0
2

f̂ 0
3

f̂⌫

f̂3f̂3f̂3 f̂ 0
3

f̂ 0
2

?

?

?

!
!
!

!

!

Figure 2.4. Illustration of the individual steps of the Alg. 1 on the example with a single recursive
function f , called twice.

is encoded precisely, every function call ĝ ∈ R is treated nondeterministically. In
particular, bodies of function calls from set f̂ ∈ P are encoded into the SSA
forms (i.e., method CREATEFORMULA) and put together into separate partitions
(one partition per each function call) ofφ (line 4). At the same time, all function
calls fromR are replaced by empty formulas> (i.e., method NONDET). In total,φ
encodes a program abstraction containing precise and over-approximated parts,
conjoined by negation of an assertion π (line 4). In each iteration of Alg. 1, P
represents a subset of the full unrolling of the program created with respect to a
current value of ν (i.e., P ⊆ F̂ν).

After the PBMC formula φ is constructed, the algorithm passes it to a SAT
solver. If φ is satisfiable, and the SAT solver returns a satisfying assignment
(line 8), function calls from R are considered as candidate calls to be refined.
To refine, the satisfying assignment is used to restrict R on the calls, appeared
along the error trace ε (i.e., in the satisfying assignment) (line 10). In the next
iteration of the algorithm, the calls from R are encoded precisely in the updated
PBMC formula. Technically, the algorithm extends F̂ν by adding function calls
from R (line 14), as shown, for example, on Fig. 2.4b. There, f̂ ′2 appears along ε
and therefore it has to be refined; f̂3 does not appear in ε, so it will be encoded
nondeterministically. If R = ∅ then no nondeterministically treated recursive

24 2.2 Bounded Model Checking by means of Function Summarization

calls were found along the error trace, so the real bug is found (line 12), and the
algorithm terminates.

If the SAT solver proves unsatisfiability of φ then the program abstraction,
and consequently the program itself, are safe (line 7). This case is represented on
Fig. 2.4c. The final recursion depth ν is detected, and the algorithm terminates.

Example 4. Fig. 2.4 demonstrates a call tree of a program with a single recur-
sive function called twice in different iterations of Alg. 1. In the example, P =
{ f̂main, ĝ1, ĥ1, f̂1, f̂2} (grey nodes) are encoded precisely, and R = { f̂3, f̂ ′2} (white
nodes) are treated nondeterministically.

Iteration 1: P = { f̂main, ĝ1, ĥ1, f̂1, f̂2} (grey nodes) are encoded precisely, R =
{ f̂3, f̂ ′2} (white “?” nodes) are treated nondeterministically; the initial recursion
depth is equal to 1.

Iteration 2: solver returns SAT (corresponding to the error trace ε= { f̂main, f̂1, f̂ ′2}),
set R is updated to contain only one function call { f̂ ′2} (black “!” nodes). All calls
from R are added to current F̂ν. The current recursion depth is incremented, and
equal to 2.

Iteration ν: solver returns UNSAT orR=∅, the detected recursion depth is equal
to ν− 1.

Theorem 1. Given the program P and an assertion π, if Alg. 1 terminates with an
answer SAFE (BUGGY) then π holds (does not hold) for P.

Proof. In case if φ is unsatisfiable, the formula φ represents some abstraction
of P which contains precise and over-approximated components (as described
in Sect. 2.2.3). Thus, any further strengthening of φ (e.g., by conjoining with
new partitions that precisely encode function calls, treated nondeterministically
in φ) is also unsatisfiable that implies the assertion π holds.

In case if φ is satisfiable, there exists a satisfying assignment representing an
error trace. At the same time, the algorithm did not detect any nondeterminis-
tically treated recursive function calls along the error trace (line 11). It means
that π is indeed violated within the current recursion depth.

The algorithm is guaranteed to terminate within a given timeout when it
finds an error or proves that the assertion holds. Similar to classical BMC, Alg. 1
terminates if the recursion depth is sufficient to disprove the assertion. Classical

25 2.2 Bounded Model Checking by means of Function Summarization

BMC can prove the assertion up to some fixed recursion depth, but the result
might be incomplete if the recursion depth is insufficient. In contrast, by Th. 1, if
our algorithm does not yield a timeout, it guarantees that the detected recursion
depth is complete to prove the assertion. The other benefit of our algorithm is
that it does not require the recursion depth to be given a priori, but instead it is
detected automatically.

Based on our observations, termination of Alg. 1 depends on the termination
of the recursive program it was applied to. For example, the program with one
single recursive function from Fig. 2.1(a) terminates for any values of input data.
The recursion termination condition, ¬(a < 10) defines the upper bound 10 for
the value of a, and at the same time the function f monotonically increments the
value of a. Hence, the recursive function f is called a fixed number of times and
the program eventually terminates. Clearly, for complete analysis of this program
it is enough to consider the maximum possible number of recursive function calls
for every initial value of a which in this example is equal to 5. At the same time,
it introduces an upper bound for the size of the constructed PBMC formula which
is a sufficient condition to the SAT solver to terminate while solving it.

The underlying idea of Alg. 1, i.e., abstracting away some function calls and
refining them on demand, also appeared in other model checking approaches
proposed, e.g., in [9; 93]. However, in contrast to its competitors, our Alg. 1 can
be enhanced to support verification of different assertions by means of construct-
ing and reusing function summaries, on whose we elaborate in the remaining
sections.

Alg. 1 is implemented and evaluated within a tool FUNFROG. We discuss it in
details in Sect. 5.1.1

2.2.4 Function Summaries

A function summary relates input and output arguments of a function. Therefore,
a notion of arguments of a function is necessary. For this purpose, we expect to
have a set of program variables V and a domain function D which assigns a
domain (i.e., set of possible values) to every variable from V.

Definition 4. For a function f , sequences of variables args f
in = 〈in1, . . . , inm〉 and

args f
out = 〈out1, . . . , outn〉 denote the input and output arguments of f , where ini, out j ∈

V for 1 ≤ i ≤ m and 1 ≤ j ≤ n. In addition, args f = 〈in1, . . . , inm, out1, . . . , outn〉

26 2.2 Bounded Model Checking by means of Function Summarization

denotes all the arguments of f . As a shortcut, we use D(f) = D(in1)×. . .×D(inm)×
D(out1)× . . .×D(outn).

In the following, we expect that functions do not have other than input and
output arguments, which include also the return value. Note that an in-out ar-
gument (e.g., a parameter passed by reference) is split into one input and one
output argument. Similarly, a global variable accessed by a function is rewritten
into the corresponding input or/and output argument, depending on the mode
of access (i.e., read or/and write).

Precise behavior of a function can be defined as a relation over values of input
and output arguments of the function as follows.

Definition 5 (Relational Representation). Let f be a function, then the relation
R f ⊆ D(f) is the relational representation of the function f , if R f contains exactly
all the tuples ~v = 〈v1, . . . , v|args f |〉 such that the function f called with the input
values 〈v1, . . . , v|args f

in|
〉 can finish with the output values 〈v|args f

in|+1, . . . , v|args f |〉.

Note that Def. 5 admits multiple combinations of values of the output argu-
ments for the same combination of values of the input arguments. This is useful
to model nondeterministic behavior, and for abstraction of the precise behavior
of a function. In this work, the summaries are applied in BMC. For this reason,
the rest of the text in the section will be restricted to the following bounded
version of Def. 5.

Definition 6 (Bounded Relational Representation). Let f be a function and ν be
a bound, then the relation R f

ν
⊆ R f is the bounded relational representation of the

function f , if R f
ν

contains only the tuples representing computations with all loops
and recursive calls unwound up to ν times.

Then a summary of a function is an over-approximation of the set of precise
behaviors of the given function under the given bound. In other words, each
bounded function behavior is captured by a summary, but not necessarily each
summary behavior belongs to the bounded function.

Definition 7 (Summary). Let f be a function and ν be a bound, then a relation S
such that R f

ν
⊆ S ⊆ D(f) is a summary of the function f .

The relational view on a function behavior is intuitive but impractical for
implementation. Typically, these relations are captured by means of logical for-
mulas. Def. 8 makes a connection between these two views.

27 2.2 Bounded Model Checking by means of Function Summarization

Definition 8 (Summary Formula). Let f be a function, ν a bound, σ f a formula
with free variables only from args f , and S a relation induced by σ f as S = {~v ∈
D(f) | ~v |= σ f }. If S is a summary of the function f and bound ν, then σ f is a
summary formula of the function f and bound ν.

A summary formula of a function can be directly used during construction of
the PBMC formula to represent a function call. This way, the part of the SSA form
corresponding to the subtree of a called function does not have to be created and
converted to a part of the PBMC formula. Moreover, the summary formula tends
to be more compact.

Example 5. Considering the PBMC formula in Fig. 2.3, a formula a0 > 5⇒ ret0 >

0 represents a summary of the first (upper) call of function f.

An important property of the resulting PBMC formula is that if it is unsatisfi-
able (as in Ex. 5) then also the formula without summaries (in Ex. 3) is unsatis-
fiable. Therefore, no errors are missed due to the use of summaries.

Lemma 1. Let φ be a BMC formula of an unwound program P for a given bound
ν, and let φ′ be a BMC formula of P and ν, with some function calls substituted by
the corresponding summary formulas bounded by ν. If φ′ is unsatisfiable then φ is
unsatisfiable as well.

Proof. Without loss of generality, suppose that there is only one summary for-
mulaσ f substituted inφ′ for a call to a function f . If multiple summary formulas
are substituted, we can apply the following reasoning for all of them.

Suppose that φ′ is unsatisfiable and φ is satisfiable. From the satisfying as-
signment of φ, we get values 〈v1, . . . , v|args f |〉 of the arguments to the call to the
function f . Assuming correctness of construction of the BMC formula φ, the
function f given the input arguments 〈v1, . . . , v|args f

in|
〉 can finish with the output

arguments 〈v|args f
in|+1, . . . , v|args f |〉 and with all loops and recursive calls unwound

at most ν times. Therefore, by definition of the summary formula, the values
〈v1, . . . , v|args f |〉 also satisfy σ f . Since the rest of the formulas φ and φ′ is the
same, the satisfying assignment of φ is also a satisfying assignment of φ′ (up to
SSA version renaming). Thus, we achieved a contradiction.

2.2.5 Interpolation-Based Function Summaries

Among different possible ways to obtain a summary formula, we consider a way
to synthesize summary formulas using Craig interpolation. To use interpolation,

28 2.2 Bounded Model Checking by means of Function Summarization

we use the PBMC obtained as described in Sect. 2.2.2. That is, the PBMC formula
φ should have the form ¬π∧

∧

f̂ ∈F̂

φ f̂ such that every φ f̂ symbolically represents

the body of the function call f̂ . Moreover, the symbols of φ f̂ shared with the rest
of the formula correspond only to the input and output program variables.

If the PBMC formula is unsatisfiable, i.e., the program is safe, we can proceed
with interpolation. The function summaries are synthesized as interpolants from
a proof of unsatisfiability of the PBMC formula. In order to generate an inter-
polant, for each function call f̂ the PBMC formula is split into two parts. First,
φsubtree

f̂
corresponds to the partitions representing the function call f̂ and all the

nested function calls. Second, φenv
f̂

corresponds to the context of the call f̂ , i.e.,
to the rest of the encoded program.

φsubtree
f̂

=
∧

ĝ∈F̂ν: subtree(f̂ , ĝ)

φ ĝ

φenv
f̂
= ¬π∧

∧

ĥ∈F̂ν:¬subtree(f̂ ,ĥ)

φĥ

Therefore, for each function call f̂ , the summary-construction method separates
the PBMC formula intoφsubtree

f̂
∧φenv

f̂
and synthesizes an interpolant I f̂ as follows:

(

φsubtree
f̂

=⇒ I f̂

I f̂ ∧φ
env
f̂
=⇒ ⊥

Notably, by definition of Craig interpolation, the only free variables of I f̂
ν

are from
var(φsubtree

f̂
) ∩ var(φenv

f̂
) = args f . Thus the interpolant I f̂ is a summary formula

for the function f .
The synthesized interpolant summaries are associated with the function calls

by a mapping σ, i.e., σ(f̂) = I f̂ . Notably, we consider only a single summary per
a function call for the sake of simplicity. This still means multiple summaries per
a single function called multiple times.

The quality of summaries might depend on several different aspects. An in-
terpolant (i.e., a summary) is not unique, and might be stronger or weaker than
another interpolant. In our particular setting, a summary constructed by McMil-
lan’s algorithm is more accurate and closer to the precise representation of the
function body than a summary constructed by Pudlák’s algorithm. In addition
to the choice of the interpolation algorithm, the SAT solver can also guide proof
construction and post-process created proofs, e.g., reduce the proof and remove
redundancies in its structure. The size and structure of a formula might affect

29 2.2 Bounded Model Checking by means of Function Summarization

the performance of a SAT solver while dealing with these formulas again: while
verifying the same code with respect to different assertions (Sect. 2.2.6) or veri-
fying another code with respect to the same assertions (Sect. 2.3). Thus, in our
implementation we use the SAT solver PERIPLO [119] which is able to perform
the necessary manipulations with proofs and interpolation algorithms.

2.2.6 Using Function Summaries to Verify Different Assertions

We propose to reuse function summaries between verification tasks of checking
the same program with respect to different assertions. If a summary of a func-
tion call exists before a verification run, we propose to substitute it instead of
encoding the function body from scratch. Such substitution might fit well and
the verification might succeed (therefore we expect performance speedup), or
(due to an over-approximating nature of summaries) it might introduce spuri-
ous bugs which have to be immediately identified. A refinement of summaries is
needed in the latter case.

Alg. 1 considers the case of a checking a given program with respect to a
single assertion. Suppose, now we are dealing with a sequence of the assertions
to be checked: {π}0n. It is often needed to check each of them separately to
realize which of them holds and which of them does not. And it is essential to
reuse function summaries, generated after a successful verification of assertion
πi, to check assertion πi+1.

However, Alg. 1 is not given with summaries, but proceeds only by treating
some function calls nondeterministically. Notably, this is equivalent to always
substitute the weakest possible summary >. Thus there is a need to enhance the
method CREATEFORMULA in Alg. 1 to support different substitution scenarios.

A mapping substitution scenario Ω : F̂ν→ {inline, sum, havoc} determines how
each function call should be handled. Initially, Ω depends on existence of func-
tion summaries. If a summary of a function f̂ exists, it substitutes the body, i.e.,
Ω(f̂) = sum. If not, f̂ is either represented precisely, i.e., Ω(f̂) = inline or ab-
stracted away, i.e., Ω(f̂) = havoc, depending on the current unwinding number
ν. Let dom denote the domain of a mapping, an initial scenario Ω0 is formalized

30 2.2 Bounded Model Checking by means of Function Summarization

as follows:

Ω0(f̂) =

sum, if f̂ ∈ dom(σ)
inline, if f̂ is not recursive
inline, if f̂ is recursive and ν is not exceeded
havoc, if f̂ is recursive and ν is exceeded

When a substitution scenario Ωi leads to a satisfiable PBMC formula, a refine-
ment strategy either shows that the error is real or looks for another substitution
scenario Ωi+1. In the latter case, Ωi+1 represents a tighter approximation, i.e., it
refines Ωi.

Counter-example guided refinement. We introduce a notion of Counter-
example guided refinement (CEGR) for function summarization that generalizes
the refinement procedure explained in Sect. 2.2.3. CEGR is based on analysis of
the error trace, determined by a satisfying assignment. By construction of the
PBMC formula, a variable callstart f̂ is evaluated to >, if and only if the satisfying
assignment represents a trace that includes the function call f̂ . If no function
summary appeared along the error trace, the error is real.

Ωi+1(ĝ) =

�

inline, if Ωi(f̂) 6= inline∧ callstart f̂ =>
Ωi(f̂), otherwise

Finally, we present Alg. 2, a revised version of Alg. 1 that is designed to be
run in a loop verifying each of the assertions {πi} individually. In order to do
it, the algorithm performs interpolation-based summary construction and CEGR.
In addition to the set of inputs to Alg. 1 (including assertion πi), Alg. 2 is given
a mapping of the function calls by the summaries σ, synthesized after success-
ful verification of assertions π0 . . .πi−1. Depending on σ, the algorithm initial-
izes the substitution scenario Ω (line 2). In order to simplify the use of Ω, we
merge the sets P and R (that were used to distinguish function calls to be inlined
from the ones to be treated nondeterministically in Alg. 1) into P and apply the
mapping Ω for each function call from P while constructing the PBMC formula
(line 5). The substitution scenario can further be refined (line 16) due to CEGR
strategy.

When the algorithm terminates with SAFE answer, method INTERPOLATE (line 7)
is run to update summaries for each function call (as described in Sect. 2.2.5).
Notably, the existing summaries remain valid but they are not necessarily accu-
rate enough to prove the given assertion. Thus, the algorithm does not drop
them, but conjoins with the newly generated ones.

31 2.2 Bounded Model Checking by means of Function Summarization

Algorithm 2: Interpolating BMC for verifying different assertions

Input: Initial recursion depth: ν; program unwound ν times:
Pν = (F̂ν, f̂main, child); assertion to be checked: πi; summaries
mapping: σ

Output: Verification result: {SAFE, BUGGY, TIMEOUT}; detected recursion
depth: ν; error trace: ε

Data: PBMC formula: φ; current unrolling: P; set of refinement
candidates P; current substituting scenario: Ω

1 P← F̂ν ∪ { ĝ /∈ F̂ν | child(f̂ , ĝ), f̂ ∈ F̂ν}; . initialize unrolling

2 Ω← INIT(P,σ); . initialize substitution scenario

3 while (¬TIMEOUT) do
4 φ←¬πi ∧

∧

f̂ ∈P:Ω(f̂)=inline CREATEFORMULA(f̂)∧
∧

ĝ∈P:Ω(ĝ)=sum SUMMARY(ĝ)∧
∧

ĥ∈P:Ω(ĥ)=havoc NONDET(ĥ);
5 result, sat_assignment← SOLVE(φ); . SAT-solve the PBMC formula

6 if (result = UNSAT) then
7 foreach (f̂ ∈ P) do σ(f̂)← σ(f̂)∧ INTERPOLATE(proof , f̂);
8 return SAFE, ν,∅;
9 else

10 ε← EXTRACTCE(sat_assignment); . extract an error trace

11 R← EXTRACTCALLS(ε); . get function calls that affect the satisfiability

12 if (R=∅) then
13 return BUGGY, ν, ε;
14 else
15 P← P∪R∪ { ĝ /∈ R | child(f̂ , ĝ), f̂ ∈ R};
16 Ω← REFINE(Ω,P,R); . refine calls from R

17 ν←MAXCHAINLENGTH(P); . update the depth

18 end
19 return TIMEOUT;

Alg. 2 is implemented and evaluated within a tool FUNFROG. We discuss it in
details in Sect. 5.1.2 and Sect. 5.2.

2.2.7 Detecting and Exploiting the Assertion Implication Relation

In Sect. 2.2.6 we proposed the summarization-based model checking procedure
(Alg. 2) for verifying a sequence of assertions {π}0n. The main feature of Alg. 2

32 2.2 Bounded Model Checking by means of Function Summarization

is that for checking an assertion πi, it reuses the summaries (σ(f̂) for each func-
tion call f̂ ∈ F̂ν) already created while checking the previous assertions {π}0i−1.
However, there is no guarantee that σ(f̂) is accurate enough for checking πi.
Thus, there might be needed to refine summaries, which is expensive since it
requires extra efforts on SSA encoding, solving and interpolating. On the other
hand, some assertions from the sequence might be redundant, allowing to skip
the whole model checking procedure.

We propose to detect dependencies among assertions, using static analysis
before actual verification. It allows detecting the Assertion Implication Relation
(AIR). AIR specifies a directed acyclic graph, possibly with several connected
components that can be used as follows. If the goal is to prove program cor-
rectness, it is needed to collect the strongest assertions (of all connected compo-
nents) with respect to AIR and check them in a single verification run. If this
check succeeds, all the assertions of the program are valid. If the goal is to detect
all violated assertions, it makes sense to run incremental analysis, separately for
each ordered chain of assertions. In general, it can be done in the forward or
backward direction. For example, if the incremental algorithm starts from the
bottom of the dependency graph, it checks the weakest assertion first, then pro-
ceeds with a stronger until it reaches the strongest one (i.e., the top of the chain).
Whenever it finds a violation, it automatically means that all stronger assertions
are also violated.

In the rest of the section we elaborate on detecting and exploiting AIR. With-
out loos of generality, we assume that the given sequence of assertions {π}0n is
ordered by the appearance in the control-flow graph of the program. That is, for
any two numbers i, j such that 0≤ i < j ≤ n, assertionπi is closer to the program
entry point than assertion π j. Let ∆(πi,π j) denote the path in the control-flow
graph between locations of the two assertions.

Definition 9. Given a program Pν containing two assertions π0 and π1, we say
that the assertion π0 implies the assertion π1 iff the following Hoare triple is valid:

{π0}∆(π0,π1) {π1}

The validity of the Hoare triple in Def. 9 means that π1 holds whenever π0

holds in all executions of the program allowed by∆(π0,π1). Given the valid local
implication relation between assertions π0 and π1, we refer to π0 as a stronger
assertion, and to π1 as a weaker assertion. We are interested in determining
whether, in a given program with a given sequence of assertions {π}0n there are

33 2.2 Bounded Model Checking by means of Function Summarization

Algorithm 3: Computing AIR

Input: Program: Pν, sequence of assertions: {π}0n
Output: Assertion Implication Relation: AIR
Data: Disjoint sets of variables corresponding to the variable dependency

classes: VD, the assertion dependency relation: AD
1 VD← GETDEPENDENTVARIABLES(Pν);
2 AD← GETDEPENDENTASSERTIONS(VD);
3 AIR← {(i, j) ∈ AD | IMPLIES(πi,π j) = true};

pairs of assertions πi and π j such that π j holds whenever πi holds in all exe-
cutions of the program. We compute AIR, which consists of (a subset of) such
pairs where the implication follows from the SSA steps between the assertions.
We present a high-level overview of the algorithm for detecting assertion impli-
cations in Alg. 3.

We compute the implication relation in two phases. First, the classes of de-
pendent assertions AD are detected using a syntactic analysis on the SSA form.
We say that two variables x and y are dependent when the value of x potentially
affects the value of y . This notion of variable dependencies is exactly the same
as in program slicing [134]. The dependency relation is reflexive, transitive and
symmetric and therefore an equivalence relation which groups all variables into
dependency classes. We further extend it to assertions. Two assertions π0 and
π1 are said to be dependent if there exists a variable x in π0 and a variable x ′

in π1 such that x and x ′ are dependent. Unlike a variable, if an assertion π0

depends on an assertion π1, and the assertion π1 depends on an assertion π2,
this does not imply that π0 depends on π2, since the dependencies might result
from variables not shared by π0 and π2. The assertion dependency relation can
be constructed in an iterative procedure over the set of assertion pairs. For each
pair, it explores the dependency classes of the variables involved in the assertions.
If two assertions contain variables of the same dependency class, the assertions
are dependent and are going to be included into the relation AD.

In the second phase of constructing AIR, the assertion dependency relation
is refined to contain only the pairs of assertions (πi,π j) such that πi implies π j.
This is done by constructing the formula corresponding to Def. 9 and invoking the
SAT solver through the IMPLIES call in Alg. 3. This is sound up to the number ν of
loop iterations and recursive function calls. Finally, the AIR defines an assertion

34 2.3 Checking Software Versions within Bounded Model Checking

implication graph representing all revealed implication relationships between the
guarded assertions. More formally,

Definition 10. Given a program Pν with a sequence of assertions {π}0n the asser-
tion implication graph of Pν is a graph GU = ({π}0n, E) where E = {(πi,π j) |
πi implies π j in Pν}.

We propose to traverse GU before the BMC run to minimize the search for
holding assertions and avoid checking all assertions one by one. Our solution
is based on the two following ideas: 1) If an assertion πi is proven to hold, all
weaker assertions π j (i.e., {π j | (πi,π j) ∈ E}) are implicitly proven to hold. 2) If
an assertion πk is proven to fail, all stronger assertions π j (i.e., {πk | (π j,πk) ∈
E}) are implicitly proven to fail.

We further expand these ideas into the two complementing strategies for the
efficient detection of assertions which hold in the program. We denote the nodes
of GU that do not have incoming edges as {πs}. These correspond to the strongest
assertions in the program. Similarly, we denote the edges with no outgoing edges
as {πw}, and these correspond to the weakest assertions in the program.

In the first (forward) strategy, a BMC tool traverses GU starting from {πs}
in the depth-first order. For each assertion node πi, if there exists a holding
predecessor π j, the BMC tool concludes that πi also holds. Otherwise, it verifies
the program with respect to πi. This strategy is efficient in cases when there are
many holding assertions in the program.

In the second (backward) strategy, a BMC tool traverses GU in reverse, starting
from {πw}. For each assertion node πk, if there exists a failing successor π j, the
BMC tool concludes that πk also fails. Otherwise, it verifies the program with
respect to πk. This strategy is efficient in cases when there are many assertions
which fail in the program.

Both strategies and the preprocessing Alg. 3 are implemented and evaluated
within a tool FUNFROG. We discuss them in details in Sect. 5.1.3.

2.3 Checking Software Versions within Bounded Model
Checking

This section presents an incremental SAT-based BMC approach that uses func-
tion summarization for checking sequences of software versions. It receives two

35 2.3 Checking Software Versions within Bounded Model Checking

int g(int a, int b)
{

if (a < b)
return a;

return a - b + 1;
}

int f (int a, int b
{

return g (a, b);
}

main()
{

int x = 0;
int y = nondet();
int z = nondet();

if (y > 0)
x = f(y, z);

assert(x > 0);
}

(a) Original program

int g(int a, int b)
{

if (a < b)
return a;

return a - b;
}

int f (int a, int b)
{

return g (a, b) + 1;
}

main()
{

int x = 0;
int y = nondet();
int z = nondet();

if (y > 0)
x = f(y, z);

assert(x > 0);
}

(b) Modified program

Figure 2.5. Two versions of the C program.

versions of a program, an old and a new one, and a bound to be used to unwind
the loops and recursive function calls in both program versions. We assume, both
versions share the same set of assertions to be checked. Given that the old version
satisfy the given assertions up to the predefined bound, the goal of the approach
is to verify that the assertions hold in the new version as well. An example of a
program change is illustrated in Fig. 2.5. The increment operation is lifted from
one function to another one.

Our BMC-based incremental algorithm maintains function summaries that, in
our case, over-approximate the bounded behavior of the functions, computed
by means of Craig interpolation (described in Sect. 2.2.5). The core idea of the
algorithm is to check if the old function summaries still over-approximate the

36 2.3 Checking Software Versions within Bounded Model Checking

bounded behavior of the corresponding functions in the new program version. If
the check fails for some function call, it needs to be propagated by the call tree
traversal to the caller of the function. If the check fails for the root of the call tree
(i.e., the “main” function of the program), the whole program should be verified
from scratch. On the other side, if for each function call there exists an ancestor
function with the valid old summary then the new program version is safe up to
the predefined bound. Finally, for functions whose old summaries are not valid
any longer, the new summaries are synthesized using Craig interpolation.

The incremental model checking algorithm implements the refinement strat-
egy for dealing with spurious behaviors that can be introduced during compu-
tation of the over-approximated summaries. The refinement procedure for the
incremental checks builds on ideas of using various summary substitution sce-
narios (described in Sect. 2.2.6). We further extend it to simplify the summary
validity checks by substituting the summaries of nested function calls which are
already proven valid. Failures of such checks may be due to the use of summaries
which are not accurate enough. In such case, the refinement is used to expand
the involved function calls on demand.

In the rest of the section, we present this basic algorithm in more details,
describe its optimization with a refinement loop and prove its correctness.

2.3.1 Incremental BMC Algorithm

We proceed by presenting our algorithm for checking sequences of software ver-
sions (Alg. 4). As an input, Alg. 4 takes the unwound program together with the
old and new versions of the SSA form for each function call, and a mapping σ
from the function calls in the new version to the summaries from the old ver-
sion. We denote the domain of a mapping by dom. If dom(σ) = ∅ (line 1), the
algorithm runs verification of the new version from scratch (Alg. 2). Thus, we
assume that dom(σ) contains at least a summary for f̂main.

The algorithm starts with computing a set changed that collects the function
calls corresponding to the functions, on which the old and the new versions dis-
agree (line 3). In our implementation, we syntactically compare the correspond-
ing SSA forms.

The algorithm maintains a work-list WL of function calls that require recheck-
ing. Initially, WL is populated by the elements of the previously computed set
changed (line 4). Then the algorithm repeatedly removes a function call f̂ from

37 2.3 Checking Software Versions within Bounded Model Checking

Algorithm 4: Incremental BMC algorithm

Input: Unwound program: Pν = (F̂ν, f̂main) with function calls F̂ν, SSA
forms of both versions of Pν: codeold : F̂ν =⇒ SSA and
codenew : F̂ν =⇒ SSA, summaries mapping: σ : F̂ν =⇒ S

Output: Verification result: {SAFE, BUGGY}, actualized summaries
mapping: σ

Data: temporary sets of function calls: changed, WL ⊆ F̂ν, PBMC formula:
φ, set of invalid summaries: invalid ⊆ S, refutation: proof

1 if (dom(σ) =∅) then
2 VERIFYFROMSCRATCH(Pν); . run Alg. 2

3 changed← { f̂ | f̂ ∈ F̂ν, s.t. codeold(f̂) 6≡ codenew(f̂)};
4 WL← changed;
5 invalid←∅;
6 while (WL 6=∅) do
7 choose f̂ ∈WL, s.t. ∀ ĝ ∈WL : ¬subtree(f̂ , ĝ);
8 WL←WL \ { f̂ };
9 if (f̂ ∈ dom(σ)∧σ(ĝ) 6∈ invalid) then

10 φ← CREATEFORMULA(f̂);
11 result, proof ← SOLVE(φ ∧¬σ(f̂));
12 if (result= UNSAT) then
13 foreach (ĝ ∈ F̂ν : subtree(f̂ , ĝ)) do
14 σ(ĝ)← INTERPOLATE(proof , ĝ);
15 end
16 else invalid← invalid∪ {σ(f̂)};
17 if (f̂ /∈ dom(σ)∨σ(f̂) ∈ invalid) then
18 if (f̂ 6= f̂main) then
19 WL←WL∪ {parent(f̂)}; . check the parent

20 else
21 return VERIFYFROMSCRATCH(Pν); . run Alg. 2

22 end
23 return SAFE, σ; . new version is safe

WL and attempts to check validity of the corresponding summary in the new ver-
sion. Note that the algorithm picks f̂ so that no function call in the subtree of
f̂ occurs in WL (line 7). This ensures that summaries in the subtree of f̂ were
already analyzed (shown either valid or invalid).

38 2.3 Checking Software Versions within Bounded Model Checking

The actual summary validity check happens on lines 10-11. First, the PBMC
formula encoding the subtree of f̂ (with respect to the new version of the SSA
form) is constructed and stored as φ. Then, conjunction of φ with negated sum-
mary of f̂ is passed to a SAT solver for the satisfiability check. If unsatisfiable,
the summary is still a valid over-approximation of the function’s behavior. Here,
the algorithm obtains a proof of unsatisfiability which is used later to create new
summaries to replace the invalid or missing ones (line 13-15). If satisfiable, the
summary is not valid for the new version (line 16). In this case, the check is
propagated to the function caller (line 19). If there is no caller to propagate
the check (i.e., the old function summary for f̂main is invalid) the entire program
should be verified from scratch (line 21).

Note that the algorithm cannot identify the real error by itself, since for this
goal it needs to create and solve a formula of the form φ ∧ ¬π, which is the
typical subroutine of the Alg. 2. However, this is the worst case scenario, and is
possible only in case if the old function summary for f̂main is invalid. In all other
cases, the algorithm is able to prove the new version safe without running the
the verification from scratch.

Note that if the chosen function call f̂ has no summary, the check is propa-
gated to the caller immediately (line 17) and the summary of f̂ is created later
when the check succeeds for some ancestor function call of f̂ .

Example 6. As a demonstration of the incremental BMC algorithm, consider a
modified version of the program on Fig. 2.5(b). It is created by lifting an increment
operator one level up on the call tree (i.e, from function g to its caller, function f).
Assume the program on Fig. 2.5(a) is verified by Alg. 2 and the following summaries
of the functions main, f, g exist:

σ(main) = x2 > 0 (2.1)

σ(f) = (fa0
> 0) =⇒ (fret0

> 0) (2.2)

σ(g) = (ga0
> 0) =⇒ (gret0

> 0) (2.3)

Note that the summary of function main is expressed over variable x2, the only
common one between the body of the function and the assertion expression. The
summaries of functions f and g are expressed over their input and output variables
respectively (i.e., the common language of the function and its caller). Furthermore,
formulas (2.2) and (2.3) are semantically equivalent, but syntactically different.

Our approach first checks if σ(g) still over-approximates g.

39 2.3 Checking Software Versions within Bounded Model Checking

In our example, the summary-check of σ(g) does not succeed. As a witness of
this, one can chose equal positive numbers to be the values for the function param-
eters. For example, if ga = gb then gret = 0 which contradicts the formula (2.3).

Then the algorithm proceeds with checking validity ofσ(f) and proves it. During
this check, the new behavior of g was encoded and its old summary (2.3) was not
used. Given the proof of validity of σ(f), we apply interpolation and update σ(g)
as follows:

σ(g) = (ga > 0) =⇒ (gret ≥ 0) (2.4)

Since there was no change in function main, the algorithm terminates. The
updated summary (2.4) is going to be stored instead of (2.3) and used when another
program version arrives.

2.3.2 Tree Interpolation for SAT Equisatisfiability

The approach presented in Sect. 2.3.1 can also be viewed as a technique for
reusing refutation proofs from one unsatisfiable propositional formula to speed
up SAT checks for a slightly different formula. For instance, a large number of
tools and algorithms within verification and program analysis make many quick
calls to SAT solvers. A large number of these calls are often similar. We believe
that the SAT view of the algorithm, presented in the previous section, will be
applicable in a variety of settings.

Throughout this section, we consider an inconsistent formula Φ =
n
∧

i=1
φi and

targeting to decide satisfiability of another formula Ψ =
n
∧

i=1
ψi. We require Φ

and Ψ, to consist of n conjuncts. Moreover, we assume that Φ and Ψ share a
common subformula, i.e., there exist S ⊆ {1 . . . n}, such that ∀k ∈ S, φk ⇐⇒ψk

and ∀` 6∈ S, φ` 6⇐⇒ ψ`. Then the check for unsatisfiability of Ψ can proceed by
checking unsatisfiability of the subformulas Ψ using interpolants obtained from
Φ. We rely on the tree interpolation property formalized in Sect. 2.1.1.

Interpolation-based SAT solving algorithm (outlined in Alg. 5) implements
the core idea1 of Alg. 4. The algorithm is given the formulas Φ and Ψ (Φ is
unsatisfiable), the tree T and a family of T -tree interpolation algorithms. Then
Alg. 5 decides satisfiability of Ψ.

1In order to simplify presentation, we omitted the subroutine to re-construct interpolants in
Alg. 5, as done in Alg. 4.

40 2.3 Checking Software Versions within Bounded Model Checking

Algorithm 5: Deciding equisatisfiability of two SAT formulas

Input: Formulas Φ=
n
∧

i=1
φi and Ψ =

n
∧

i=1
ψi, tree T = (V, E), V = {1, . . . , n}

a family of T -tree interpolation algorithms that result in IΦ,Ki

Output: Satisfiability of Ψ: {SAT, UNSAT}
Data: Temporary sets WL, Ki ⊆ {1, . . . , n}

1 WL← {i | 1≤ i ≤ n and φi 6⇐⇒ψi};
2 while (WL 6=∅) do
3 choose i ∈WL, s.t. ∀ j ∈WL : j 6= i =⇒ i 6v j;
4 WL←WL \ {i};
5 Ki = { j | i v j};
6 if (ψi ∧

∧

j∈Ki

ψ j 6=⇒ IΦ,Ki
) then

7 if (i = root(T)) then
8 return SAT;
9 else

10 WL←WL∪ {parent(T, i)};
11 end
12 return UNSAT;

Similarly to Alg. 4, Alg. 5 maintains the work-list of natural numbers WL,
initially populated by the numbers that identify non-equal conjuncts of Φ and Ψ.
In each iteration, the algorithm choses the least element i of WL corresponding
the deepest node in T , and checks validity of the interpolant IΦ,Ki

(line 3). If the
check succeeds, the algorithm removes i from WL and goes to the next iteration.
If the check does not succeed, WL replaces i by the parent node of i in T and
goes to the next iteration. The algorithm terminates when WL is empty (i.e., Ψ
is unsatisfiable) or when the check for the root node does not succeed (i.e., Ψ is
satisfiable).

The worst case scenario of Alg. 5, i.e., checking satisfiability of the entire
formula Ψ, is done also via checking validity of the interpolant. Indeed, in this
case, the current element i of WL corresponds to the tree root, whose interpolant
is equal to ⊥: IΦ,Kroot

= ⊥. Finally, if the check ψroot ∧
∧

j∈Kroot

ψ j =⇒ IΦ,Kroot
fails

(line 8), then Ψ =ψroot ∧
∧

j∈Kroot

ψ j is satisfiable. In contrast, the similar scenario

of Alg. 4 is not subsumed by the summary validity check. The reason is that

41 2.3 Checking Software Versions within Bounded Model Checking

Alg. 4 manipulates the program call tree without respect to the assertion (recall
the PBMC encoding and interpolation from Sect. 2.2.5). That is, the root of the
program call tree is the “main” function call, and its function summary may not
necessarily be ⊥. Taking it into account, Alg. 5 can be seen as a generalized
representative of Alg. 4. It is also more compact, easily understandable and
potentially applicable in the contexts not directly related to model checking.

2.3.3 Optimization and Refinement

To optimize Alg. 4 outlined in Sect. 2.3.1, old function summaries can be used
to abstract away the function calls. Consider the validity check of a summary
of a function call f̂ . Suppose there exists a function call ĝ in the subtree of f̂
together with its old summary, already shown valid. Then this summary can be
substituted for ĝ, while constructing the PBMC formula of f̂ (line 10). This way,
only a part of the subtree of f̂ needs to be traversed and the PBMC formula φ
can be substantially smaller compared to the encoding of the entire subtree.

If the resulting formula is satisfiable, it can be either due to a real violation
of the summary being checked or due to too coarse summaries used to substi-
tute some of the nested function calls. In our incremental BMC algorithm, this
is handled in a similar way as in the refinement of the standalone verification
by analyzing the satisfying assignment. The set of summaries used along the
counter-example is identified. Then it is further restricted by dependency anal-
ysis to only those possibly affecting the validity. Every summary in the set is
marked as inline in the next iteration. If the set is empty, check fails and the sum-
mary is shown invalid. This refinement loop (replacing lines 10, 11 in Alg. 4)
iterates until validity of the summary is decided.

Regarding complexity, in the worst case scenario, i.e. when a major change
occurs, the entire subtree is refined one summary at a time for each node of the
call tree. This may result in a number of SAT solver calls quadratic in the size
of the call tree, where the last call is the verification of the entire program from
scratch. In this section, we focus on incremental changes and thus for most cases
there is no need for the complete call graph traversal. Moreover, the quadratic
number of calls can be easily mitigated by limiting the refinement laziness using
a threshold on the number of refinement steps and disabling this optimization
when the threshold is exceeded.

42 2.3 Checking Software Versions within Bounded Model Checking

2.3.4 Soundness of the Incremental BMC Algorithm

This section proves the correctness of our Alg. 4, i.e., given an unwinding bound
ν and an assertion π, the verification of the new version against π always ter-
minates with the correct answer with respect to ν. We expect the same ν and π
for the old and new versions. To ensure correctness, if the user increases ν for a
specific loop, the corresponding function has to be handled as if modified.

Let the PBMC formula encoding the subtree of a function call f̂ is denoted
φ f̂ . By definition, the entire PBMC formula Φ = ¬π∧φsubtree

f̂main
is a conjunction of

negation of the assertion and the PBMC formulas encoding the bodies of each
function call from F̂ν, thus, φsubtree

f̂main
=
∧

f̂ ∈F̂ν

φ f̂ . To simplify further presentation,

we assume that the position of each conjunct φ f̂ in the PBMC formula Φ is fixed
and determined by pos(f̂ ,Φ).

Recall that the summary of f̂ generated with respect to the assertionπ is spec-
ified by the mapping σ, i.e., σ(f̂). For the interpolating algorithm, we assume
that it has the tree interpolating property, i.e., the resulting summaries are at
least as strong as those given by Pud algorithm (recall discussion in Sect. 2.1.1).

The key insight for proving correctness is that after each successful run of
Alg. 4 (i.e., when SAFE is returned), the following two properties are maintained.

¬π∧σ(f̂main) =⇒ ⊥ (2.5)

Given each function call f̂ and its children calls ĝ1, . . . , ĝn:

σ(ĝ1)∧ . . .∧σ(ĝn)∧φ f̂ =⇒ σ(f̂) (2.6)

In the following two lemmas, we first show that properties (2.5, 2.6) hold af-
ter an initial whole-program check. Then we show that the properties are main-
tained between individual successful checks of software versions.

Lemma 2. After an initial whole-program check (Alg. 2), the properties (2.5, 2.6)
hold over the call tree annotated by the generated interpolants.

Proof. Recall that the summaries are constructed only when the program is SAFE.
In other words, the PBMC formula Φ= ¬π∧φsubtree

f̂main
us unsatisfiable, i.e., Φ =⇒

⊥. Thus, by definition of interpolation, ¬π∧ I f̂main
is obviously unsatisfiable, i.e.,

property (2.5) holds.
The program call tree induces a tree T = (V, E), where V = {0, . . . , |F̂ν|+ 1}

and E = {(0, 1), (0, pos(f̂main,Φ)} ∪ {(i, j) ∈ V × V | ∃ f̂ , ĝ ∈ F̂ν s.t. i = pos(f̂ ,Φ),
j = pos(ĝ,Φ), and child(f̂ , ĝ)}. Intuitively, V gathers the positions of conjuncts,

43 2.3 Checking Software Versions within Bounded Model Checking

each of which encodes body of a function call in the PBMC formula Φ. In addi-
tion, V has two nodes, “0” and “1”, corresponding to the root of T (which can be
treated as an invisible > conjunct of Φ) and ¬π respectively. Similarly, E gath-
ers the child-dependencies between the function calls and two additional edges
connecting root with ¬π and root with φ f̂main

.
Tree T is used by the tree interpolation algorithm to generate summaries,

and it applies to a proof of unsatisfiability of Φ. Let for a function call f̂ , the
corresponding conjunct φ f̂ in Φ has the position i ∈ V . Then the conjuncts with
the positions j ∈ V , such that (i, j) ∈ E, correspond to the children calls ĝ1, . . . , ĝn

of f̂ . Thus, the resulting interpolants (and in turn, summaries) I(ĝ1) . . . I(ĝn)
satisfy the T -tree interpolation property: I(ĝ1) ∧ . . . ∧ I(ĝn) ∧ φ f̂ =⇒ I(f̂),
which is exactly property (2.6).

Lemma 3. Properties (2.5, 2.6) are reestablished whenever the incremental BMC
algorithm (Alg. 4) successfully finishes (i.e., SAFE is returned).

Proof. Consider two possibilities when the algorithm returns SAFE. In the first
case, it is obtained by the verification from scratch (line 1 or 20), immediately
allowing us to apply Lemma 2. In the second case, SAFE is obtained after a finite
number of summary checks for a subset of function calls (line 23). Therefore,
the summary of the function call f̂main remains unchanged, and property (2.5)
holds.

In the rest of the proof, we need to show that property (2.6) holds whenever
the summaries for a strict subset of function calls S ⊂ F̂ν are recomputed and
f̂main /∈ S. Thus, each function call f̂ can either 1) be a parent call of the func-
tion call with recomputed summary, or 2) itself have a recomputed summary, or
simply 3) be a function call that was never touched by the algorithm. Consider
each of these cases:

1) f̂ /∈ S, and some its children call ĝi ∈ S. It is easy to see (line 14) that a
child call of f̂ is recomputed only if the summary check of f̂ succeeded. Thus,
all other children calls ĝ1, . . . , ĝn of f̂ are also recomputed from the unsatisfiable
formula ¬σ(f̂)∧φsubtree

f̂
. This lets us proceed in the similar manner, as for the

proof of Lemma 2, to show that I(ĝ1)∧ . . .∧ I(ĝn)∧φ f̂ =⇒ I(f̂), where each I is
an interpolant constructed for the correspondent partition of the PBMC formula.
Furthermore, by definition of the interpolant, ¬σ(f̂)∧ I(f̂) is unsatisfiable, and
consequently, I(f̂) =⇒ σ(f̂). Conjoining the two derived implications, we get
property (2.6).

44 2.4 Related Work to Function Summarization

2) f̂ ∈ S. Since all the function calls from the subtree of f̂ ∈ S (including
f̂) are recomputed, thus property (2.6) is guaranteed by definition of the tree
interpolation.

3) f̂ /∈ S and for all the children calls ĝ1, . . . , ĝn /∈ S. Since all the function cals
from f̂ , ĝ1, . . . , ĝn have the old valid summaries, property (2.6) is guaranteed by
direct application of Lemma 2.

We now show that the properties (2.5, 2.6) are strong enough to show that
the whole program is safe.

Theorem 2. When the program call tree annotated by interpolants satisfies the
properties (2.5, 2.6), then ¬π∧φsubtree

f̂main
=⇒ ⊥ (i.e., the whole program is safe).

Proof. Property (2.5) yields ¬π ∧ σ(f̂main) =⇒ ⊥. Repeated application of
property (2.6) to substitute all interpolants on the right hand side yields the
claim ¬π∧φsubtree

f̂main
=⇒ ⊥.

2.4 Related Work to Function Summarization

In this section we give an overview of different approaches to construct function
summaries and use them in formal verification. The techniques related to Craig
interpolation, our underlying engine for summaries’ synthesis, are discussed in
Sect. 2.1.2. Likewise, the techniques related to incremental verification are dis-
cussed in Sect. 4.4.

Function summaries date back to Hoare logic [79]. Hoare proposed to attach
every function F with a pre-condition pre and a post-condition post (denoted
as {pre}F{post}). The pair (pre, post) can be seen as an over-approximating
function summary since it specifies all behaviors of the function that start in a
state satisfying pre and finish in a state satisfying post. Notably, if the Hoare triple
{pre}F{post} is valid then the summary allows all set of exact behaviors of F and
possibly more (so does our summary in Def. 7 as well).

Since then a variety of approaches were proposes for computing summaries.
For instance, [117] presents an algorithm to compute function summaries ex-
plicitly using the data-flow analysis. That is, the control-flow graph of a program
is traversed and the sets of initial and final states of each function call are in-
crementally recorded until no new states is discovered. The idea was further

45 2.4 Related Work to Function Summarization

employed in the tool BEBOP [12] (a part of the framework SLAM [13]) that use
BDDs to represent the program states. Due to their high sensitivity to the num-
ber of variables, BDDs were replaced by SAT- and QBF-based techniques in the
further work by [15]. As admitted in [15], QBF queries still constitute a major
bottleneck. We propose a less expensive procedure to extract multiple function
summaries from a single proof of unsatisfiability of a BMC formula.

The raise of SAT-based model checking techniques instigated the research for
over-approximating function behaviors instead of explicit enumerating them. In
particular, bounded model checkers SATURN [135; 136] and CALYSTO [9] gen-
erate summaries for each function by an iterative discovery of modification of
variable values in the function behaviors. Such computation requires many calls
to a SAT solver, but can end up with more general summaries than [117]. This is
conceptually different approach also to our Alg. 2 that requires a single proof of
unsatisfiabililty of the entire program and synthesizes all the summaries at once.
Despite all approaches described so far are distinguished by the methods to syn-
thesize summaries, they all agree on the way of using them: once computed, the
summaries can substitute other calls of the same function whenever they need
to be processed by the model checking algorithm once again.

As we mention in Sect. 2.1.2, there is an extension of LAWI that supports
handling function calls [100]. It also uses function summaries. It extends sym-
bolic execution to remember a reason for infeasibility of an execution path, i.e.,
a blocking annotation. Blocking annotations are used to reject other execution
paths as early as possible. Compared to our technique, lazy annotation uses inter-
polation to derive and propagate the blocking annotations backwards for every
program instruction. If the annotation is to be propagated across a function call,
a function summary merging blocking annotations from all paths through the
function is generated and stored for a later use. Our technique uses interpo-
lation on the whole BMC formula and creates one function summary from one
interpolant.

Algorithmically, the closest body of our BMC-based approach with Recursion
Depth Detection (Alg. 1) is the CORRAL [93] model checker. Unlike in our ap-
proach, in the CORRAL, 1) the depth of recursion is bounded by a user-supplied
recursion depth and 2) an external tool [62] is used to generate function sum-
maries which in general may not be helpful to verify the given assertion. Our
approach is able to generate relevant function summaries by itself. Moreover, it
forces summaries to be bit-precise and highly related to the given assertion.

46 2.5 Summary of Contributions

The most recent verification framework that generates and manipulates func-
tion summaries is SEAHORN [71]. SEAHORN synthesizes summaries by encoding
and solving a system of non-linear Horn clauses (see Sect. 4.1.2 for more de-
tail) that requires developing an appropriate SMT solver that admits quantifier
elimination (see Sect. 3.1.1 for more detail) for each particular first-order theory
(including bit-vectors). In contrast, we are able to use already existing SAT-based
methods and easily allow bit-precise reasoning.

To finalize our brief overview of related methods, we stress the attention
again on the over-approximating nature of the function summaries used in model
checking. Because of this, the summaries are sometimes referred to as may-
summaries, i.e., that they are valid for all function executions. In contrast, dy-
namic analysis typically manipulates the must-summaries, i.e., that they are valid
for some function executions. While may-summaries are used to prove the ab-
sence of bugs in the program, must-summaries are used to prove the existence
of bugs in the program. There are methods to create must-summaries by an-
alyzing concrete behaviors of a program during its execution or analyzing logs
after the execution [65; 36]. There are methods that combine may- and must-
analysis [66], but still this line of research remains orthogonal to ours.

2.5 Summary of Contributions

In this chapter, we contributed a FIV technique for BMC (left branch in Fig. 1.1)
that searches for counter-examples during the bounded exploration of the pro-
gram search space. Our main contribution is the framework for synthezing a
reusable specification of the program safe up to the given bound. In the con-
text of SAT-based BMC, we proposed to use the proof of unsatisfiability of the
BMC formula in order to discover over-approximating function summaries that
are strong enough to guarantee the bounded safety. We further proposed an al-
gorithm to effectively reuse the summaries synthesized after the verification of
one program version to verify another program version. The core feature of the
algorithm is that it revalidates the old summaries of the modified function calls
locally and repairs the new summaries for functions whose old summaries are
not valid any longer.

Furthermore, we contributed techniques for constructing function summaries
of a better quality in cases when the program is supplied with a sequence of pre-
defined assertions. We proposed the algorithm to perform a lightweight analysis

47 2.5 Summary of Contributions

of a set of assertions to optimize the generation of summaries. In addition, we
contributed solutions for accelerating BMC for an individual program version
and finding a proper unwinding of recursive calls.

We implemented the interpolation-based function summarization, refinement,
automatic recursion depth detection and automatic assertion implication detec-
tion in a tool FUNFROG extending the CBMC [40] model checker. We imple-
mented the incremental BMC algorithm in a tool EVOLCHECK extending the FUN-
FROG model checker. We evaluated the tools on the range of academic and in-
dustrial benchmarks provided by the PINCETTE EU project and confirmed that
incremental changes can be verified efficiently for different classes of programs.
More details on the evaluation can be found in Sect. 5.1 and Sect. 5.2.

48 2.5 Summary of Contributions

Chapter 3

SMT-Based Simulation Discovery

Simulation is one of the oldest logical concepts behind program analysis. In-
troduced by Milner [104], a simulation relation is used to represent a condition
under which the complete set of behaviors of one program (called source and de-
noted by S) is included into the set of behaviors of another program (called target
and denoted by T). The role of simulation relation for FIV is self-explanatory:
if S is simulated by T then all possible assertions that hold in T will also hold
in S. Thus, an algorithm for discovering a simulation relation may be used for
both types of programs: with implanted assertions (as in Chap. 2) or without
any assertions at all.

The programs can, however, be substantially different, thus making the task
of finding an appropriate simulation relation difficult. To overcome this problem,
Milner suggests to abstract some irrelevant details from the target program and
thus to improve the chances of the simulation relation to be found. In this chap-
ter, we propose a solution to the problem known for the past half century, and in
particular: (1) the challenge of constructing a total simulation relation between
two programs, and (2) whenever the target T does not simulate the source S,
the challenge of finding an abstraction of the target T that simulates the source
S.

In Sect. 3.2, we propose to reduce the problem of simulation discovery to
deciding validity of ∀∃-formulas. Intuitively, the formulas say “for each behav-
ior of S there exists a corresponding behavior of T”. We manipulate implicit
abstractions of T by introducing existential quantifiers to the right-hand-side of
the ∀∃-formulas. In Sect. 3.3, we present a novel algorithm AE-VAL for decid-
ing validity of ∀∃-formulas. In addition, AE-VAL extracts a Skolem relation to

49

50 3.1 Background

witness the existential quantifiers. This Skolem relation is the key to refine the
considered abstractions of T .

The results reported in this chapter have been published in the paper [57] (co-
authored with Arie Gurfinkel and Natasha Sharygina). For the sake of simplic-
ity, this chapter considers loop-free programs only, but the contributed approach
scales to programs with loops as well. The further use of simulation relation, as
a building block for Property-Directed Equivalence applicable to programs with
complicated loop structures, is discussed in Chap. 4 and in Sect. 5.3.

3.1 Background

3.1.1 SMT Solving and Quantifier Elimination

Given a set X of variables, a set F of function symbols, and a set P of predicate
symbols. A function symbol of 0-arity is called a constant, and a predicate symbol
of 0-arity corresponds to a propositional variable. A term is either a constant or an
expression constructed from function symbols in F and variables in X . An atom
is either a propositional variable or an expression constructed from predicate
symbols in P and terms. A formula is an expression constructed from atoms,
propositional operations (¬, ∧, ∨), and quantifiers (∀, ∃). A ground formula is
a formula that has no variable occurrences. A formula without free variables is
called a sentence (or a closed formula). A formula without quantifiers is called
quantifier-free.

We refer to a union X ∪ F as a signature Σ. Consider a first-order language
with equality (i.e., “=”∈ P) and a signature Σ. A Σ-structure S consists of a do-
main of interpretation, denoted as |S|, and an interpretation function that assigns
elements of |S| to variables, and functions and predicates on |S| to the symbols
of Σ. Given a Σ-structure S, a Σ-assignment s is a function mapping each Σ-term
to an element in |S|. Given a formula ϕ in the first-order language, we call ϕ sat-
isfied by a Σ-structure S, denoted S |= ϕ, if there exists a Σ-assignment s (called
a model) under which ϕ evaluates to >.

A first-order theory T consists of a signature Σ and a set of Σ-sentences S . A
Σ-formula ϕ is T -satisfiable is there exists a Σ-structure S ∈ S such that ϕ satis-
fied by S. A Σ-formula ϕ is T -valid if its negation is T -unsatisfiable. The Satisfi-
ability Modulo Theory (SMT) problem for a given theory T and a quantifier-free
formula ϕ aims at determining whether ϕ is T -satisfiable.

51 3.1 Background

Quantifier elimination is a decision procedure that turns a quantified formula
into an equivalent quantifier-free formula. In addition, the quantifier elimination
algorithms are often able to discover a Skolem function that represents witnesses
for the existentially quantified individual variables (e.g., [11; 90; 77; 84]). Var-
ious tasks in verification and synthesis [128; 37; 17; 63] rely on efficient tech-
niques to remove existential quantifiers from formulas in first-order logic, thus
adjusting the task to be decided by an SMT solver. In particular, functional synthe-
sis aims at computing a function that meets a given input/output relation. A func-
tion with an input x and an output y , specified by a relation f (x , y), can be con-
structed as a by-product of deciding validity of the formula ∀x∃y . f (x , y). Due
to a well-known AE-paradigm (also referred to as Skolem paradigm [114]), the
formula ∀x∃y . f (x , y) is equivalent to the formula ∃sk ∀x . f (x , sk(x)), which
means existence of a Skolem function sk, such that f (x , sk(x)) holds for every x .
Thus the key feature in modern quantifier elimination approaches is their ability
to produce witnessing Skolem function.

3.1.2 Model-Based Projection for Linear Rational Arithmetic

Quantifier elimination of a formula ∃~y . T (~x , ~y) is an expensive procedure that
typically proceeds by enumerating all models of an extended formula T (~x , ~y).
However, in some applications, the quantifier-free formula, fully equivalent to
∃~y . T (~x , ~y), is not even needed. Instead, it is enough to operate by (possibly
incomplete) sets of models. This idea relies on some notion of projection that
under-approximates existential quantification. In this chapter, we consider a con-
cept of Model-Based Projections (MBP), recently proposed by [86; 52].

In the following, we use vector notation to denote sets of variables (and set-
theoretic operators of subset ~u ⊆ ~x , complement ~x~u = ~x \ ~u, union ~x = ~u∪ ~x~u).

Definition 11. An MBP~y is a function from models of T (~x , ~y) to ~y-free formulas
iff:

if m |= T (~x , ~y) then m |=MBP~y(m, T) (3.1)

MBP~y(m, T) =⇒ ∃~y . T (~x , ~y) (3.2)

There are finitely many MBPs for fixed ~y and T and different models m1, . . . , mn

(for some n): T1(~x), . . . , Tn(~x), such that ∃~y . T (~x , ~y) =
∨n

i=1 Ti(~x).
A possible way of implementing an MBP-algorithm was proposed in [86]. It is

based on Loos-Weispfenning (LW) quantifier-elimination method [95] for Linear

52 3.1 Background

Rational Arithmetic (LRA). Consider formula ∃~y . T (~x , ~y), where T is quantifier-
free. In our simplified presentation, ~y is singleton, T is in Negation Normal Form
(that allows the operator ¬ to be applied only to variables), and y appears in the
literals only of the form y = e, l < y or y < u, where l, u, e are y-free. LW states
that the equation (3.3) holds:

∃y . T (~x)≡
� ∨

(y=e)∈lits(T)

T[e]∨
∨

(l<y)∈lits(T)

T[l + ε]∨ T[−∞]
�

(3.3)

In (3.3), lits(T) denote the set of literals of T , T[·] stands for a virtual sub-
stitution for the literals containing y . In particular, T[e] substitutes exact values
of y (y = e), T[l + ε] substitutes the intervals (l < y) of possible values of y ,
T[−∞] substitutes the rest of the literals. Consequently, a function LRAProjT is
an implementation of the MBP function for (3.3):

LRAProjT (m) =

T[e], if (y = e) ∈ lits(T)∧m |= (y = e)
T[l + ε], else if (l < y) ∈ lits(T)∧m |= (l < y)∧

∀(l ′< y)∈ lits(T) .m |=
�

(l ′< y) =⇒ (l ′≤ l)
�

T[−∞], otherwise
(3.4)

3.1.3 Programs and Abstractions

As in Sect. 3.1.2, we use vector notation to denote sets of real and boolean vari-
ables (and set-theoretic operations of subset ~u ⊆ ~x , complement ~x~u = ~x \ ~u, union
~x = ~u∪ ~x~u). For the first-order formulas ϕ(~x) ∈ Expr in the chapter, we assume
that all free variables ~x are implicitly universally quantified. For simplicity, we
omit the arguments and simply write ϕ when the arguments are clear from the
context. Furthermore, for a model m of ϕ ∈ Expr we write m |= ϕ, and for an
implication between ϕ,ψ ∈ Expr we write ϕ =⇒ ψ.

In this chapter, we illustrate our key ideas on simulation synthesis for simple
loop-free programs, since 1) it requires deepening to the computational level,
but handling loops would make our presentation unnecessarily complicated; 2)
it can be seen as a building block for designing an automated FIV solution for
complex programs with (possibly nested) loops. Thus, the extension of the con-
cepts and ideas presented here is left to Chap. 4. Throughout the chapter (but
except Sect. 3.3), we use the same three example programs shown in Fig. 3.1. For

53 3.1 Background

int a = *;

int b = *;

while(*){

a = a + b;

}

(a) The source

int a = *;

int b = *;

while(*){

int c = a - b;

a = c;

}

(b) The target

int a = *;

while(*){

int b = *;

int c = a - b;

a = c;

}

(c) Abstraction of the target

Figure 3.1. Three programs written in the C programming language.

demonstration purposes, we focus on their loop bodies in an arbitrary iteration.

Definition 12. A program P is a tuple 〈Var, Init, Tr〉, where Var≡ V ∪ L ∪ V ′ is a
set of input, local and output variables; Init ∈ Expr encodes the initial states over
V; and Tr ∈ Expr encodes the transition relation over Var.

A state ~s ∈ S is a valuation to all variables in V . While Tr encodes an entire
computation between initial and final states, the values of variables in L explicitly
capture all intermediate states along the computation. If for states ~s, ~s′ there
exists a valuation ~l to the local variables in L, such that (~s ∪~l ∪ ~s′) |= Tr, we call
the pair (~s, ~s′) computable. V ′ is used to denote the values of variables in V at the
end of the computation. We write ~s′ for ~s(x ′) and S ′ for {~s′ | ~s ∈ S}.

Definition 13. Given a program P = 〈Var, Init, Tr〉, a transition system T (P) =
〈S , I , R 〉, where I = {~s ∈ S | ~s |= Init} is the set of initial states, R = {(~s, ~s′) | ~s ∈
S , ~s′∈S ′ . (~s, ~s′) is computable} is a transition relation.

To simplify the presentation, we use programs and their transition systems
interchangeably throughout this chapter.

Definition 14. Program P1 = 〈V1∪ L1∪V ′, Init1, Tr1〉 is an abstraction of program
P2 = 〈V2 ∪ L2 ∪ V ′2 , Init2, Tr2〉 iff (1) V1 ⊆ V2, (2) Init2 =⇒ Init1, (3) each (~s, ~s′)
that is computable in Tr2, is also computable in Tr1.

Example 7. Consider an example in Fig. 3.1(b)-3.1(c). The loop bodies of the
concrete and abstract programs differ in the sets of input variables: for the abstract
one V1 = {a, b}, for the concrete one: V2 = {a}; and the sets of local variables:
L1 = {c}, L2 = {b, c}, respectively. The difference in the initial states and the
transition relations of both programs can be seen in Examples 8,9.

54 3.2 From Simulation to Validity

Definition 15. Given transition systems S and T, a left-total relation ρ ⊆ SS × ST

is a simulation relation if (1) every state in IS is related by ρ to some state in IT ,
and (2) for all states ~s, ~s′ and ~t, such that (~s,~t) ∈ ρ and (~s, ~s′) ∈ RS there is some
state ~t ′, such that (~t, ~t ′) ∈ RT and (~s′, ~t ′) ∈ ρ.

We write S �ρ T to denote that the source S is simulated by the target T via
a simulation relation ρ. We write S � T to indicate existence of a simulation
between S and T . The identity relation id, i.e., pairwise-equivalence of values
of common variables, is an example of ρ. Each program S is simulated by a
universal abstraction U of any other program T (which is in fact the only com-
mon abstraction to all possible programs). Since such cases do not provide any
practical significance, in our approach they are algorithmically disqualified.

Note that the programs in scope of the chapter are not required to have an er-
ror location. Thus, the approach proposed in the following sections is not limited
to dealing only with safe programs.

3.2 From Simulation to Validity

The goal of simulation synthesis is to deliver a relation ρ between two programs
S and T such that S �ρ T . The high-level idea behind a possible synthesizer
of ρ is to enumerate a pool of candidate relations ρ1, . . . ,ρn and check whether
one of those relation constitutes a simulation. While such “enumerate-check”
procedure can be straightforwardly implemented in a loop, the efficiency and
termination of the loop still crucially depends on two challenging points. First,
there should be a procedure for checking each candidate relation. Second, there
should be a procedure for choosing the next candidate relations to populate the
pool.

In this section, we show that deciding whether a given relation ρ is a simula-
tion relation is reducible to deciding validity of ∀∃-formulas. We then show how
Skolem functions witnessing the existential quantifiers can be used to provide a
new candidate relation ρ′ to be iteratively checked for simulation.

3.2.1 Deciding Simulation Symbolically

Let S(~s, ~x , ~s′), T (~t, ~y , ~t ′) ∈ Expr encode transition relations of programs, where
~s and ~t, ~s′ and ~t ′, ~x and ~y are input, output, and local variables, respectively.

55 3.2 From Simulation to Validity

Let InitS(~s), InitT (~t)∈Expr encode the initial states in S and T , respectively. Let
ρ(~s,~t)∈Expr encode a left-total relation between variables in S and T .

Lemma 4. T simulates S via relation ρ iff

InitS(~s) =⇒ ∃~t .ρ(~s,~t)∧ InitT (~t) (3.5)

ρ(~s,~t)∧ ∃~x . S(~s, ~x , ~s′) =⇒ ∃~t ′, ~y . T (~t, ~y , ~t ′)∧ρ(~s′, ~t ′) (3.6)

Implication (3.5) reflects the matching of initial states in S and T via ρ. The
left-hand-side of implication (3.6) reflects the set of all behaviors in S and the
set of all input conditions matched via ρ. The right-hand-side of (3.6) reflects
the existence of a behavior in T and an output condition matched via ρ.

Example 8. Consider two programs in Fig. 3.1(a) and Fig. 3.1(b). Assume that
constants X , Y are assigned to the input variables as in (3.7), so the computation
starts at the identical states. The fragments of the transition relation corresponding
to the single loop body are encoded into (3.8):

InitS ≡ (aS = X)∧ (bS = Y) InitT ≡ (aT = X)∧ (bT = Y) (3.7)

S ≡ (a′S = aS + bS) T ≡ (cT = aT − bT)∧ (a′T = cT) (3.8)

where the subscript indicates in which program the variables are defined.
Let ρ be a relation between variables in S and T:

ρ ≡ (aS = aT)∧ (bS = bT) ρ′ ≡ (a′S = a′T)∧ (bS = bT) (3.9)

ρ is a simulation relation iff the two formulas are valid:

InitS =⇒ ∃aT , bT . InitT ∧ρ ρ ∧ S =⇒ ∃cT , a′T . T ∧ρ′ (3.10)

Note that since T is deterministic, the existential quantifiers in (3.10) are eliminated
trivially by substitution. In our example, the left implication of (3.10) is valid, but
the second implication of (3.10) simplifies to 0= 1. Hence, S 6� ρT.

3.2.2 Abstract Simulation

If the complete simulation relation between S and T is not found, we can pro-
ceed with checking whether S is simulated by an abstraction αT of T via relation
ρα. As a key result, we show that such abstract-simulation checking can be done
without constructing an abstraction explicitly. We focus on an existential abstrac-
tion α∃

~uT of T that abstracts away a subset of variables ~u ⊆ ~t of T [42].

Definition 16. Init∃
~u T ≡ ∃~u . InitT (~t), and α∃

~uT ≡ ∃~u, ~u′ . T (~t, ~y , ~t ′).

56 3.2 From Simulation to Validity

Deciding whether α∃
~uT simulates S via ρα(~s,~t~u) (where ~t~u is the complement

of ~u in ~t) can be done if the variables ~u are treated as locals in T .

Lemma 5. α∃
~uT simulates S via relation ρα iff

InitS(~s) =⇒ ∃~t~u, ~u .ρα(~s,~t~u)∧ InitT (~t) (3.11)

ρα(~s,~t~u)∧ ∃~x . S(~s, ~x , ~s′) =⇒ ∃~u, ~y , ~t ′~u′ , ~u
′ . T (~t, ~y , ~t ′)∧ρα(~s′, ~t ′~u′) (3.12)

Recall that in Example 8, the loop body T was shown to not simulate the
loop body S via identity relation. Interestingly, this result is still useful to obtain
a simulation relation between S and T by creating an implicit abstraction of T
and further refining it. We demonstrate this 2-steps procedure in Example 9.

Example 9. As the first (abstraction) step, we create an abstraction of T by choos-
ing a variable (say b) to be existentially quantified. Note that the produced abstrac-
tion is equivalent to the program in Fig. 3.1(c). Instead of encoding initial states
InitαT and a transition relation of αT from scratch (similarly to (3.7) and (3.8)),
we let InitαT ≡ ∃bT . InitT and αT ≡ ∃bT . T. Relation (3.9) (disproven to be a
simulation between S and T) is weakened in correspondence with αT:

ρα ≡ (aS = aT) ρ′
α
≡ (a′S = a′T) (3.13)

ρα is a simulation relation between S and αT iff the following formulas are valid:

InitS =⇒ ∃aT , bT . InitT ∧ρα ρα ∧ S =⇒ ∃cT , a′T , bT . T ∧ρ′
α

(3.14)

Clearly, (3.14) are valid iff there is a Skolem function for the existentially quantified
variable bT . Note that skbT

(bS) = −bS is such function, and (3.15) are valid.

InitS =⇒ (bT = −bS) =⇒ ∃aT . InitT ∧ρα
ρα ∧ S =⇒ (bT = −bS) =⇒ ∃cT , a′T . T ∧ρ′

α

(3.15)

As the second (refinement) step, skbT
is used to strengthen the simulation rela-

tion (3.13) between S and αT to become (3.16).

ρext
α
≡ (aS = aT)∧ (bS = −bT) ρ′ext

α
≡ (a′S = a′T)∧ (bS = −bT) (3.16)

Note that ρext
α

is a simulation relation between S and T.

3.2.3 Refining Simulation by Skolem Relations

Definition 17. Given a formula ∃y . f (x , y), a relation Sky(x , y) is a Skolem re-
lation for y iff (1) Sky(x , y) =⇒ f (x , y), (2) ∃y . Sky(x , y) ⇐⇒ ∃y . f (x , y).

In Def. 17, we allow Sky to be a relation between x and y such that (1) Sky

maps each x to a value of y that makes f true, (2.1) if for a given x , Sky maps x

57 3.2 From Simulation to Validity

to some value of y then there is a value of y that makes f valid for this value of x ,
(2.2) if for a given x , there is a value of y such that f holds, then Sky is not empty.
A Skolem relation Sky is functional iff it is of the form Sky(x , y)≡ y = f y(x) (also
known as a Skolem function, as in [127]). Sk~y is Cartesian iff it is a Cartesian
product of Skolem relations of individual variables from ~y . Sk~y is guarded iff it
is a guarded disjunction of Cartesian Skolem relations.

In other words, validity of a ∀∃-formula is equivalent to existence of an ap-
propriate total Skolem relation. As sketched in Example 9, our use of a Skolem
relation Sk witnessing the validity of the formulas (3.11,3.12) is to refine an ab-
stract simulation relation ρα to ρext

α
= ρα∧Sk. However, ρext

α
is guaranteed to be

a simulation relation only in case if the corresponding formulas (3.11,3.12) are
valid, thus requiring an extra simulation check.

Theorem 3 formalizes the condition, under which a Skolem relation for valid
formulas (3.11,3.12) refines an abstract simulation relation.

Theorem 3. Let S(~s, ~x , ~s′) and T (~t, ~y , ~t ′) be two programs, such that S �ρ T. Let
~u be a subset of variables in T (i.e., ~u ⊆ ~t), such that S �ρα α

∃
~u(T) and ρ =⇒ ρα.

Then, there exists a relation Sk(~s, ~u) such that (1) ρα ∧ Sk is a simulation relation
between S and T and (2) Sk is a Skolem relation for ~u in (3.11) and (3.12).

Proof. Let ~t~u be the complement of ~u in ~t, and ~t ′~u′ be the complement of ~u′ in ~t ′.
Having in mind ρ =⇒ ρα, let Sk be a left-total relation over ~s, ~s′, ~u and ~u′, such
that:

ρ(~s,~t)≡ ρα(~s,~t~u)∧ Sk(~s, ~u)

ρ(~s′, ~t ′)≡ ρα(~s′, ~t ′~u)∧ Sk(~s′, ~u′)
(3.17)

Substituting (3.17) into (3.5) and (3.6), we get (3.18) and (3.19) respectively:

InitS(~s) =⇒ ∃~t~u, ~u .ρα(~s,~t~u)∧ Sk(~s, ~u)∧ InitT (~t) (3.18)

ρα(~s,~t~u)∧ Sk(~s, ~u)∧S(~s, ~s′) =⇒
∃~t ′~u, ~u′, ~y . T (~t~u, ~u, ~y , ~t ′~u′ , ~u

′)∧ρα(~s′, ~t ′~u′)∧ Sk(~s′, ~u′)
(3.19)

Then from (3.18) and (3.19) it easy to see that Sk(~s, ~u) satisfies Def. 17 (it is
a Skolem relation) for ~u, respectively in (3.20) and in (3.21).

InitS(~s) =⇒ ∃~t~u, ~u .ρα(~s,~t~u)∧ Sk(~s, ~u)∧ InitT (~t) (3.20)

∃~u .ρα(~s,~t~u)∧S(~s, ~s′) =⇒
∃~t ′~u, ~u′, ~y . T (~t~u, ~u, ~y , ~t ′~u′ , ~u

′)∧ρα(~s′, ~t ′~u′)∧ Sk(~s′, ~u′)
(3.21)

Consequently, Sk(~s, ~u) is a Skolem relation for ~u in (3.23), that is logically

58 3.3 Validity and Skolem Extraction

weaker than (3.21); and in (3.22), that is logically weaker than (3.20).

InitS(~s) =⇒ ∃~t~u, ~u .ρα(~s,~t~u)∧ InitT (~t) (3.22)

∃~u .ρα(~s,~t~u)∧ S(~s, ~s′) =⇒ ∃~t ′~u′ , ~u, ~u′, ~y . T (~t~u, ~u, ~y , ~t ′~u, ~u′)∧ρα(~s′, ~t ′~u) (3.23)

Finally, (3.22) and (3.23) are equivalent respectively to the simulation-checking-
formulas (3.11) and (3.12) for S and α∃

~u(T).

The automated discovery of simulation for realistic programs based on the
aforementioned ideas and its application to FIV is left for Sect. 4.2.2 and Sect. 4.3.2
respectively. In the next section, we focus on the main solving routine that makes
our FIV solutions possible.

3.3 Validity and Skolem Extraction

We present AE-VAL, a novel algorithm for deciding validity of ∀∃-formulas and
constructing witnessing Skolem relations. Without loss of generality, we restrict
the input formula to have the form S(~x) =⇒ ∃~y . T (~x , ~y), where S has no uni-
versal quantifiers, and T is quantifier-free.

3.3.1 Deciding Validity of ∀∃-Formulas

Our algorithm is based on a notion of Model-Based Projection (MBP), defined in
Def. 11. Recall that an MBP~y is a function from models of T (~x , ~y) to ~y-free formu-
las. Given a model m, it returns a ~y-free formula, such that (1) m is also a model
of the image MBP~y(m, T), and (2) MBP~y(m, T) is an under-approximation of
∃~y . T (~x , ~y). There are finitely many MBPs for fixed ~y and T and different models
m1, . . . , mn (for some n): T1(~x), . . . , Tn(~x), such that ∃~y . T (~x , ~y) =

∨n
i=1 Ti(~x).

Additionally, we assume that for each projection Ti, the MBP-algorithm gives
a condition φi under which T is equisatisfiable with Ti:

φi(~x , ~y) =⇒
�

Ti(~x) ⇐⇒ T (~x , ~y)
�

(3.24)

Such a relation φi is a natural by-product of the MBP-algorithm in [86]. Intu-
itively, each φi captures the substitutions made in T to produce Ti. We assume
that each φi is in the Cartesian form, i.e., a conjunction of terms, in which each
y ∈ ~y appears at most once. That is, for y ∈ ~y and ∼∈ {<,≤,=,≥,>},

φi(~x , ~y) =
∧

y∈~y

�

y ∼ f y(~x)
�

(3.25)

59 3.3 Validity and Skolem Extraction

Algorithm 6: AE-VAL
�

S(~x),∃~y . T (~x , ~y)
�

Input: S(~x),∃~y . T (~x , ~y)
Output: return value ∈ {VALID, INVALID } of S(~x) =⇒∃~y . T (~x , ~y)
Data: SMTSOLVER, counter i, models {mi}, MBPs {Ti(~x)}, conditions

{φi(~x , ~y)}

1 SMTADD(S(~x));
2 i← 0;
3 forever do
4 i++;
5 if (ISUNSAT(SMTSOLVE())) then return VALID;
6 SMTPUSH();
7 SMTADD(T (~x , ~y));
8 if (ISUNSAT(SMTSOLVE())) then return INVALID;
9 mi ← SMTGETMODEL();

10 (Ti,φi(~x , ~y))←GETMBP(~y , mi, T (~x , ~y)));
11 SMTPOP();
12 SMTADD(¬Ti);

S ≡ (a = b+ 2)
T ≡ (a′ > a)∧ (b = 1 =⇒ b′ = b)∧

(b = 2 =⇒ b′ > b)∧
(b = 3 =⇒ b′ < b)

m1 ≡{a = 0, b = −2, a′ = 1/2, b′ = −5/2}
m2 ≡{a = 4, b = 2, a′ = 9/2, b′ = 5/2}
m3 ≡{a = 3, b = 1, a′ = 7/2, b′ = 1}

S(~x)

m2

m3

m1

T1(~x)

T2(~x)

T3(~x)

9~y.T (~x, ~y)

Figure 3.2. (a) S and T for ~x ≡ {a, b}, ~y ≡ {a′, b′}, models of S ∧ T and (b) the correspondent
Venn diagram.

We write (Ti,φi) ← GETMBP(~y , mi, T (~x , ~y)) for the invocation of the MBP-
algorithm that takes a formula T , a model mi of T and a vector of variables ~y ,
and returns a projection Ti of T based on mi and the corresponding relation φi.

AE-VAL is shown in Alg. 6. Given formulas S(~x) and ∃~y . T (~x , ~y), it decides
validity of S(~x) =⇒ ∃~y .T (~x , ~y). AE-VAL enumerates the models of S ∧ T and
blocks them from S. In each iteration i, it first checks whether S is non-empty

60 3.3 Validity and Skolem Extraction

(line 3) and then looks for a model mi of S ∧ T (line 9). If mi is found, AE-VAL
gets a projection Ti of T based on mi (line 10) and blocks all models contained
in Ti from S (line 12). The algorithm iterates until either it finds a model of S
that can not be extended to a model of T (line 8), or all models of S are blocked
(line 5). In the first case, the input formula is invalid. In the second case, every
model of S has been extended to some model of T , and the formula is valid.

Three possible iterations of AE-VAL are depicted graphically in Fig. 3.2. In
the first iteration, AE-VAL selects a model m1 and generalizes it to a projection
MBP~y(m1, T) = T1. Then, it picks a model m2 that is not contained in T1 and
generalizes it to MBP~y(m2, T) = T2. Finally, it picks a model m3 that is contained
neither in T1 nor in T2, and generalizes it to MBP~y(m3, T) = T3. At this point, all
models of S are covered by ~y-free implicants of ∃~y . T (~x , ~y), and the algorithm
terminates. We demonstrate this further in the following example.

Example 10. Let S and T be as defined in Fig. 3.2. We use Φi to denote the formula
in the SMT context at the beginning of iteration i of AE-VAL. Initially, Φ1 = S. The
first model is m1, and GETMBP(~y , m1, T) returns:

T1 ≡ (b 6= 1)∧ (b 6= 2) φ1 ≡ (a′ > a)∧ (b′ < b)

In the iteration 2, Φ2=Φ1∧¬T1, GETMBP(~y , m2, T) returns:

T2 ≡ (b 6= 1)∧ (b 6= 3) φ2 ≡ (a′ > a)∧ (b′ > b)

In the iteration 3, Φ3=Φ2∧¬T2, GETMBP(~y , m3, T) returns:

T3 ≡ (b 6= 2)∧ (b 6= 3) φ3 ≡ (a′ > a)∧ (b′ = b)

In the iteration 4, Φ4=Φ3∧¬T3 is unsatisfiable, and consequently AE-VAL returns
VALID and terminates.

AE-VAL is similar to other algorithms for deciding validity of quantified for-
mulas presented in the earlier works [105; 113; 52; 118]. However, it is the only
one known to generate a fine-grained Skolem relation, on which we elaborate in
the following Sect. 3.3.2.

3.3.2 Extracting Skolem Relation

AE-VAL is designed to construct a Skolem relation Sk~y(~x , ~y), that maps each
model of S(~x) to a corresponding model of T (~x , ~y). We use a set of projections
{Ti(~x)} for T (~x , ~y) and a set of conditions {φi(~x , ~y)} that make the correspond-
ing projections equisatisfiable with T (~x , ~y).

61 3.3 Validity and Skolem Extraction

Lemma 6. For each i, the relation φi(~x , ~y) is a Skolem relation for ~y in formula
S(~x)∧ Ti(~x) =⇒ ∃~y . T (~x , ~y).

Proof. The proof follows from (3.2), (3.24), and (3.25). Recall, by definition (3.24),
φi(~x , ~y) =⇒

�

Ti(~x) ⇐⇒ T (~x , ~y)
�

. Unfolding Def. 17, we need to show that:
1) φi(~x , ~y) =⇒ (S(~x)∧ Ti(~x) =⇒ T (~x , ~y)) – by definition (3.24).
2) ∃y .φi(~x , ~y) ⇐⇒ (S(~x) ∧ Ti(~x) =⇒ ∃~y . T (~x , ~y)) – since by construc-
tion (3.25), φi is total relation, and an implication in the definition of MBP (3.2)
is valid.

Intuitively, φi maps each model of S ∧ Ti to a model of T . Thus, in order
to define the guarded Skolem relation Sk~y(~x , ~y) it is enough to match each φi

against the corresponding Ti, as proposed in (3.26).

Sk~y(~x , ~y)≡

φ1(~x , ~y) if T1(~x)

φ2(~x , ~y) else if T2(~x)

· · · else · · ·

φn(~x , ~y) else Tn(~x)

(3.26)

The following theorem states that Sk~y(~x , ~y) satisfies Def. 17 for the chosen
model of ~x , and Sk~y(~x , ~y) is defined for all models of ~x . It follows immediately
from Lemma 6.

Theorem 4. If Sk~y(~x , ~y) is defined in (3.26) then Sk~y(~x , ~y) is a Skolem relation
for ~y in formula S(~x) =⇒ ∃~y . T (~x , ~y).

Note that not all Skolem relations are equal. In practice, we often like a
Skolem relation that minimizes the number of variables on which each partition
depends. We leave the problem of finding the minimum partitioning for future
and elaborate on this question in Sect. 4.2.3 of the next chapter.

3.3.3 Towards Minimal Skolem Refinement

In this section we elaborate on extracting Skolem functions from the Skolem
relation returned by AE-VAL. Given Sk~y(~x , ~y) for ~y , we want to factor Sk~y(~x , ~y)
into the product of Skolem functions for individual variables y j ∈ ~y , for 0 < i ≤
n. This is easy whenever Sk~y(~x , ~y) can be transformed into the form

∧

i(y j =
fi(~x)). However, such a factoring of Sk~y(~x , ~y) is not feasible in general because

62 3.3 Validity and Skolem Extraction

Sk~y(~x , ~y) might contain interdependencies between variables in ~y . Our goal
is then to find a sequence of Skolem functions f1(~x), . . . , fn(~x), such that every
tuple 〈~x , f1(~x), . . . , fn(~x)〉 is in Sk~y(~x , ~y). Hence, the conjunction sk~y(~x , ~y) ≡
�∧

0<i≤n(y j = fi(~x))
�

is a Skolem relation for ~y , and sk~y(~x , ~y) =⇒ Sk~y(~x , ~y).
We say that sk~y(~x , ~y) refines Sk~y(~x , ~y).

In practice, constructing a refinement sk~y(~x , ~y) for (3.26) is still difficult.
Instead, it is worth constructing a partial refinement – not necessarily a product
of Skolem functions. If for some v ∈ ~y , for every local Skolem relation φi(~x , ~y),
there exists a partial local Skolem refinement φv

i (~x , v):

φv
i (~x , ~y)≡ (v = fi(~x))∧φ

~y\v
i (~x , ~y \ v) s.t. φv

i (~x , ~y) =⇒ φi(~x , ~y) (3.27)

then there exists a partial global Skolem refinement Skv
~y(~x , ~y) for v:

Skv
~y(~x , ~y)≡ Skv(~x , v)∧ Sk~y\v(~x , ~y \ v) s.t. Skv

~y(~x , ~y) =⇒ Sk~y(~x , ~y) (3.28)

In the rest of the section, we propose techniques for (a) maximizing the num-
ber of factors in each local Skolem refinement (3.27), and (b) flattening the
factors in the global Skolem refinement (3.28). Our techniques lead to signifi-
cant minimization of the Skolem relation independently of whether a complete
refinement of the Skolem relation into the product of Skolem functions was con-
structed.

We propose an algorithm GLOBALFACTOR (shown in Alg. 7) to re-factor the
global Skolem refinement for a given variable y j ∈ ~y . The algorithm uses the
procedure LOCALFACTOR to extract factors from partial local Skolem refinements
(line 2). GLOBALFACTOR is independent of a particular implementation of LO-
CALFACTOR. We show a simple implementation of LOCALFACTOR in Alg. 8. Given
a local Skolem φ(~x , ~y) and a variable y j, Alg. 8 returns a local Skolem function
y j = f (~x). Note that Alg. 7 fails (line 3) whenever Alg. 8 does so (which in turn
depends on other subroutines of Alg. 8).

Whenever LOCALFACTOR returns a set of local Skolem functions { fi(~x)} for
each local Skolem φi(~x , ~y), GLOBALFACTOR constructs the set of equivalence
classes: Ti(~x) and T j(~x) belong to the same equivalence class if fi(~x) = f j(~x).
Then it is enough to collapse the ite statement (3.26) representing the global
Skolem relation (line 7) by merging all the cases projections Ti belonging to the
same equivalence class (line 6).

Note that if Alg. 7 is applied to every variable y j ∈ ~y and returns a non-empty
factor Sky j

(~x , y j) (i.e., does not exit in line 3), then the product
∧

y j∈~y
(Sky j

(~x , y j))
is factored partial global Skolem refinement for ~y .

63 3.3 Validity and Skolem Extraction

Algorithm 7: GLOBALFACTOR(y j, S(~x), {(Ti(~x),φi(~x , ~y))})

Input: variable y j, formula S(~x), set of pairs {(Ti(~x),φi(~x , ~y))}
Output: factor Sky j

(~x , y j)
Data: partitions {Pk(~x)}, equivalence classes Df

1 forall (φi(~x , ~y)) do
2 (y j = fi(~x))← LOCALFACTOR(y j,φi(~x , ~y));
3 if (fi(~x) ∈∅) then return ∅ ;
4 Df ← { f j}/≡; n← |Df |;
5 for (k = 1; k ≤ n; k++) do
6 Pk←

∨

{i | fi=[Df k]}
(Ti(~x));

7 return GLOBALSKOLEM({(Pk(~x), [D fk]});

Algorithm 8: LOCALFACTOR(y j,φ(~x , ~y))

Input: y j ∈ ~y , local Skolem relation
φ(~x , ~y) =

∧

y j∈~y
(ψy j

(~x , y j, . . . , yn))
Output: factor of the local Skolem refinement y j = f j(~x)
Data: known functions f j+1(~x), . . . , fn(~x)

1 πy j
(~x , y j)← SUBSTITUTE(ψy j

(~x , y j, y j+1, . . . , yn), f j+1(~x), . . . , fn(~x));
2 if (πy j

(~x , y j) ∈∅) then
3 return ∅;
4
∧

k

�

y j ∼ f k
j (~x)

�

← REWRITE(πy j
(~x , y j));

5 return MINIMALSKOLEM
�

∧

k

�

y j ∼ f k
j (~x)

�

�

;

Example 11. Let ~x ≡ {a, b}, ~y ≡ {c, d}, S ≡ (a > b), and T ≡ (d > −1)∧
�

a ≥
0 =⇒ (c ≤ 0∧ d ≤ c)

�

∧
�

a < 0 =⇒ (c < b ∧ d = 0)
�

. AE-VAL proves validity of
S(~x) =⇒ ∃~y . T (~x , ~y) in 2 iterations, in which it produces 2 pairs of MBPs and the
local Skolem relations {(T1,φ1), (T2,φ2)}:

T1 ≡ (a < 0) φ1 ≡ (d = 0)∧ (c ≤ a)∧ (c < b)∧ (c < 0)

T2 ≡ (a ≥ 0)∨ (b > 0) φ2 ≡ (d = 0)∧ (c ≥ 0)

The global factor for d is a constant Skolem function: Skd(~x , d)≡ (d = 0). The
global factor for c is in terms of the ternary ite-operator:
Skc(~x , c)≡ if (a < 0) then

�

(c ≤ a)∧ (c < b)∧ (c < 0)
�

else (c ≥ 0).

Let us now discuss the algorithm LOCALFACTOR. By construction, each local

64 3.3 Validity and Skolem Extraction

Skolem relation φ(~x , ~y) has a form
∧

y j∈~y
(ψy j

(~x , y j, . . . , yn)). Since quantifier
elimination in AE-VAL is applied iteratively for each variable y j ∈ ~y , y j may
depend on the variables of y j+1, . . . , yn that are still not eliminated in the cur-
rent iteration j. Each ψy j

(~x , y j, . . . , yn) is the conjunction ψy j
(~x , y j, . . . , yn) =

∧

i(cli(~x , y j, . . . , yn)), where each cli is an (in)equality.
For each y j ∈ ~y , our goal is to find a Skolem function f y j

(~x), such that (y j =
f y j
(~x)) =⇒ ∃y j+1, . . . , yn .ψy j

(~x , y j, . . . , yn). The idea is presented in Alg. 8.
The algorithm is applied separately for each y j ∈ ~y , starting from yn till y1. For
each y j, assume, we already established Skolem functions f j+1(~x), . . . , fn(~x) for
variables y j+1, . . . , yn in the previous runs of the algorithm.

First, the algorithm substitutes each appearance of variables y j+1, . . . , yn in
ψy j

by f j+1(~x), . . . , fn(~x) (line 1). If for some variable there is no Skolem func-
tion to substitute, the algorithm halts with nothing (line 3). Second, the algo-
rithm normalizes πy j

(~x , y j) into the form
∧

k

�

y j ∼ fk(~x)
�

, i.e., conjunction of
expressions, left-hand-sides of which are reserved for y j and ∼∈ {<,≤,=,≥,>}.
For this, it uses the method REWRITE (line 4) that rewrites each clause using the
following rule (where g, h - are functions over ~x , p, q - rational numbers, sgn - a
function, returning the sign of the rational number):

�

(g(~x) + p× y j)∼ (h(~x) + q× y j)
�

=⇒
�

�

sgn(p−q)× y j

�

∼
�

−
g(~x)
|p− q|

+
h(~x)
|p− q|

�

�

Finally the algorithm gets rid of inequalities (whenever applicable). Method MIN-
IMALSKOLEM rewrites each clause using the following rule:

(y j ≤ g(~x) ∧ y j ≥ g(~x)) =⇒ (y j = g(~x))

(y j ≤ h(~x) ∧ −y j ≤ −h(~x)) =⇒ (y j = h(~x))

Example 12. Let ~x = {a}, ~y = {c, d}, and φ(~x , ~y)≡ (0≤ −c−1 + d)∧(d = a)∧
(−c + d ≤ 1). First, LOCALFACTOR is run for d and returns its local Skolem factor
d = a. Second, LOCALFACTOR is applied for c. Method SUBSTITUTE rewrites (0 ≤
−c − 1 + d)∧ (−c + d ≤ 1) with d = a and gets (0 ≤ −c − 1 + a)∧ (−c + a ≤
1). Then, method REWRITE rewrites it to (c ≤ −1 + a) ∧ (−c ≤ 1 − a); and
MINIMALSKOLEM produces the local Skolem factor for c: (c = −1+ a).

Note that our current implementation of MINIMALSKOLEM extracts Skolem
function only in a case when there is a pair of adjacent inequalities. This is sound,
since for all ~x , and for all total functions g(~x), (y j ≤ g(~x)) ∧ (y j ≥ g(~x)) ⇐⇒
(y j = g(~x)). In future work, we plan to support extracting Skolem functions

65 3.4 Related Work to Simulation Synthesis

from sets of arbitrary inequalities. For example, if ψc(a, b, c) =
�

(c ≤ a) ∧ (c <
b)∧ (c < 0)

�

, as in Example 11, then there might be many possible local Skolem
factors for c, including c = min(a, b, 0) − 1. Another example, if ψd(a, b, d) =
�

(d > a)∧ (d < b)∧ (a < b)
�

, then a local Skolem factor for d might be d = b−a
2 .

3.4 Related Work to Simulation Synthesis

The notion of simulation relation between programs dates back to the seminal
paper of Milner [104]. Apart from the first algebraic formalization of simulation,
this work also proposed an idea of abstracting some details from two programs
in order to prove that they realize the same algorithm. Since then, this concept
has been widely used in verification and other areas of computer science.

The first symbolic automatic construction of simulation relations was pro-
posed by Dill et al. in [50]. However, that work is based on BDDs, and for
quantifier elimination it uses Shannon Expansion [30] (i.e., replaces the quantifi-
cation by a disjunction of all possible assignments). Another approach to check
simulation relations is game-theoretic: the state space of the source and the tar-
get programs is traversed by the evader and the pursuer players. For instance,
Henzinger et al. [73] apply it to prove validity of a simulation relation between
infinite graphs. We target to solve this problem by exploiting recent advance-
ments in SMT and thus allowing synthesis of non-trivial simulation relations.

The problem of constructing and checking simulation relations arises when
there is a need to prove equivalence between two programs for more detailed
overview see Sect. 4.4). Necula [109] proposes to check correctness of compiler
optimizations by constructing simulation relations heuristically. Namjoshi et al.
in [108; 64] propose a more precise way to construct simulation relations, which
requires augmenting a particular optimizer. Ciobâcă et al. [39] develop a para-
metric proof system for proving mutual simulation between programs written
in different programming languages. These approaches do not deal with cases
when programs are not equivalent (i.e., there exists only an abstract simulation
or when there is some other form of simulation relation rather than identity).
Our approach goes beyond these limitations.

Simulation relation is a sort of relative specifications: it describes how the be-
haviors of programs relate to each other, but not how they behave individually.
Inferring other types of relative specifications were studied in [92; 61]. Lahiri et
al. [92] propose to search for differential errors: whether there exist two behav-

66 3.5 Summary of Contributions

iors of S and T starting from the same input, such that the former is non-failing
and the latter is failing. The proposed solution is by composing S and T into one
program and running an off-the-shelf invariant generator on it. Felsing et.al [61]
aims at synthesizing coupling predicates, a stronger relationship than a simula-
tion relation, since it does not allow programs to have unmatched behaviors. In
contrast to our approach, their synthesis method is restricted to deal only with
deterministic and terminating programs and does not require quantifier elimina-
tion.

Functional synthesis [24] is the process to construct a logical function (which
in turn can formalize some program) that fulfils a given specification. Counter-
Example-Guided Inductive Synthesis (CEGIS) [128] maintains a pool of candi-
date functions and checks whether the current candidate is a solution to the syn-
thesis problem. Our approach for simulation relation synthesis can be seen as an
instantiation of CEGIS, but it simultaneously handles two candidate pools, for
simulation and for abstraction. While solving a simulation-relation-checking for-
mula, our algorithm decides whether the current candidate relation constitutes
a simulation with respect to the current candidate abstraction. If the formula
is valid, the pools are populated with the help of discovered Skolem relation;
otherwise, by applying existential abstraction function. We leave the further dis-
cussion on possible extensions of this idea (i.e., to provide an iterative synthesis
algorithm) for the next chapter.

3.5 Summary of Contributions

In this chapter, we contributed a solution to the problem of simulation discov-
ery between two programs (central branch in Fig. 1.1) that do not necessarily
contain assertions. Our main contribution is the approach to synthesize both,
abstractions and simulations, between the source and the target programs. If
the target does not simulate the source, we proposed to detect an abstraction
of the target that simulates the source. In contrast to existing techniques, our
solution is based on deciding validity of ∀∃-formulas iteratively, and abstractions
are created implicitly, by existential quantification of program variables.

The second contribution of the chapter is AE-VAL, the decision procedure
that extracts Skolem relations from valid ∀∃-formulas in LRA. We proposed to
guide Skolemization procedure in AE-VAL by iterative construction of MBPs that
under-approximate existential quantification. Finally, we presented an algorithm

67 3.5 Summary of Contributions

to factorize Skolem relations and make it more suitable for the further use. We
implemented AE-VAL on the top of the SMT solver Z3 [106]. AE-VAL relies on
the external procedure [86] to obtain MBPs.

Despite this chapter contributes the algorithm for simulation synthesis only
for the loop-free programs, it can be generalized to overcome this restriction (and
is discussed in Chap. 4). Evaluation of AE-VAL and the algorithm for simulation
synthesis is performed within a NIAGARA framework that is discussed in Sect. 5.3.

68 3.5 Summary of Contributions

Chapter 4

SMT-Based Unbounded Model
Checking via Abstract Simulation

Model checking of programs handling unbounded loops is nowadays reduced to
finding safe inductive invariants (or shortly, proofs) that over-approximate the
sets of reachable states, but precise enough to prove unreachability of the given
assertion. This problem is known to be undecidable in general, so the individ-
ual model-checking solutions based on CEGAR and PDR are not guaranteed to
deliver an appropriate invariant. On the other hand, in cases if the model check-
ing succeeded, the synthesized invariant provides an important specification that
comes in handy whenever the program gets modified. However, in order to mi-
grate the invariant between evolution boundaries, some relational specification,
such as the simulation relation, is needed.

This chapter extends our idea of simulation synthesis presented in Chap. 3
to a general case. We consider programs with complicated loop structures, i.e.,
those that involve communication of two or more loop-free fragments encoded
as independent transition relations. We propose to discover simulation relations
gradually: 1) on the level of loop structures, (to find a matching between loop-
free fragments), and 2) on the level of pairs of the matched loop-free fragments.
This procedure is inductive since each discovered relation of each matched loop-
free fragments requires checking for the compatibility with the other pairs of
matched loop-free fragments. In Sect. 4.2, we propose an algorithm that im-
plements a complete Simulation-Abstraction-Refinement Loop and enables such
inductive reasoning.

In Sect. 4.3, we address a challenge of migrating a safe inductive invariant

69

70 4.1 Background

between programs. However, for the efficiency reasons, a precise simulation re-
lation between concrete programs might be sacrificed here. Instead, it might be
enough to find some abstraction of the already verified program that simulates
the new program and to prove that the given invariant is safe for this abstraction.
We propose to derive such abstractions from the invariants. If the abstract simula-
tion is found then the proof can be lifted directly. Finally, we present a technique
to lift the proof through abstractions even if they do not preserve safety. Our
solution tries to lift as much information from the invariant as possible, and then
strengthens it using an induction-based unbounded model checker.

The results reported in this chapter have been published in the following pa-
pers: [55] (co-authored with Arie Gurfinkel and Natasha Sharygina) and [57] (co-
authored with Arie Gurfinkel and Natasha Sharygina). All the presented algo-
rithms are implemented within an LLVM-based framework NIAGARA, but are dis-
cussed outside of this chapter, in Sect. 5.3.

4.1 Background

4.1.1 Large-Block Encoding for Unbounded Model Checking

In this chapter, we consider “large-block” encoding (LBE) [18] of programs that
allows representing complex control-flow graphs compactly.

Definition 18. A program is a tuple P = 〈Vars, CP, en, err, E,τ〉, where Vars is a set
of program variables, CP is a set of cutpoints (i.e., program locations which represent
heads of loops); en, err ∈ CP are designated locations of the program entry and
the error, respectively; E ⊆ CP× CP is the control-flow relation (to represent loop-
free program fragments), and τ : E → Expr(Vars) maps control edges to formulas
in first-order logic that encode a transition relation of the correspondent loop-free
program fragment. We refer to the graph 〈CP, E〉 as a cutpoint graph (CPG) of the
program P.

Throughout the chapter, we consider only variables that appear as source-
and destination arguments for the edges E of the program P. In the formulas
encoding transition relations τ, the other (local) variables are implicitly exis-
tentially quantified. Let V : E → 2Vars be the function that, given a cutpoint,
returns a set of variables live at that cutpoint. We use primed notation for Vars′

to distinguish between the source and the destination arguments of each edge.

71 4.1 Background

To enable quantification over variables in a formula e ∈ Expr, we explicitly
declare the variable sets over which e is expressed. For example, if e is expressed
over ~x and ~y , we write e(~x , ~y). If, in addition, ~x is existentially quantified in
e, we write ∃~x . e(~x , ~y). However, when clear from the context, the variables
declarations can be omitted from the formulas.

The goal of unbounded model checking is to check whether the location err
is unreachable by any program behavior starting at the location en. One of the
most common ways of proving safety of a program is to construct an inductive
invariant that over-approximates the sets of reachable states in the program, and
to prove the unreachability of err for the invariant. In the context of LBE, (safe)
inductive invariants are represented by a labeling of the cutpoints with logical
formulas, such that the condition(s) of the following definition hold.

Definition 19. Given a program P, a mappingψ : CP→ Expr(Vars) is an inductive
invariant if:

∀(u, v) ∈ E .
�

ψ(u)(~x) ∧ τ(u, v)(~x , ~x ′) =⇒ ψ(v′)(~x ′)
�

(4.1)

ψ is a proof (or a safe inductive invariant) of P if additionally:

ψ(err)(~x ′) =⇒ ⊥ (4.2)

In (4.1), ψ(u) is expressed over the source arguments of the cutpoint-edge
(u, v) (denoted as ~x). Similarly,ψ(v′) that stands for the primed version ofψ(v),
is expressed over the destination arguments of the cutpoint-edge (u, v) (denoted
as ~x ′). Throughout the chapter, we add the following mnemonic notation to
emphasize whether (4.2) hold for an inductive invariant: |ψ| (with vertical bars)
to indicate that (4.1) holds alone, and Òψ (with a hat) to indicate that both, (4.1)
and (4.2), holds. Ifψ is used without this mnemonic notation then in the current
context it does not matter if (4.1) holds alone, or together with (4.2).

Since an inductive invariant over-approximates the sets of reachable states
for each cutpoint of a program P, it allows more behaviors of P than specified
by its transition relation τ. It can be used to represent programs that share the
CPG-structure with P, but have less accurate transition relations. We say that
such programs are the abstractions of P and describe them formally as follows.

Definition 20. Given two programs P = 〈Vars, CP, en, err, E,τ〉 and
αP = 〈Vars, CP, en, err, E,τα〉, αP is an abstraction of P if for some inductive in-
variant ψ of P,

∀(u, v) ∈ E .
�

ψ(u)(~x) ∧ τ(u, v)(~x , ~x ′) =⇒ τα(u, v)(~x , ~x ′)
�

(4.3)

72 4.1 Background

The use of an inductive invariant ψ in (4.3) makes the way of creating ab-
stractions more flexible. Indeed, for each cutpoint u ∈ CP, the formula ψ(u)
might bring any additional information about the pre-states at the edge (u, v) ∈ E
learned inductively from the dependent cutpoint-edges. Notably, τ(u, v) might
be incomparable (and even inconsistent) with ψ(u).

The simplest way to construct a program abstraction from the given induc-
tive invariant ψ is to assign the transition relation of each cutpoint-edge by the
invariant at the post-state of that edge. Thus, an abstraction of P can be con-
structed directly from ψ, and in rest of the chapter we will refer to it as to αψP.
The following lemma assures that αψP satisfies Def. 20.

Lemma 7. Given P = 〈Vars, CP, en, err, E,τ〉 and its invariant ψ,
let αψP = 〈Vars, CP, en, err, E,τψ

α
〉 be defined as:

∀(u, v) ∈ E .
�

τψ
α
(u, v)(~x , ~x ′)¬ψ(v′)(~x ′)

�

(4.4)

Then αψP is an abstraction of P.

If ψ is not trivial (i.e., ∃u ∈ CP .ψ(u) 6=>) and some abstraction αP is as ac-
curate as αψP then αP provides a particular interest for incremental verification
that is explained in Sect. 4.3. However, for the sake of completeness of presenta-
tion, we must admit that Def. 20 also allows other types of abstractions, whose
abstract transition relation does not necessarily satisfyψ(v′) for all post-states at
(u, v).

Example 13. Consider a program P0 shown in Fig. 4.1 that increments a counter
x, initially assigned to 0. The CPG of P0 consists of CP = {en, CP0, err} and E =
{(en, CP0), (CP0, CP0), (CP0, err)}. Fig. 4.2 shows: (1) transition relation τP0

la-
beling each edge in E, (2) the proof Òψ labeling each node in CP, (3-4) transition
relations of two abstractions αP0 and βP0 respectively. Compared to αP0, βP0 al-
lows variable x to be equal to 13 in the cutpoint err.

4.1.2 Verification Based on Horn Solving

As we discussed in the previous Sect. 4.1.1, the verification conditions in LBE
can be represented as a system of constraints which involves uninterpreted pred-
icates. Consequently, the verification results rely on a decision procedure that is
able to find an interpretation for the predicates that provides a suitable solution

73 4.1 Background

int x = 0;
while (*)
{ x++; }

if (x < 0)
{ error(); }

x:=0

x++CP0

err

en

[x<0]

Figure 4.1. Program P0 and its CPG.

τP0
=

(en, CP0) 7→ (x ′ = 0)
(CP0, CP0) 7→ (x ′ = x + 1)
(CP0, err) 7→ (x ′ = x ∧ x ′ < 0)

Òψ=

(en) 7→ >
(CP0) 7→ x ≥ 0
(err) 7→ ⊥

ταP0
=

(en, CP0) 7→ (x ′ ≥ 0)
(CP0, CP0) 7→ (x ′ ≥ x)
(CP0, err) 7→ (x < 0)

τβP0
=

(en, CP0) 7→ (x ′ ≥ 0)
(CP0, CP0) 7→ (x ′ ≥ x)
(CP0, err) 7→ (x < 0)∨ (x = 13)

Figure 4.2. Transition relation τP0
, proof Òψ, transition relations for two abstractions of P0: ταP0

and τβP0
.

for the corresponding system. In first-order logic, there is a recently established
area of Horn solving that can be applied to perform this task.

Let us fix a vocabulary of interpreted symbols that consists of sets F and P ,
that are fixed-arity function and predicate symbols, respectively. Suppose, we
are given a set R of uninterpreted fixed-arity relation symbols, disjoint from F
and P , and a set X of variables.

Definition 21. A Horn clause is a formula:

S ∧ I1 ∧ I2 ∧ . . .∧ In =⇒ H (4.5)

where S is a constraint over F , P , X ; each Ii is an application of a relation symbol
r ∈ R to first-order terms over F ,X ; H is either an application of r ∈ R to first-order
terms over F , or a constraint ⊥.

74 4.2 Simulation Relations for Proof Lifting

The right-hand-side H of the implication (4.5) is called the head of the clause.
The left-hand-side of (4.5) is called the body of the clause. A clause is called a
query if its head is R -free, and otherwise, it is called a rule. A rule with body > is
called a fact. A clause is linear if its body contains at most one predicate symbol,
otherwise, it is called non-linear. A set of Horn clauses HC over predicates R is
called satisfiable (or solvable) if there is an interpretation of the predicates R
such the universal closure of every clause c ∈ HC holds.

Horn solving was shown applicable to synthesize generalized forms of Craig
interpolation [121], such as classical binary interpolants, inductive sequences
of interpolants, tree and DAG interpolants. Taking into account the role of in-
terpolants in the state-of-the-art verification (overviewed in Sect. 2.1.2), Horn
solving is becoming a highly valuable technique.

As said before, Horn solving is used to find inductive invariants of the pro-
grams. The conditions of Def. 19 can be encoded into the system of linear Horn
clauses HC. In HC, constraints (4.1) are the rules, a constraint (4.2) is the query,
and each ψ(u) is a new uninterpreted predicate. Thus, if HC is solvable then
the considered program is safe. Motivated by its use in model checking, the
area of Horn solving has been being actively developed. The solving methods
for Horn systems are based on predicate abstraction [69; 122], PDR [80], and
sampling [129].

In the rest of the chapter, we exploit a Horn solving procedure as a black box.
The solver is given a freedom for an underlying computation engine, as long as
it is able to synthesize a safe inductive invariant. In the following Sect. 4.2, we
will present another application for the Horn solving in synthesis of simulation
relations applied for programs in LBE.

4.2 Simulation Relations for Proof Lifting

This section proposes a solution to the problem of automated discovery of simu-
lations between programs with complicated loop structures. Our main contribu-
tion is SIMABS, a novel algorithm to automatically synthesize both, abstractions
and simulations, between the source and the target programs. If the target does
not simulate the source, SIMABS iteratively performs abstraction-refinement rea-
soning to detect an abstraction of the target that simulates the source. SIMABS

operates by deciding validity of a sequence of ∀∃-formulas, thus iterating over
the basic method for simulation relation synthesis presented in Chap. 3.

75 4.2 Simulation Relations for Proof Lifting

int y = 0;
while (*) {

if (y == 12) {
y = y + 2; }

else { y++; }
}
if (y < 0 || y == 13) {

error();
}

(a) Q0

int z = 0;
while (* && z < 12) {

z++;
}
if (z == 12) {

z = z + 2;
}
while (* && z > 12) {

z++;
}
if (z < 0 || z == 13) {

error();
}

(b) Q1

Figure 4.3. Program Q0, and its loop-splitting optimization (+ variable renaming).

err

en

if(y==12)

y:=0

then{y:=y+2}
else{y++}

CP0

[y<0 || y==13]

(a) Q0

err

en

CP1

CP0

z:=z+2

z:=0

z++

z++

[z<0 || z==13]

z==13]
[z<0 ||

[z==12]

(b) Q1

Figure 4.4. CPGs of Q0, and Q1.

4.2.1 Simulation Relations in Large-Block Encoding with Invari-
ants

Given a pair of programs P = 〈VarsP , CPP , enP , errP , EP ,τP〉 and
Q = 〈VarsQ, CPQ, enQ, errQ, EQ,τQ〉. A simulation relation between P and Q spec-
ifies a matching of every program behavior of Q by some program behavior of

76 4.2 Simulation Relations for Proof Lifting

τQ0
=

(en, CP0) 7→ (y ′ = 0)
(CP0, CP0) 7→

�

(y = 12∧ y ′ = y + 2)∨ (y 6= 12∧ y ′ = y + 1)
�

(CP0, err) 7→
�

(y ′ = y)∧ (y ′ < 0∨ y ′ = 13)
�

σ =

en 7→ en
CP0 7→ CP0

err 7→ err
ρ =

(en,σ(en)) 7→ >
(CP0,σ(CP0)) 7→ (x = y)
(err,σ(err)) 7→ (x = y)

|ϕ|=

en 7→ >
CP0 7→ ∃x . (x = y ∧ x ≥ 0)
err 7→ ∃x . (x = y ∧ x = 13)

bϕ =

en 7→ >
CP0 7→ (y ≥ 0∧ y 6= 13)
err 7→ ⊥

Figure 4.5. Simulation relation between P0 and τβP0
, and lifting invariants.

τQ1
=

(en, CP0) 7→ (z′ = 0)
(CP0, CP0) 7→ (z < 12∧ z′ = z + 1)
(CP0, CP1) 7→ (z = 12∧ z′ = z + 2)
(CP1, CP1) 7→ (z > 12∧ z′ = z + 1)
(CP0, err) 7→

�

(z′ = z)∧ (z′ < 0∨ z′ = 13)
�

σ =

en 7→ en
CP0 7→ CP0

CP1 7→ CP0

err 7→ err

ρ =

(en,σ(en)) 7→ >
(CP0,σ(CP0)) 7→ (y = z)
(CP0,σ(CP0)) 7→ (y = z)
(err,σ(err)) 7→ (y = z)

bπ=

en 7→ >
CP0 7→ (z ≥ 0∧ z 6= 13)
CP1 7→ (z ≥ 0∧ z 6= 13)
err 7→ ⊥

Figure 4.6. Simulation relation between Q1 and Q0, and lifting invariants.

P. In LBE, finding simulation relations is the two-steps procedure. First, it re-
quires finding a simulation σ at the level of CPGs. Second, it requires finding a
simulation ρ at the level of pairs of cutpoint-edges.

Definition 22. Given two programs P and Q, we say that the CPG(P) simulates
the CPG(Q) iff there exists a left-total relation σ : CPQ→ CPP , such that:

∀uQ, vQ ∈ CPQ, uP ∈ CPP . (uQ, vQ) ∈ EQ ∧ uP = σ(uQ) =⇒
∃vP ∈ CPP . (uP , vP) ∈ EP ∧ vP = σ(vQ)

(4.6)

When clear from the context, we omit the subscripts from uQ, vQ, etc.

Definition 23. Program P simulates program Q iff (1) CPG(P) simulates the
CPG(Q) via some σ, and (2) there exists a left-total relation ρ : CPQ × CPP →

77 4.2 Simulation Relations for Proof Lifting

Expr(VarsQ ∪ VarsP), such that for some inductive invariant ψ of P:

∀(u, v) ∈ EQ .
�

ψ(σ(u))(~y) ∧ ρ(u,σ(u))(~x , ~y) ∧ τQ(u, v)(~x , ~x ′) =⇒

∃~y ′ .ρ(v′,σ(v′))(~x ′, ~y ′) ∧ τP

�

σ(u),σ(v))(~y , ~y ′)
�

�

(4.7)

For each edge (u, v) in (4.7), the existential quantifier in front of ~y ′ is served
to encode existence of a valuation of the variables in V′P

�

σ(v)
�

. In contrast, val-
uations of the variables ~x , ~x ′, ~y respectively of VQ(u), VQ(v) and VP

�

σ(u)
�

are
implicitly universally quantified. Thus, for each ~x and ~y matched by ρ(u,σ(u))
and ~x ′, there should exists ~y ′, such that ~x ′ and ~y ′ are matched by ρ(v′,σ(v′)).
Additionally, the pairs ~x and ~x ′, and ~y and ~y ′ should belong to valid behaviors
corresponding to their transition relations τQ(σ(u),σ(v)) and τP(u, v) respec-
tively. Notably, those transition-relation formulas are conjoined with the differ-
ent sides of the implication, so the validity of the ∀∃-formula means that each
behavior of τQ(σ(u),σ(v)) is matched by a behavior of τP(u, v) (but it is still al-
lowed to have unmatched behaviors of τP(u, v)). For this, the simulation relation
induced by formulas ρ(u,σ(u)) and ρ(v′,σ(v′)) is required to be left-total.

In contrast to the classical definition of simulation used in Chap. 3, this def-
inition of simulation relation exploits an inductive invariant ψ of P that over-
approximates the sets of reachable states for each cutpoint of P. In particular,
for each cutpoint-edge (u, v) of Q, the condition of Def. 23 restricts the set of
pre-states of τP(σ(u),σ(v)) on ψ(σ(u)). Such restriction is sound, since it does
not drop any behavioral information of P that can be potentially useful while
constructing and checking a simulation of Q. Furthermore, for each behavior of
Q requiring to be matched by some behavior of P, the invariant ψ reduces the
search space of this matching.

Whenever for a given pair of programs P and Q, there exists the pair of re-
lations 〈σ,ρ〉, such that P simulates Q, we write Q �σ,ρ P, or simply Q � P if
〈σ,ρ〉 are clear from the context.

An important practical aspect that makes simulation relations useful for in-
cremental verification is their ability to lift the proofs between programs. In fact,
if the error location errP is proven unreachable in a program P, and the pro-
gram P simulates another program Q, then the error location errQ is unreachable
in Q. Interestingly, this fact can be further propagated to the level of inductive
invariants [107] making the following lemma hold:

78 4.2 Simulation Relations for Proof Lifting

Lemma 8. Given programs P and Q, let ψ be a (safe) inductive invariant of P and
Q �σ,ρ P. Consider a mapping ϕ : CPQ → Expr(VarsQ) defined for each u ∈ CPQ

such that:

ϕ(u)(~x)¬ ∃~y .ρ(u,σ(u))(~x , ~y) ∧ ψ(σ(u))(~y) (4.8)

Then ϕ is a (safe) inductive invariant of Q.

Example 14. Suppose that P0 (shown in Fig. 4.1) evolved to a “lucky” program
Q0 (shown in Fig. 4.3(a), 4.4(a)) such that the counter jumps over the value “13”:
the new variable y appeared instead of x, and the program fragment correspond-
ing to the looping edge (CP0,CP0) is replaced by if (y==12) then {y=y+2} else

{y++}. More importantly, the property in Q0 is stronger than in P1: in addition
to be positive, y is restricted to be not equal to 13. The CPG of P0 and the CPG of
Q0 are identical. Notably, Q0 6� P0, Q0 6� αP0, but Q0 � βP0. Fig. 4.5 shows: (1)
transition relation τQ0

, (2) relation ρ for Q0 and βP0, (3) lifted inductive (but not
safe) invariant |ϕ| labeling each node in CP of Q0, (4) proof bϕ of Q0 obtained from
|ϕ| by inductive strengthening.

In order to obtain the inductive invariant |ϕ| for Ex. 14, we first need to
weaken Òψ (as in Ex. 13) to be an inductive invariant of βP0. Weakening can be
done, e.g., by replacing the labeling Òψ(err) = ⊥ by a formula x = 13 (since
⊥ obviously implies anything including x = 13). Finally, |ϕ| can be further
strengthened to be bϕ using an unbounded model checker (and in turn, a Horn
solver) to become safe.

Example 15. Consider a loop-splitting optimization Q1 (shown in Fig. 4.3(b), 4.4(b))
of Q0 (shown in Fig. 4.3(a), 4.4(a)). It is produced by inserting an if-conditional
outside of the while-loop and renaming of the variables. As a result, an extra
loop (and an extra cutpoint CP1) appeared in Q1, and both loops were simplified
to contain only an increment operator z++. Notably, Q1 � Q0. Fig. 4.6 shows: (1)
transition relation τQ1

, (2) relation σ for Q1 and Q0, (3) relation ρ for Q1 and Q0,
(4) lifted inductive (and safe) invariant bπ of Q1.

For now, we omit the details of computing the relations as in Ex. 14-15. We re-
turn to explaining methods for simulation relation synthesis in Sect. 4.2.2, while
the methods for lifting proofs are left for Sect. 4.3.

79 4.2 Simulation Relations for Proof Lifting

4.2.2 SimAbs: Simulation-Abstraction-Refinement Loop

This section generalizes and automatizes the approach of the symbolic simulation
discovery introduced in Chap. 3 to programs with non-trivial control-flow graphs.

We give a sketch of SIMABS in Alg. 9. The algorithm starts with iterative
search of some unrolling of P, CPG of which represents a supergraph of CPG (Q).
SIMABS handles a number of heuristics to iteratively find a proper unrolling of
P (method UNROLL) and a relation for the CPGs σ. It traverses both graphs and
tries unrolling different loops in a branch-and-bound manner. Checking whether
one graph is a supergraph of another one is reduced to checking validity of the
∀∃-formula (4.6), but it requires some relation σ to be guessed (e.g., in our
implementation we exploit similarities of the names of variables used in the given
cutpoints). If the formula is valid then the proper σ is found. This routine is
not guaranteed to terminate (i.e., if there is no simulation on the level of CPGs,
SIMABS will keep iterating forever), so the algorithm is parametrized by a method
CANUNROLL (either by using some maximal unrolling depth or a timeout).

The further reasoning of SIMABS follows the abstraction-refinement paradigm.
The algorithm proceeds to discover an abstraction αP and refine it as much as
possible. If αP 6= U and αP satisfies some quality metric Q (e.g., if it preserves
some safety property of P), SIMABS also returns a simulation relation ρext

α
, such

that Q �σ,ρext
α
αP. SIMABS uses ABSTRACT (which in turn uses SYNTHESIZE) to

guess an initial relation ρ. The initial guess can be an arbitrary total relation
between the variables of each cutpoint v ∈ CPQ and a corresponding cutpoint
σ(v) ∈ CPP . In our implementation (line 2 of ABSTRACT), for every cutpoint v,
we take ρ(v) to be a conjunction of equalities between the live variables of Q and
P respectively at v and σ(v) that have identical names.

ABSTRACT (outlined in Alg. 10) iteratively constructs a ∀∃-formula (4.7)
for each edge (u, v)∈ EQ (line 4), and checks its validity. If the check succeeds
for all edges, ρ is returned to the main loop of SIMABS to be further refined.
Otherwise, ABSTRACT chooses an abstraction αP of P using the method WEAKEN

(line 5), and repeats the check for Q and αP (line 7). Note that in the next
iteration of ABSTRACT, ρ will be weakened correspondingly, since SYNTHESIZE

in that iteration is given Q and αP.
WEAKEN introduces non-determinism to P. Since based on inductive invari-

ant ψ of P provided to the algorithm, the simplest implementation of WEAKEN

would immediately return a ψ-safe abstraction αψP (defined in Lemma 7). An-
other implementation (shown in Alg. 13) existentially abstracts away a subset of

80 4.2 Simulation Relations for Proof Lifting

Algorithm 9: SIMABS(Q, P)

Input: programs Q and P, abstraction quality metric Q : α→ {>,⊥},
inductive invariant ψ of P

Output: an abstraction αextP, a CPG relation σ, and a simulation relation
(σ,ρext

α
), s.t. Q �σ,ρext

α
αextP

Data: universal abstraction U

1 forever do
2 σ← GUESS(P,Q); . Guess a mapping between cutpoints

3 if (CPG(Q)�σ CPG(P)) then break; . If σ is valid, go to line 7

4 else if (CANUNROLL(P)) then
5 P ← UNROLL(P); . If not, iteratively replace P by its unrolling

6 else return U,∅,∅; . Until no unrolling is possible

7 αextP ← P;
8 forever do . Use σ to synthesize ρ

9 αpreP ← αextP;
10 αP,ρα← ABSTRACT(Q, P,σ,ψ); . Guess, check and abstract ρ (and correspondingly, P)

11 if (αP 6= U) then return U,∅,∅;
12 αextP,ρext

α
← REFINE(Q,αP,σ,ρα,ψ); . Attempt to refine ρα and αP

13 if (Q(αextP)∨ (αpreP = αextP)) then
14 return αextP,σ,ρext

α
;

input variables of the edge (u, v) for which the simulation check has failed. The
further possible weakening would be based on predicate abstractions.

REFINE (outlined in Alg. 11) constructs a refinement ρext
α

of simulation rela-
tion ρα, and the corresponding strengthening αextP of abstraction αP. REFINE

maintains a work-list WL of the cutpoint edges to be processed. Initially, WL is
populated with EQ (line 3). In each iteration, while processing the edge (u, v),
REFINE adds a Skolem relation Sk to ρα(u) (line 10). Sk is produced for the
existentially abstracted input variables in (σ(u),σ(v)) and furthermore is used
to strengthen αextP (line 11). At the same time, method STRENGTHEN (Alg. 14)
performs an opposite action to WEAKEN with the current abstraction αP, i.e.,
removes nondeterminism from αP using Sk.

Finally, REFINE updates WL with the outgoing edges from u and other incom-
ing edges to u (line 12) and iterates until WL is empty (line 14). If in some
iteration a strengthening is impossible, REFINE returns the last successful values
for ρext

α
and αextP (line 13).

81 4.2 Simulation Relations for Proof Lifting

Algorithm 10: ABSTRACT(Q, P,σ,ψ)

Input: programs Q and P, CPG relation σ, inductive invariant ψ of P
Output: abstraction αP, simulation relation ρα, such that Q �ρα αP
Data: ∀∃-formula: sim

1 for each (u, v) ∈ EQ do
2 ρ(v)← SYNTHESIZE(τQ(u, v),τP(σ(u),σ(v)));
3 sim← CREATEFORMULA(τQ(u, v),τP(σ(u),σ(v)),ρ,ψ);
4 if (¬ISVALID(sim)) then

5 αP ←WEAKEN(P, V(σ(u))∪ V(σ(v)));
6 if (αP 6= U) then
7 return ABSTRACT(Q,αP,σ,ψ);
8 else return U,∅;

9 return P,ρ;

Algorithm 11: REFINE(Q,αP,σ,ρα,ψ)

Input: program Q, abstraction αP, CPG relation σ, simulation relation
ρα, inductive invariant ψ of P

Output: abstraction αextP, simulation relation ρext
α

Data: ∀∃-formula: sim

1 ρext
α
← ρα;

2 αextP ← αP;
3 WL← EQ;
4 while (W L 6=∅) do
5 (u, v)← GETEDGE (WL);
6 WL←WL \ {(u, v)};
7 sim← CREATEFORMULA(τQ(u, v),τP(σ(u),σ(v)),ρext

α
,ψ);

8 if (ISVALID(sim)) then

9 Sk← SKOLEM(sim);
10 ρext

α
(u)←ρext

α
(u)∧ Sk;

11 αextP ← STRENGTHEN(αP, Sk);
12 WL←WL∪ {(u, x) ∈ E | x ∈ CP} ∪ {(y, u) ∈ E | y ∈ CP};

13 else return αP,ρα;
14 return αextP,ρext

α
;

82 4.2 Simulation Relations for Proof Lifting

Algorithm 12: SYNTHESIZE(S, T)

Input: loop-free programs S, T
Output: candidate relation ρ

1 return
∧

a′S∈V ′S ,a′T∈V ′T
(a′S = a′T);

Algorithm 13: WEAKEN(P, U)

Input: program P, U ⊆ VP

Output: abstraction αP
1 guess U ′ ⊆ U;
2 return α∃U ′(P);

Algorithm 14: STRENGTHEN(αP, Sk)

Input: abstraction αP, relation Sk
Output: abstraction αextP

1 U ext← V(αP)∪ V(Sk);
2 return α∃V(P)\Uext(P);

For the progress of the algorithm, it is enough to note that in each iteration
of SIMABS, ABSTRACT is given a concrete program P, and always constructs a
new abstraction from scratch. Thus, if the space of possible abstractions is finite
(which is the case for existential abstraction) the algorithm always terminates.

4.2.3 Horn Solving for Skolem Extraction

It is worth reminding that for every iteration of ABSTRACT, as well as for ev-
ery iteration of REFINE, there is a need to decide validity of a set of simulation-
abstraction-checking formulas (4.7). For this goal, SIMABS invokes AE-VAL (pre-
sented in Chap. 3, Alg. 6), a decision procedure for ∀∃-formulas of the form
S(~x) =⇒ ∃~y . T (~x , ~y) strengthened with Skolem extracting capabilities. Algo-
rithm SKOLEM, used as a subroutine of REFINE, is an essential extension of AE-VAL
that produces a Skolem relation.

AE-VAL is based on a notion of MBP described in Sect. 3.1.2, that under-
approximates existential quantification. Given a formulaϕ(~x , ~y), let m |= ϕ(~x , ~y)

83 4.2 Simulation Relations for Proof Lifting

denote a model of ϕ. An MBP~y is a function that given a model m, returns
a ~y-free formula, such that (1) m is also a model of the image MBP~y(m,ϕ),
and (2) MBP~y(m,ϕ) is an under-approximation of ∃~y .ϕ(~x , ~y). AE-VAL pro-
ceeds by iterative enumerating models of the quantified formula until all of them
are distributed in a finite number of projections {Ti(~x)}, where each Ti(~x) =⇒
∃~y . T (~x , ~y). In order to construct a Skolem relation, AE-VAL first obtains a local
Skolem relation φi(~x , ~y) for each partition and composes a global Skolem rela-
tion Sk~y(~x , ~y) (as in (4.9)), by matching the local Skolem relations with guards
represented by ~y-free predicates Ii(~x). In Chap. 3, we used the simplest interpre-
tation of the guards, by the projections themselves, i.e., for each i, Ii(~x) = Ti(~x),
i.e., as in (4.9).

Sk~y(~x , ~y)≡

φ1(~x , ~y) if I1(~x)

φ2(~x , ~y) else if I2(~x)

· · · else · · ·

φn(~x , ~y) else In(~x)

(4.9)

Intuitively, φi maps each model of S ∧ Ti to a model of T . However, {Ti}
are not disjoint, and each conjunction S ∧ Ti could be simplified and minimized.
In the context of simulation relation, there are additional restrictions for the
variables over whose the guards are expressed. That is, we do not want a Skolem
relation for local variables, but only for existentially abstracted input variables
in the cutpoint edge under consideration.

Thus, to adjust the Skolem relation Sk, we need to find another partitioning
{Ii}ni=1 of S, such that each partition Ii must be associated with an appropriate
φi and expressed over some subset ~x (i) ⊆ ~x . The constraints on the partitions
Ii are as follows. First, a partition Ii must cover all models of Ti that are not
already covered by I1 . . . Ii−1. Second, it should not include any models that are
not contained in Ti. Writing these requirements formally, we get the system of
constraints (4.10).

84 4.3 Migrating Proofs between Programs

S(~x)∧ T1(~x) =⇒ I1(~x (1))

S(~x)∧ T2(~x)∧¬T1(~x) =⇒ I2(~x (2))

· · ·

S(~x)∧ Tn(~x)∧¬T1(~x)∧ . . .∧¬Tn−1(~x) =⇒ In(~x (n))

S(~x)∧ I1(~x (1))∧¬T1(~x) =⇒ ⊥

· · ·

S(~x)∧ In(~x (n))∧¬Tn(~x) =⇒ ⊥

(4.10)

Note that in (4.10), S and {Ti} are the first-order formulas, and {Ii} are the
uninterpreted predicates. The set of constrains corresponds to a system of non-
linear Horn clauses. Thus, we can find an interpretation of the predicates {Ii}
using a Horn solver. In our implementation, we use the solver of Z3, but other
solutions, for example, based on interpolation, are also possible. The solution
for {Ii} is then substituted to (4.9) that provides a more fine-grained guarded
Skolem relation Sk~y(~x , ~y).

A simple way to find a minimal solution for {Ii} is to iteratively restrict the
number of variables ~x (i) in each partition in (4.10) until no smaller solution can
be found. We leave the problem of finding the minimum partitioning for future
work.

4.3 Migrating Proofs between Programs

The main target of this section is to establish a so called Property Directed Equiv-
alence (PDE) between programs, i.e., to check whether the programs P and Q
both satisfy the same property (and consequently, are happy with the same proof
ψ). Here we show how the simulation relations and abstractions synthesized by
means of SIMABS can be used to lift the proofs between programs.

4.3.1 Abstract Simulations for Proof Lifting

Given an abstraction αP of P and a proof Òψ of P, we say that αP is Òψ-safe iff Òψ
is also a proof of αP. Not every abstraction of P is Òψ-safe, but there might exist
several Òψ-safe abstractions of P of different precision, and the most precise one
of those is P itself. Formally, it is reflected in the following definition.

85 4.3 Migrating Proofs between Programs

Definition 24. Given a program P and a proof Òψ. An abstraction αP = 〈Vars,
CP, en, err, E,τα〉 of P is Òψ-safe iff the following holds:

∀(u, v) ∈ E . Òψ(u)(~x)∧τα(u, v)(~x , ~x ′) =⇒ Òψ(v′)(~x ′) (4.11)

Definition 25. Programs P and Q are Òψ-equivalent iff there exists another program
R, such that P � R and Q � R and Òψ is a proof of R.

In Def. 25, we allow R to be either P or Q, depending on whether Òψ is a proof
of P or Q, respectively. Similarly, R is allowed to be an abstraction of P or Q.

Example 16. Programs P0 and Q0 (shown in Fig. 4.1 and Fig. 4.3(a) respectively)
are not Òψ-equivalent, since we can not find a Òψ-safe abstraction of P0 (αP0 is Òψ-
safe, but Q0 6� αP0, and βP0 is not Òψ-safe). In contrast, Q0 and Q1 (shown in
Fig. 4.3(a) and Fig. 4.3(b) respectively) are Òψ-equivalent, since we have shown in
Ex. 15 that Q1 �Q0.

The FIV problem for P, Q and Òψ can be stated as establishing a Òψ-equivalence
between P and Q. In this chapter, we want to provide not only a generic, but
also an efficient solution to the FIV problem. One crucial obstacle on the way
towards efficiency is that the simulation synthesis in general requires more efforts
for solving than verifying Q from scratch. However, for PROOFADAPT it is not
required to have Q simulated by the precise program P via some precise 〈σ,ρ〉.
Instead, it is enough to find a Òψ-safe abstraction αP that simulates Q via some
abstract 〈σ,ρα〉. Detecting ρα is expected to be not so hard as detecting ρ, and
to have more chances to converge.

Theorem 5. Given programs P, αP and Q. Let Òψ be a proof of P and αP be a
Òψ-safe abstraction of P. If Q � αP then P and Q are Òψ-equivalent.

The tie that binds the abstraction and the simulation in Th. 5 is the proof Òψ.
In practice, synthesis of αP and 〈σ,ρα〉 is benefitted from the guidance by Òψ.
Furthermore, when discovered, 〈σ,ρα〉 is directly used to migrate Òψ from P to
Q. In the rest of the section, we elaborate on these routines in more detail.

4.3.2 Basic Proof Lifting Algorithm

The main practical importance of PDE, introduced in Sect. 4.3, is that it allows
adapting a proof Òψ of program P to a proof bϕ of program Q if there exists a Òψ-
safe abstraction of P that simulates Q (recall Th. 5). In such a case, no additional

86 4.3 Migrating Proofs between Programs

Algorithm 15: PROOFADAPT (P,Q,ψ)

Input: Programs P,Q proof Òψ of P
Output: Verification result res ∈ {SAFE, BUGGY}, proof bϕ of Q
Data: Candidate invariant ∃〈σ,ρα〉Òψ of Q

1 〈σ,ρα〉,αP ← SIMABS(Q, P, Òψ); . Find an abstraction αP of P, s.t. Q � αP

2 if (ISPSISAFE(αP,ψ)) then
3 return SAFE,∃〈σ,ρα〉Òψ; . Apply Th. 5

4 else
5 |ψ| ←WEAKEN(Òψ); . Weaken Òψ such that it is inductive for αP

6 |ϕ| ← ∃〈σ,ρα〉|ψ|; . Lift invariant to αP

7 return VERIFY(Q, |ϕ|); . Strengthen |ϕ| until it is SAFE or a Cex is found

analysis of Q is required unless there is a need to eliminate existential quantifiers
from the adapted proof (we elaborate on such a scenario in Sect. 3.1.2). How-
ever, if the conditions of Th. 5 are not met, we are still interested in accelerating
the verification process for Q. In particular, if the detected abstraction αP of P
is not Òψ-safe, we still may be able to lift some (not safe, but) inductive invariant
to be further strengthened by a Horn-based model checker.

In the rest of this section, we address the problem of verifying Q using P
and Òψ. Our solution is outlined in Alg. 15. PROOFADAPT proceeds as follows.
First (line 1) it invokes a 2-steps procedure of SIMABS (Alg. 9): (1) obtaining a
relation σ between cutpoints of P and Q via iterative unrolling of P and checking
validity of the implication (4.6); (2) discovering an abstraction αP of P and a
relation ρα such that simulates Q �σ,ρα P.

The discovered abstraction αP is then checked for being Òψ-safe (line 2). This
is done by deciding validity of a set of implications (4.11) for each edge of the
CPG of P. If this check succeeds then the simulation relation ρα discovered by
means of SIMABS is combined with Òψ using existential quantification to obtain a
mapping ∃〈σ,ρα〉Òψ (defined in (4.8)).

If αP is not Òψ-safe then ρα can not be directly used to lift invariants. But since
P � αP by the identity relation (i.e., using the same variable names), Òψ can be
weakened to become an inductive invariant |ψ| of αP (line 5). Method WEAKEN

can implement different methods including simple generation of the strongest
post-condition (as in Ex. 17), or a counter-example guided inductive weakening
(method MKIND, to be discussed in Sect. 4.3.3).

87 4.3 Migrating Proofs between Programs

Finally, PROOFADAPT relies on VERIFY to perform iterative strengthening of
the inductive invariant ∃〈σ,ρα〉|ψ| provided by WEAKEN and existentially con-
joined with ρα. In particular, if ∃〈σ,ρα〉|ψ| was already safe, VERIFY would re-
turn immediately. However, since at this step of PROOFADAPT the abstraction αP
is not Òψ-safe, ∃〈σ,ρα〉|ψ| is also not safe. Another verifier that cannot work by
strengthening a given invariant would be useless, as it would drop ∃〈σ,ρα〉|ψ|
completely and verify Q from scratch.

Example 17. Consider programs P0 and Q0 (shown in Fig. 4.1 and Fig. 4.3(a)
respectively). Suppose, P0 is verified and has a proof Òψ (shown in Fig. 4.2). Let us
show how PROOFADAPT operates in order to derive the proof bϕ of Q0 (envisioned in
Fig. 4.5). First, PROOFADAPT invokes SIMABS to iteratively abstract P0, e.g, to αP0

and to βP0 (both shown in Fig. 4.2) and check whether the abstraction simulates
Q0: the former does not, but the latter does. Second, PROOFADAPT confirms that
βP0 is not Òψ-safe and thus proceeds to the weakening-strengthening routine.

While doing WEAKEN, PROOFADAPT exploits the efforts spent on checking that
βP0 is not Òψ-safe. In particular, Òψ is broken for the edge (CP0, err), i.e., the following
implication is invalid:

(x ≥ 0)∧
�

(x < 0)∨ (x = 13)
�

=⇒ ⊥

This means that the⊥ is too strong to label err in |ψ|, and a weaker formula should
be discovered. For example, the labeling |ψ| of the cutpoint err can be immediately
assigned to > (e.g., aggressive weakening). Alternatively, |ψ|(err) can be assigned
to the strongest post-condition for the cutpoint edge (CP0, err) and its pre-condition
ψ(CP0) (e.g., forward-reachability-based weakening). That is, if |ψ|(err) = (x =
13), the inductive invariant |ψ| of βP0 is obtained. Finally, |ψ| is lifted to become
inductive invariant |ϕ| of Q0 using the already established simulation relation ρα
(|ϕ| is shown in Fig. 4.5). The last step of strengthening |ϕ| to become a proof bϕ of
Q0 is due to VERIFY which will be described in more detail in Sect. 4.3.5.

4.3.3 Counter-Example Guided Inductive Weakening

In this section, we propose a method called MKIND that performs weakening of
an invariantψ of program P to be an inductive invariantϕ of program Q using an
incremental SMT solver. We require that P and Q share the same CPG, and differ
only in the labeling of edges. If Q is known to be an abstraction of P (i.e., as in
our application in algorithm PROOFADAPT), this requirement is trivially fulfilled.

88 4.3 Migrating Proofs between Programs

Algorithm 16: MKIND(ψ,Q)

Input: Candidate invariant ψ, program Q
Output: Inductive invariant ϕ : CP→ Expr(Vars) of Q

1 ϕ←ψ;
2 WL← E;
3 while WL 6=∅ do
4 (u, v)← GETEDGE(WL);
5 WL←WL \ {(u, v)};
6 old_post← ϕ(v);
7 ϕ(v)←WEAKPOST

�

ϕ(u),τ(u, v),ϕ(v)
�

;
8 if

�

old_post 6= ϕ(v)
�

then
9 WL←WL∪ {(v, x) ∈ E | x ∈ CP};

10 return ϕ;

MKIND is shown in Alg. 16. The algorithm maintains a work-list WL ⊆ E
that is initialized with all the edges (u, v) ∈ E and iteratively adjusts ϕ initially
assigned by ψ. In each iteration of the main loop, first, an edge (u, v) ∈WL that
is the least in the Weak Topological Ordering (WTO) [25] (in which inner loops
are traversed before outer loops) is picked. Second, an SMT solver is used to
check whether the formula (4.1) is valid for the current values of ϕ(u), ϕ(v) and
τ(u, v). If this is not the case, ϕ(v) is weakened until the triple becomes valid and
all outgoing edges of v are added to WL. Soundness of MKIND is immediate – the
work-list is empty only if every cutpoint edge is annotated with a valid invariant.
Termination follows from the fact that at each iteration either the work-list is
reduced, or a ϕ(v) is weakened, and, our implementation of WEAKPOST allows
only for finitely many weakening steps.

WEAKPOST is shown in Alg. 17. The input is a formula pre (also referred
to as pre-condition), a formula post (also referred to as post-condition) and a
loop-free program fragment S. The output is a weakening post′ of post such that
pre ∧ S =⇒ post′ is valid. We assume that post is given as a conjunction of
lemmas, i.e., post =

∧

i `i. The algorithm computes the (possibly empty) subset
of {`i} that forms a valid post-condition.

The naive implementation of WEAKPOST iteratively checks whether each `i

is a post-condition. Instead, we use an incremental SMT solver to do this enu-
meration efficiently. We assume that in addition to the SMTSOLVE API, an SMT
solver has the method SMTASSERT to add constraints to the current context.

89 4.3 Migrating Proofs between Programs

Algorithm 17: WEAKPOST(pre, S, post)

Input: pre, S, post ∈ Expr; post=
n
∧

i=0
`i

Output: post′ ∈ Expr, such that pre∧ S =⇒ post′

1 let {x i | 0≤ i ≤ n} be fresh Boolean variables; U ← {0, . . . , n};
2 SMTASSERT

�

pre∧ S ∧¬
� ∧

i∈U
(x i =⇒ `′i)

�

�

;

3 while
�

ISSAT
�

SMTSOLVE()
�

�

do
4 m← SMTMODEL();
5 foreach {0≤ i ≤ n | m |= x i} do
6 SMTASSERT(¬x i);
7 U ← U \ {i};
8 end
9 post′←

∧

i∈U
`i;

10 return post′;

In each iteration of our algorithm, the SMT context contains the formula
(further referred to as Φ) that determines the validity of the current candidate
post-condition. Initially, the entire post-condition is asserted under assumptions
(line 2), encoded by Boolean variables x i such that lemma `i is active iff x i is true.
In the next iterations, the algorithm may disable some of the lemmas simply by
negating the corresponding assumptions.

The core of the algorithm is in the incremental disabling of assumptions. If
in some iteration, there exists a model m of Φ then m identifies the variable(s)
x i to be negated (line 6). The correspondent lemma(s) are to be excluded from
the current candidate post-condition and the algorithm iterates. This terminates
eventually (whenever the formula in the current context Φ is unsatisfiable) since
there are finitely many lemmas and at least one is disabled at every iteration.
The conjunction of all remained lemmas is returned as post′.

In the worst case scenario, post′ is equal to > which means all lemmas were
disabled. The more lemmas are contained in the input formula post, the more
effective could be the algorithm. Thus, before passing post into the algorithm,
it makes sense to additionally factor post (e.g., replace terms like z = 0 by (z ≥
0)∧ (z ≤ 0)), or enhance post by additional weaker lemmas (e.g., add terms like
(z ≥ −10)∧ (z ≤ 10) to (z ≥ 0)∧ (z ≤ 0)).

90 4.3 Migrating Proofs between Programs

4.3.4 Eliminating Quantifiers from Lifted Invariants

In this subsection we continue discussing algorithm PROOFADAPT, and in particu-
lar, focus on obtaining a quantifier-free formulaϕ that is equivalent to ∃〈σ,ρα〉|ψ|
(line 6) and check whether ϕ is an inductive invariant of Q. However, this pro-
cedure is expensive and for the sake of practical efficiency ϕ may be replaced
by some under-approximation bϕ of ϕ. However, bϕ may be unnecessarily strong,
and require inductive weakening (e.g., as proposed in Sect. 4.3.3).

As in Sect. 4.2.3, our solution for under-approximating the existential quan-
tifiers is based on a notion of MBP. Recall that for a formula ∃~y .ϕ(~x , ~y), an
MBP~y is a function that given a model m, returns a ~y-free formula, such that (1)
m is also a model of the image MBP~y(m,ϕ), and (2) MBP~y(m,ϕ) is an under-
approximation of ∃~y .ϕ(~x , ~y). In PROOFADAPT, we exploit the properties of the

MBP~y function to obtain bϕ as a disjunction of projections bϕ =
n
∨

i=1
MBP~y(mi,ϕ)

based on different models m1, . . . , mn for some finite number n. In practice, it
is often more efficient to chose a relatively small and bounded n and make the
obtained bϕ inductive by applying an algorithm for inductive weakening (as in
Sect. 4.3.3).

4.3.5 Strengthening Inductive Invariants without Quantifier Elim-
ination

Here we focus on describing the algorithm VERIFY for strengthening an inductive
invariant ∃〈σ,ρα〉|ψ| for the program Q that is used in PROOFADAPT (line 7). Al-
ternatively to perform quantifier elimination (as described in Sect. 4.3.4), we can
substitute the quantified formulas directly to the system of linear Horn Clauses
that describes the verification condition of Q (recall Def. 19). This idea comes
from a simple observation that adding invariants to the transition relation does
not affect any behavior of the program. In the nutshell, the invariants are addi-
tional constraints about pre- and post-states of each cutpoint edge (u, v) ∈ E.

Given (u, v) ∈ E and τ : E→ Expr(V(u)∪V′(v)), let bτ : E→ Expr(V(u)∪V′(v))
denote the relation constrained by the invariants ∃〈σ,ρα〉|ψ|, i.e.:

bτ(u, v) =∃~y .
�

ρα(u,σ(u))(~x , ~y) ∧ ψ(u)(~x)
�

∧τ(u, v))(~x , ~x ′)∧
∃~y ′ .

�

ρα(v
′,σ(v′))(~x ′, ~y ′) ∧ ψ(v′)(~x ′)

� (4.12)

It is easy to see that a program bQ = 〈Vars, CP, en, err, E, bτ〉 is equivalent to

91 4.3 Migrating Proofs between Programs

program Q = 〈Vars, CP, en, err, E,τ〉, and the proof Òψ of Q is sufficient for bQ.
However, the the opposite is not true, i.e., a proof Òψ of bQ might not be sufficient
for Q.

The algorithm VERIFY reduces the task of obtaining bϕ to solving a system of
appropriate linear Horn Clauses. This system consists of the rules (4.1) and (4.2).
The quantifier elimination is done lazily inside the solving engine. Notably, the
algorithm is also applicable in cases when ∃〈σ,ρα〉|ψ| is not only inductive, but
also safe. If so, a constant mapping bϕ(u, v) = > for any (u, v) is a solution for
the Horn system, and solving terminates immediately.

4.3.6 Calculating the Change Impact

In case when PROOFADAPT (and in turn VERIFY) cannot prove safety (i.e., fails to
strengthen the inductive invariant), it generates a so called change impact – an
indication whether the change of the code in a particular edge of the CPG broke
the proof. Change impact can be calculated cheaply as a by-product of checking
whether an abstraction αP of P is Òψ-safe for the proof Òψ.

Definition 26. Given P, Q, a proof Òψ of P and abstraction αP of P such that
Q �σ,ρα αP, the change impact δ of program Q is a mapping δ : EQ→ {>,⊥} such
that for each (u, v) ∈ EQ :

δ(u, v)≡

(

> if ψ(σ(u)))(~x)∧τα(σ(u),σ(v)))(~x , ~x ′) =⇒ ψ(σ(v′)))(~x ′)

⊥ else
(4.13)

If calculated this way, the change impact is precise enough to indicate all
cutpoint-edges that are responsible for a property violation. Let us denote the
set of edges ∆ = {(u, v) ∈ EQ | δ(u, v) = ⊥}. In order to fix the given bug, the
encoding τ of some of the cutpoint-edges from ∆ must be rewritten, but the en-
coding τ of the edges in EQ \∆ can remain unchanged. In other words, program
Q can be used to create a partial program Q∆ that preserves the encoding of the
edges EQ \∆ and contains holes to represent the absence of the encoding of ∆.
Then, such a partial program Q∆ is given as input to a program synthesizer, such
as SKETCH [128] to automatically find instantiations of the holes. In our future
work we plan to integrate an automatic program repairer with PROOFADAPT.

92 4.4 Related Work to Incremental Verification

4.4 Related Work to Incremental Verification

FIV aims at automated establishing the equivalence of programs with respect to
some common property since it has a direct application in model checking. In
this section, we give a brief overview of the related formal methods excluding
simulation relation synthesis (that is shown in Sect. 3.4).

There are techniques to establish a stronger property, absolute equivalence
(i.e., equivalence of programs with respect to any possible property) [43; 85;
67]. The first automatic solutions to equivalence checking date back to hardware
verification. Based on BDDs and SAT solving, the methods [16; 27; 91; 89; 31;
110] aim at searching for a counter-example witnessing inequivalence of the
two circuits. Most of them exploit structural similarities between the circuits
that make them able to scale well with the circuit size.

A step in incremental verification towards software was made in [43] that
proposed to check equivalence of a Verilog circuit and a C program through en-
coding and solving a quantifier-free SAT formula. A more recent solution [67]
employs BMC to establish absolute equivalence between C programs. The method
traverses the call graph bottom-up and separately checks whether identity of in-
puts implies identity of outputs for each pair of matched (e.g., by name) func-
tions, while all the nested calls are abstracted using the same uninterpreted func-
tion. A similar but language-agnostic approach is implemented in the SYMDIFF

tool [85].

The problem of checking non-absolute equivalence between programs was
addressed in a number of works, e.g., [20; 14; 10; 137]. The main motivating
idea behind this line of research is the ability of reusing efforts between veri-
fication runs, thus achieving performance speedup compared to verification of
programs separately. The closest approach to PDE is function-summarization-
based Incremental BMC (EVOLCHECK), discussed in details in Chap. 2. Recall that
EVOLCHECK extracts the over-approximating function summaries from the one
program satisfying the given property, and then re-checks if the summaries still
over-approximate function behavior in another program. PDE and EVOLCHECK

are the complementing approaches in a sense that the former is designed to han-
dle programs with complicated loop structures, but ignoring function calls, and
the latter requires loop-free programs, but exploits their call trees. Furthermore,
the approaches rely on conceptually different computation engines: SAT solving
and interpolation versus SMT and Horn solving.

93 4.4 Related Work to Incremental Verification

The earlier attempts to reuse information learned during analysis of the previ-
ous program version were employed in [35; 75; 46]. The approaches in [75; 46]
store the entire abstract reachable state space and revalidate the affected parts
after a change. In [35], the authors study substitutability of updated compo-
nents of a system. Their algorithm is based on inclusion of behaviors and uses
a CEGAR loop combining over- and under-approximations of the component be-
haviors. First, a containment check is performed, ensuring behaviors of the old
component occur also in the new one. Second, learning-based assume-guarantee
reasoning algorithm is used to check compatibility, i.e., that the new component
satisfies a given property when the old component does. When compared, our
approach focuses on real low-level properties of code expressed as assertions
rather than abstract inclusion of behaviors.

The idea of “precision reuse” between software versions for CEGAR-based
verification also appeared later in [20]. However, this technique does not re-
lies on automatically derived relational specifications (like the mapping between
variables or function names) so it requires revalidating the artefacts migrated
from the verified programs. In contrast, the technique presented in this chapter
benefits from using certified simulation relations between programs, thus con-
firming that the migrated invariants are always sound.

Alternatively, there are approaches [94; 137] to reason not only about dif-
ferences between behaviors, but also to analyze differences between proper-
ties in different programs. The technique called Verification Modulo Versions
(VMV) [94] transforms assertions from one program into assumptions for an-
other program. VMV then tries to find (or prove absence of) bugs that are present
only in the latter program. The technique called Directed Incremental Symbolic
Execution (DISE) [137] based on Differential Symbolic Execution [112] is driven
by the change impact which in fact is the program slice obtained by symbolic ex-
ecution of the syntactic delta between the programs. The change impact is, how-
ever, property-independent, so DISE still requires further analysis whether the
requested properties hold or do not in both programs. In contrast, the change
impact calculated by PROOFADAPT is always property-dependent that makes it
useful to identify program locations that are likely responsible for the property
violations.

94 4.5 Summary of Contributions

4.5 Summary of Contributions

In this chapter, we contributed a FIV technique for Unbounded Model Checking
(right branch in Fig. 1.1) that searches for safe inductive invariants in programs
with (possibly infinite) loops. We formalized the concept of the Property-Directed
Equivalence between programs that allows migrating safe inductive invariants
across program transformations. We proposed the algorithm that performs an
iterative abstract-refinement reasoning to automatically derive simulations re-
lations between programs with different loop structures. If one program does
not simulate another one, we proposed to automatically detect an abstraction
of the former that simulates the latter. In contrast to the use of simple existen-
tial abstraction as in Chap. 3, we proposed to derive abstractions directly from
invariants. Finally, we presented the new algorithm PROOFADAPT to establish
PDE through combining synthesis of safe abstractions, simulation relations and
safe inductive invariants. Our algorithm tries to adapt as much information from
the invariant as possible, and then (if needed) strengthens the adapted invariant
using an induction-based model unbounded model checker.

We implemented SIMABS and PROOFADAPT within an LLVM-based framework
NIAGARA that extends the state-of-the-art unbounded model checker UFO [3;
86]. We evaluated SIMABS by discovering simulation relations between programs
from Software Verification Competition and their LLVM optimizations. Our re-
sults show that SIMABS is able to efficiently synthesize abstractions and simula-
tions between original and optimal programs in both directions. The results of
SIMABS were further used to evaluate PROOFADAPT confirming that establishing
PDE can be made more efficient than verification of both programs from scratch.
More details on the evaluation can be found in Sect. 5.3.

Chapter 5

Tool Support

This chapter discusses the evaluation of the FIV techniques proposed in the previ-
ous chapters. We implemented the interpolation-based function summarization,
refinement, automatic recursion depth detection and automatic assertion impli-
cation detection (all described in Sect. 2.2) in a tool called FUNFROG extending
the CBMC [40] model checker. The incremental BMC algorithm (described in
Sect. 2.3) is implemented in a tool called EVOLCHECK extending the FUNFROG

model checker. Both tools, FUNFROG and EVOLCHECK, rely on the SAT solver
PERIPLO [119], extending the OPENSMT solver [29] used both for satisfiability
checks and interpolation. Note that PERIPLO is using only propositional (QF-
BOOL) logic of OPENSMT which allows bit-precise reasoning. The tools are im-
plemented using the CPROVER framework which takes care of preprocessing (by
means of the tool GOTO-CC), parsing, intermediate representation of the pro-
gram, and simple program analyses such as pointer aliasing and constant propa-
gation. CPROVER is a mature code base and a part of CPROVER is available in the
standard Debian distribution. The tools were evaluated on the range of academic
and industrial benchmarks provided by the PINCETTE EU project1.

We implemented the algorithms for simulation relation synthesis SIMABS and
establishing a Property Directed Equivalence PROOFADAPT (described in detail
in Chap. 3 and Chap. 4, respectively) on the top of the LLVM-based unbounded
model checker UFO [3; 86] (which takes care of preprocessing) and the SMT
solver Z3 [106]. We evaluated SIMABS by discovering total simulation relations
between programs and their LLVM optimizations. Our results show that SIMABS

is able to efficiently synthesize abstractions and simulations between original and

1http://www.pincette-project.eu

95

http://www.pincette-project.eu

96 5.1 FunFrog Bounded Model Checker

optimal programs in both directions. The application of SIMABS, however, is not
limited to optimizations. It is able to deal with any program transformations
preserving the program loop structures. In addition to checking optimizations,
we also applied it to mutation testing. The results of SIMABS were further used
to evaluate PROOFADAPT. PROOFADAPT confirmed that establishing PDE between
two programs from Software Verification Competition can be made more efficient
than verification of both programs from scratch.

The results reported in this chapter have been published in the following pa-
pers: [60] (co-authored with Natasha Sharygina), [56] (co-authored with An-
drea Callia D’Iddio, Antti Eero Johannes Hyvärinen and Natasha Sharygina),
[59] (co-authored with Ondrej Sery and Natasha Sharygina), [55] (co-authored
with Arie Gurfinkel and Natasha Sharygina) and [57] (co-authored with Arie
Gurfinkel and Natasha Sharygina).

5.1 FunFrog Bounded Model Checker

The basic architecture of FUNFROG is depicted in Fig. 5.1. The tool takes a C
program with inlined assertions representing assertions and uses the parser for
pre-processing. The parser produces an intermediate code representation, which
is then used for encoding into a PBMC formula by PBMC encoder. Encoding is
achieved using symbolic execution, which unwinds the program and prepares
its static single assignment (SSA) form. Then FUNFROG choses the order, in which
all assertions will be checked: by assertion implication detection, randomly or
manually specified by the user and checks one assertion at a time. Then, for
each assertion, the SSA slicing removes the SSA steps irrelevant to the assertion,
and SAT flattening produces the final formula by encoding it into propositional
logic. FUNFROG loads function summaries from a persistent storage and attempts
to use them during encoding as over-approximations of the corresponding pro-
gram functions. The tool passes the resulting formula to a solver. If the formula
is unsatisfiable, the program is safe and FUNFROG uses interpolation to generate
new function summaries and stores them for use in later runs. In order to control
the strength and size of summaries, FUNFROG specifies the algorithm for inter-
polation for PERIPLO (e.g., McM, Pud, or McP) before the actual interpolation.
In case of a satisfiable formula, FUNFROG asks refiner whether a refinement is
necessary and if so, it continues by precisely encoding the functions identified by
the refiner. If a refinement is impossible (there is no function to be refined) then

97 5.1 FunFrog Bounded Model Checker

parser
goto-cc

initializer
eager/lazy

refiner
CEG/greedy

PBMC
encoder

summaries

solver
PeRIPLO

*.c
*.h

sources

Correct

Bug
& error trace

*
Σ Σ

*
ΣΣ
Σ

initial subst.
scenario

refined subst.
scenario

new
summaries

known
summaries

SAT

UNSAT
φfᴧφgᴧ ...

PBMC formula

goto binary

Figure 5.1. FUNFROG architecture overview

the counter-example is real, and the program is proven unsafe. In the following,
we describe each step of FUNFROG in more details.

Parsing. As the first step, the source code is parsed and transformed into a
goto-program, where the complicated conditional statements and loops are sim-
plified using only guards and goto statements. For this purpose, FUNFROG uses
GOTO-CC , i.e., a parser specifically designed to produce intermediate represen-
tation suitable for formal verification. Other tools from the CPROVER framework
can be used to alter this representation. For example, GOTO-INSTRUMENT injects
additional assertions (e.g., array bounds, division by zero, arithmetic overflow
and underflow tests) to be checked during analysis.

Symbolic execution. In order to unwind the program, the intermediate rep-
resentation is symbolically executed tracking the number of iterations of loops.
The result of this step is the SSA form of the unwound program, i.e., a form where
every variable is assigned at most once. This is achieved by adding version num-
bers to the variables. In FUNFROG, this step is also influenced by the choice of an
initial substitution scenario. Intuitively, it defines how different functions should
be encoded (e.g., using precise encoding, using a summary or treated nondeter-

98 5.1 FunFrog Bounded Model Checker

ministically).

Slicing. After the symbolic execution step, slicing is performed on the result-
ing SSA form. It uses dependency analysis in order to figure out which variables
and instructions are relevant for the assertion being analyzed. The dependency
analysis also takes summaries into account. Whenever an output variable of a
function is not constrained by a function summary, its dependencies need not be
propagated and a more aggressive slicing is achieved.

SAT flattening. When the SSA form is pruned, the PBMC formula is cre-
ated by flattening into propositional logic. The choice of using SAT allows for
bit-precise reasoning. However, in principle, the SAT flattening step could be
substituted by encoding into a suitable SMT theory that supports interpolation.

Solving. The PBMC formula is passed to a SAT solver to decide its satisfiabil-
ity. FUNFROG uses PERIPLO for both satisfiability checks and as an interpolating
engine. Certain performance penalties follow from the additional bookkeeping
in order to produce a proof of unsatisfiability used for interpolation.

Summaries extraction. For an unsatisfiable PBMC formula, FUNFROG asks
PERIPLO to extract function summaries using interpolation over the proof of un-
satisfiability. For this task, PERIPLO uses the algorithm chosen prior (i.e., McM,
Pud, or McP). The extracted summaries are serialized in a persistent storage so
that they are available for other FUNFROG runs. In this step, FUNFROG also com-
pares the new summaries with any existing summaries for the same function and
the same bound, and keeps the more precise one.

Refiner. The refiner is used to identify summaries and nondeterministically
treated function calls directly involved in the error trace. In the next iteration,
the corresponded function calls will be encoded precisely. We call this strategy
CEG (Counter-Example-Guided). This strategy is also used to iteratively detect
a recursion depth. Alternatively, in case there is no recursive function calls, the
refiner can avoid identification of too weak abstractions in the error trace (greedy
strategy). Greedy strategy falls back to the standard BMC, encoding precisely all
the function calls of the program in order to prove the assertion.

Eclipse plug-in. In order to make the tool as user-friendly as possible, we
integrated FUNFROG in the ECLIPSE development environment in the form of a
plug-in. For a user, developing a program using the ECLIPSE IDE, the FUNFROG

plug-in makes it possible to verify different assertions of the single version of
the code. Graphical capabilities of ECLIPSE contain a variety of helpers, allowing
configuration of the verification environment.

99 5.1 FunFrog Bounded Model Checker

The plug-in is developed using Plug-in Development Environment, a tool-set
to create, develop, test, debug, build and deploy ECLIPSE plug-ins. It is built as an
external jar-file, which is loaded together with ECLIPSE. The plug-in follows the
paradigm of Debugging components, and provides the separate perspective, con-
taining a view of the source code and visualization of the error traces computed
for each violated assertion of the program. At the low level, the plug-in dele-
gates the verification tasks to the corresponding command line tool FUNFROG. It
maintains a database and external file storage to keep goto-binaries, summaries
and other meta-data.

The binaries of FUNFROG were compiled using GCC version 4.8.2. The im-
plementation of FUNFROG is totally deterministic and not parallelized. All the
experiments were run on the Ubuntu 14.04 LTS machine, Intel(R) Xeon(R) CPU
E5620 2.40GHz, 16 GB RAM. The verification time in all tables corresponds to a
single verification run of the correspondent program.

In the rest of the section we present the evaluation of FUNFROG for differ-
ent experimental settings. In Sect. 5.1.1, we evaluate Alg. 1 to verify a single
assertion in each benchmark and detects the recursion depth. In Sect. 5.1.2, we
evaluate Alg. 2 to verify a set of assertions and reuse function summaries be-
tween the algorithm runs. Finally, in Sect. 5.1.3, we evaluate Alg. 3 to detect the
assertion implication relation and exploit this for Alg. 2.

5.1.1 Evaluating Recursion Depth Detection

We evaluated Alg. 1 on a set of various recursive C programs, adapted from the
SVCOMP’142 set (Ackermann X McCarthy, GCD, EvenOdd), obtained from indus-
try3 (P2P_Joints X), and crafted by USI students for evaluation of interpolation-
based abstractions.

Table 5.1 summarizes the verification statistics for a set of benchmarks. Each
row corresponds to a program with one of the following type (T) of recursion: a -
single recursion, b - multiple recursion, c - indirect recursion. The number of re-
cursive functions present in each program is shown in the column #R. Each pro-
gram was verified using CBMC, FUNFROG4 without recursion depth detection and
3 different versions of FUNFROG+RDD. The first configuration of FUNFROG+RDD

2http://sv-comp.sosy-lab.org/2014/
3in scope of FP7-ICT-2009-5 — project PINCETTE 257647
4CBMC (standard distribution, version 4.3) was run with default parameters.

http://sv-comp.sosy-lab.org/2014/

100 5.1 FunFrog Bounded Model Checker

benchmark FUNFROG+RDD FUNFROG CBMC
In≡1 1 < In < ν In≡ ν

name #R T Result In Time #It ν #Calls In Time #It In Time #It Time Time
Array A 5 a SAFE 1 664.02 15 15 75 10 513.986 6 15 121.381 1 3600+ 3600+
Array B 12 a SAFE 1 777.432 24 24 71 2 1781.92 23 24 3600+ — 3600+ 3600+
Array C 3 a SAFE 1 1113.68 27 16 106 14 991.724 3 16 557.281 1 3600+ 3600+
Ackermann A 2 b SAFE 1 55.758 34 20 2169 7 3493.64 10 20 3600+ — 3600+ 3600+
Ackermann B 2 b BUG 1 56.772 30 17 1942 7 3547.29 10 17 3600+ — 3600+ 3600+
Alternate A 2 c SAFE 1 35.068 50 50 100 30 22.206 20 50 0.902 1 3600+ 3600+
Alternate B 2 c BUG 1 92.314 77 77 154 50 53.315 28 77 1.681 1 3600+ 3600+
Multiply 10 a SAFE 1 710.517 110 10 110 7 569.559 4 10 226.659 1 3600+ 3600+
InterleaveBitsRec 1 a SAFE 1 150.053 33 33 33 15 125.241 19 33 8.188 1 3600+ 3600+
BitShiftRec A 1 a SAFE 1 128.074 64 64 64 20 13.416 45 64 2.413 1 3600+ 3600+
BitShiftRec B 2 b SAFE 1 65.537 12 12 4285 3 65.399 10 12 3600+ – 3600+ 3600+
P2P_Joints A 1 a SAFE 1 1234.71 4 4 4 2 1195.31 3 4 1092.26 1 3600+ 3600+
P2P_Joints B 1 a BUG 1 1266.38 4 4 4 2 1222.11 3 4 1120.03 1 3600+ 3600+

Table 5.1. Verification statistics for various BMC tools with and without automated detection of
recursion depth.

performs the algorithm with the initial recursion depth set to 1 (denoted as In
≡ 1 in the table), detects recursion depth (ν) and also reports the number of
unwound recursive calls as #Calls. Then, in purpose of comparison, the second
and the third configurations perform the same algorithm with the another values
of the initial recursion depths (1 < In < ν and In ≡ ν respectively). For each
experiment, we report total verification time (Time in seconds) and a number
of iterations of FUNFROG+RDD (#It). The verification results (SAFE/BUG) were
identical for experiments with all configurations and we placed them in the table
in the section describing the benchmarks.

Note that for all different types of recursion, the experiments with CBMC and
pure FUNFROG failed as they reached the timeout (3600+) of 1 hour without pro-
ducing the result. This in general was not a problem for any of the experiments
when FUNFROG+RDD was used. We compare different configurations of FUN-
FROG+RDD in order to demonstrate possible behaviors of FUNFROG+RDD de-
pending on the structure of benchmarks. The benchmarks Multiply, Alternate
A/B, Array A/C, InterleaveBitsRec and BitShiftRec A witness the overhead
of the procedure. In InterleaveBitsRec and BitShiftRec A there is a single
recursive function called one time; in Multiply and Alternate A/B there are
several recursive calls requiring the same recursion depth; in Array A and Array

C there are several recursive calls requiring different, but relatively close recur-
sion depths. That is, if we compare the first configuration with the third one, we
can see that such overhead exists. The first configuration takes more time to com-
plete verification than the second one, and the second configuration takes more
time to complete verification than the third one. This is because FUNFROG+RDD
executes more iterations in the first configuration than in the second one and

101 5.1 FunFrog Bounded Model Checker

more iterations in the second configuration than in the third one. Again, the
difference and the advantage is in the fact that the first and the second configu-
rations do not know the recursion depth needed for verification and the third one
gets it provided (as an initial recursion depth for FUNFROG+RDD). Therefore, for
the third configuration it is always enough to execute one iteration.

The benchmarks Array B, Ackerman A/B and BitShiftRec B show the op-
posite behavior, where the first configuration takes less time to complete than
the second and the third ones. These cases demonstrate the benefits of using
minimality feature of the FUNFROG+RDD, since they require different recursion
depths for each recursive function call appearing in the code. In all configurations
we specify In by a fixed number which may fit well some of the recursive calls,
but for other ones it may be bigger than needed. In this case, FUNFROG+RDD
creates unnecessary PBMC partitions, blows up the formula and consequently
slows down the verification process. While using In = 1, incremental unwinding
automatically finds depths for each recursive function call. It means that for such
cases the new approach for BMC not only detects the recursion depth sufficient
for verification but that it also performs it efficiently and allows to slice out parts
of the system which are redundant for verification purpose.

Interesting results are demonstrated by experimentation with the industrial
benchmark P2P_Joints A/B. It contains expensive nonlinear computations, a
complex call tree structure with relatively trivial recursion requiring unrolling 4
times. The experiments show that the difference in timings between different
FUNFROG+RDD configurations is minor.

5.1.2 Evaluating Summarization-Based Recursion Depth Detec-
tion

Another set of experiments of verifying recursive programs by applying FUNFROG

+SRDD is summarized in Table 5.2. There are two configurations of FunFrog
compared in the table. The first one, FunFrog+RDD, is similar to the first con-
figuration in Table 5.1. The second one, FunFrog+SRDD, is SRDD driven by
assertion decomposition.

We explain the idea of assertion decomposition on the example from Fig. 2.1.
The assertion assert(y >= 0) (A1) can be used to derive a set the following
helper-assertions assert(x < 5 || y >= 0) (A2), assert(x < 7 || y >= 0)

(A3) and so on. It is clear that if A1 holds, then both A2 and A3 hold as well; and

102 5.1 FunFrog Bounded Model Checker

benchmark FUNFROG+RDD FUNFROG+SRDD
name #R T Result ν In TotalTime #It In #A TotalTime ItpTime #It
Arithm 1 a SAFE 100 1 128.47 100 1 20 9.676 2.036 119
McCarthy 2 b SAFE 11 1 3600+ — 1 5 10.495 4.859 24
GCD 3 b SAFE 11 1 145.381 64 1 4 54.185 0.409 37
EvenOdd 2 c SAFE 25 1 38.621 50 1 8 27.99 4.49 82
P2P_Joints C 1 a SAFE 4 1 1531.38 4 1 4 1151.72 68.10 4
P2P_Joints D 1 a SAFE 4 1 1192.28 4 1 4 1089.04 87.08 4

Table 5.2. Verification statistics of FUNFROG+RDD and FUNFROG+SRDD

if A2 holds then A3 holds as well. We will say that A3 is weaker than A2, and A2
is weaker than A1.

In this experiment, we derive helper-assertions (number of them is denoted
#A in the table) by guessing values of the input parameters of recursive func-
tions, then order assertions by strength and begin verification from the weakest
one. If the check succeeds, the summaries of all (even recursive) functions are
extracted. They will be reused in verification of stronger assertions. This proce-
dure is repeated until the original assertion is proven valid. We summarize total
timings (TotalTime) for verification of each weaker assertion, which includes the
timings for interpolation (ItpTime).

For all benchmarks in the table, FUNFROG+SRDD outperforms FUNFROG+RDD.
Technically, it means that checking a single assertion may be slower than check-
ing itself and also several other assertions. The strongest result, we obtained,
is verifying a well-known McCarthy function. Running FUNFROG+SRDD for it
takes around 10 seconds, while FUNFROG+RDD, pure FUNFROG and CBMC ex-
ceed timeout. Note that the interpolation may take up to a half of whole veri-
fication time. In some cases, summarization increases the number of iterations.
But in total, FUNFROG+SRDD remains more efficient that FUNFROG+RDD.

5.1.3 Evaluating Assertion Implication Checking

Dynamic analysis tools such as DAIKON [54] are often used for producing asser-
tions. Such tools observe program behavior to form a set of the expressions over
values of the program variables, which is then turned into a set of assertions V .
Since the assertions are obtained by monitoring the execution of the program
over a limited set of input parameters, there is no guarantee that such assertions
hold for every execution of the program. BMC is used in [111] to check which
of those assertions hold. While precise, a model checking run might consume a

103 5.1 FunFrog Bounded Model Checker

significant amount of time and require high amounts of memory. Therefore any
optimization in the process immediately renders the technique more applicable
to a wider set of benchmarks.

The assertion implication relation (AIR) can be used for various BMC appli-
cations that deal with large sets of assertions. In this section, we present two
of those applications, namely Optimizing Assertion Checking Order and Assertion
Implication Checking in Function Summarization.

In the first application, FUNFROG checks the validity of a set of assertions. We
determine whether the number of verification runs can be reduced by skipping
assertions whose validity is implied by already performed checks and AIR.

In the second application, FUNFROG constructs function summaries based on a
set of assertions. We study whether excluding weak assertions using AIR reduces
the size of function summaries.

Optimizing Assertion Checking Order

We propose two complementing strategies for the efficient detection of assertions
which hold in the program. Given the SSA form U of a program that contains a set
of assertions V ⊆ U , let GU = (V, E) be its assertion implication graph. We denote
the nodes of GU that do not have incoming edges as {As}. These correspond to
the strongest assertions in the program. Similarly, we denote the edges with no
outgoing edges as {Aw}, and these correspond to the weakest assertions in the
program.

In the first (forward) strategy, FUNFROG traverses GU starting from {As} in the
depth-first order. For each assertion node Ai, if there exists a holding predecessor
A j, the BMC tool concludes that Ai also holds. Otherwise, it verifies the program
with respect to Ai. This strategy is efficient in cases when there are many holding
assertions in the program.

In the second (backward) strategy, FUNFROG traverses GU in reverse, starting
from {Aw}. For each assertion node Ak, if there exists a failing successor A j, the
BMC tool concludes that Ak also fails. Otherwise, it verifies the program with
respect to Ak. This strategy is efficient in cases when there are many assertions
which fail in the program.

We evaluated the performance of FUNFROG+AIR in summarization-based BMC
on a range of academic and industrial benchmarks widely used in model check-
ing experiments. The assertions for the benchmarks were obtained from the user,

104 5.1 FunFrog Bounded Model Checker

Benchmark #SSA # # Stra- #AIR AIR BMC Pure
name Steps Asserts Checks tegy Impl Time +AIR BMC
token_ring 11769 108 34 F 90 36.5 312.4 498.0
mem_slave 2843 146 116 F 61 24.6 70.9 108.9
ddv 537 152 103 F 93 14.9 162.1 240.2
diskperf 1730 192 34 B 172 75.8 65.5 332.5
s3 1733 131 47 B 265 4.4 20.6 55.5
cafe 2686 146 101 B 97 42.2 216.3 301.8

Table 5.3. Verification of a set of assertions by FUNFROG and FUNFROG+AIR. The timing values
are given in seconds.

the BCT dynamic assertion generator [97] that internally uses DAIKON [54], and
static invariant synthesizers implemented in FUNFROG.

We report the effect of exploiting AIR on the assertion checking in Table 5.3.
In the experiment we are given a benchmark (represented as a SSA form with
the corresponding #SSA Steps) and a set of assertions (#Asserts). First, FUN-
FROG+AIR constructs the AIR (that reveals AIR Impl implications and takes AIR
Time (excluded from FUNFROG+AIR)). Then, FUNFROG+AIR proceeds to asser-
tion verification following one of the two strategies (Strategy = F (forward) or
B (backward)), in which #Checks was actually performed. Finally, we compare
the time spent on verification by FUNFROG+AIR with the time needed to verify
each assertion by the pure FUNFROG. The assertions for these benchmarks come
from the BCT tool.

In all our benchmarks FUNFROG+AIR is able to reduce the total number of
checks needed to perform the verification. In the best case scenario we observe
run times that are more than two times faster than the pure FUNFROG (see,
diskperf). Note that for benchmarks containing many redundant assertions
it is possible to detected more implications than the number of existing asser-
tions in the code. For example, the benchmark instance s3 has 131 assertions
but over 200 implications. We illustrate the redundancy of assertions in Fig. 5.2
showing the assertion implication relation computed for the benchmark instance
mem_slave.

Assertion Implication Checking in Function Summarization

The assertion implication graph GU = (V, E) can be used to reduce the size
of function summaries. We propose to construct each subset {A}k0 of V while
traversing GU . The method is based on the following observation. If each asser-

105 5.1 FunFrog Bounded Model Checker

Figure 5.2. The assertion implication relation for benchmark instance mem_slave. Note that the
figure only contains assertions that imply another assertion.

AIR Summary Pure Summary
Benchmark #SSA # #AIR AIR # # # #
name Steps Asserts Impl Time Vars Clauses Vars Clauses
diskperf 6000 47 7 0.083 150413 49362 162902 83625
gd_simp 673 21 5 0.138 6091 15420 12119 33504
two_expands 183 4 1 0.033 735 1221 1087 2277
p2p_joints 759 146 24 1.71 158034 452427 307897 902016
goldbach 7502 1344 65 25.82 6159 13455 13237 34689
floppy 15076 721 134 26.38 228357 11973 228659 12879

Table 5.4. Creation of function summaries by FUNFROG and FUNFROG+AIR. The timing values
are given in seconds.

tion A∈ Ai is implied by some assertion A′ ∈ A j then the summaries constructed
from PBMC formula φ j will be sufficient to prove both A j and Ai. On the other
hand, if no implication is found between assertions A ∈ A j and A′ ∈ Ai then
there is no guarantee that the summaries constructed from φ j will be sufficient
to prove Ai. We propose to use the AIR to identify the set of strongest assertions
and perform the verification only on this set. As a result we expect to obtain a
strong summary that due to the simplicity of the resulting formula will be more
compact (as our following experimental results confirm).

Table 5.4 reports statistics on constructing function summaries with FUN-
FROG when AIR was used as a preprocessor. Similarly to the experiment from
Sec. 5.1.3, we are given a benchmark (with the size of #SSA Steps) and a set of
assertions (#Asserts). First, FUNFROG+AIR constructs the AIR (with AIR Impl
relations). Then FUNFROG+AIR obtains the set of strongest assertions to be en-
coded to the BMC formula, solved and used to create function summaries. Fi-
nally, we calculate the total number of variables and clauses in the resulting
summary formula (#Vars and #Clauses respectively). We compare these values
with the ones collected after the pure FunFrog run (FunFrog time, #Vars’ and

106 5.2 eVolCheck Incremental Bounded Model Checker

function
summaries

*.c
*.h

ve
rs

io
n

N
 -

1

original
summariesmodel

(goto binary)

parser
goto-cc*.c

*.h

ve
rs

io
n

N

comparator
goto-diff

eVolCheck

stored from
last verification

parser
goto-cc

refiner
downward

PBMC
encoder

solver
PeRIPLO

SAT

φfᴧφgᴧ ...
PBMC formula

Bug
& error traceSafe

updated
summaries

(interpolation)

UNSATso
ftw

ar
e

ev
ol

ut
io

n

refiner
upward

callgraph
traversal

summary checker

all valid main()
invalid

invalid summary

valid summary

check
caller

check summary

Figure 5.3. EVOLCHECK architecture overview

#Clauses’ respectively). For these benchmarks we obtained the assertions using
the GOTO-INSTRUMENT library inherited by FUNFROG from CPROVER.

The experimentation demonstrates that on our benchmark set the proposed
approach improves the performance and the effect of BMC in the context of
interpolation-based function summarization. Using particular optimization tech-
niques (i.e., threshold for assertion locations and timeout for implication checks),
in many cases it was possible to reduce the overhead of performing the impli-
cation checks. Note that at least in these benchmarks the construction of AIR
requires a considerably smaller amount of time than needed for the actual asser-
tions checking in the classic BMC approach.

5.2 eVolCheck Incremental Bounded Model Checker

This section presents the architecture of the EVOLCHECK tool as depicted in Fig. 5.3.
Each version of the analyzed software is compiled using GOTO-CC separately. The
resulting models are stored for future checks. The EVOLCHECK tool itself consists
of a comparator, a call graph traversal, an upward refiner and a summary
checker. The comparator identifies the changed functions calls. Note that if
a function call was newly introduced or removed (i.e., the structure of the call
graph is changed), it is considered as change in the parent function call. The
call graph traversal attempts to check summaries of all the modified function
calls bottom up. The upward refiner identifies the parent function call to be

107 5.2 eVolCheck Incremental Bounded Model Checker

rechecked when a summary check fails. The summary checker performs the ac-
tual check of a function call against its old summary. In turn, it consists of a
PBMC encoder that takes care of unwinding loops, generation of the SSA form
and bit-blasting, a solver wrapper that takes care of communication with the
solver/interpolator (PERIPLO), and a downward refiner that identifies ancestor
functions to be refined when a summary check fails possibly due to imprecise
representation of the ancestor function calls. Additionally, there are two optional
optimizations in EVOLCHECK, namely slicing and summary optimization. The
meaning of these optimizations exactly the same as their counterparts for the
FUNFROG model checker.

Goto-diff. For comparing the two models, of the previous and the modified
versions, we implemented a tool called GOTO-DIFF. The tool accepts two goto-
binary models and analyzes them function by function. The longest common sub-
sequence algorithm is used to match the preserved instructions and to identify
the changed ones.

It is crucial that GOTO-DIFF works on the level of the models rather then on
the level of the source files, i.e., performing not only Syntactic but also Semantic
Diff. This way, it is able to distinguish some of the inconsequential changes in the
code, for example, changes in the order of function declarations and definitions,
text changes in comments and white spaces, and simpler cases of refactoring.
These changes are usually reported as semantic changes by the purely syntactic
comparators (e.g., the standard GNU diff tool). Moreover, as GOTO-DIFF works
on the goto-binary models (i.e., after the C pre-processors) it correctly interprets
also changes in the pre-processor macros.

Solver and interpolation engine. EVOLCHECK requires a solver that is able
to generate multiple interpolants with the tree interpolant property from a sin-
gle satisfiability query. For this reason, we use the interpolating solver, PERIPLO,
which creates multiple interpolants from the same unsatisfiability proof and pro-
vides API for convenient specification of the partitions corresponding to the func-
tions in the call tree.

Eclipse plug-in. We developed an EVOLCHECK-plug-in for the ECLIPSE IDE. It
provides a capability to verify changes as part of the development flow for each
version of the code. If the version history of the program is empty, the bootstrap-
ping (initial verification) is performed first. Otherwise, EVOLCHECK verifies the
program with respect to the last safe version.

108 5.2 eVolCheck Incremental Bounded Model Checker

Table 5.5. EVOLCHECK experimental evaluation.

Benchmark Bootstrapping Incremental check
Name Inst [#] Itp [s] Total [s] Diff [#] Diff [s] Itp [s] Total [s] Inv [#] Total [#] Speedup [X]
floppy 1 2434 1.455 556.231 21 1.188 0 1.304 0 187 223.21
p2p 1 276 0.633 76.884 0 0.018 id 0.018 0 8 4271.33
p2p 3 358 0.498 40.618 1 0.02 0.277 10.453 0 20 3.88
arith 36 60 20.047 40.53 2 0.001 5.997 7.663 2 5 5.29
arith 31 51 12.134 33.043 1 0.001 1.119 1.509 1 4 21.88
kbfiltr 1 1024 0.369 31.828 1 0.072 0.004 0.113 0 56 172.04
kbfiltr 1 1024 0.371 31.813 2 0.071 0.004 0.24 1 56 102.29
life 1 118 3.137 30.9 2 0.004 err 18.757 4 30 1.65
arith 2 64 8.123 26.121 2 0.002 0.52 0.927 2 5 28.12
arith 6 78 9.914 22.287 3 0.001 2.791 4.227 3 6 5.27
arith 20 70 9.83 22.125 3 0.002 3.478 4.607 3 6 4.80
arith 24 61 8.844 21.234 2 0.001 17.898 33.008 3 5 0.64
arith 19 61 5.561 21.159 1 0.002 0.434 0.571 2 5 36.93
euler 1 85 0.742 19.439 1 0.001 0.147 0.678 1 11 28.63
diskperf 1 538 0.449 19.301 1 0.027 0.014 0.183 0 19 91.91
diskperf 2 535 0.447 19.134 1 0.026 0.259 11.326 2 19 1.69
diskperf 3 523 0.4 19.017 2 0.025 0.285 11.298 2 19 1.68
arith 7 100 1.518 12.784 3 0.001 2.847 14.881 7 9 0.86
p2p 2 355 0.493 6.595 0 0.02 id 0.02 0 9 329.75
floppy 3 323 0.161 3.677 1 0.029 0.003 0.07 0 18 37.14
floppy 2 320 0.16 3.675 1 0.028 0.003 0.07 0 18 37.50
diskperf 1 1880 0.124 3.149 1 0.114 0.001 0.151 1 5 11.88
floppy 4 322 0.088 2.127 2 0.028 0 0.101 0 7 16.49
floppy 5 330 0.089 1.895 5 0.028 0.082 2.041 0 7 0.92

5.2.1 Evaluating eVolCheck

Similarly to FUNFROG, the binaries of EVOLCHECK were compiled using GCC ver-
sion 4.8.2. The implementation of EVOLCHECK is totally deterministic and not
parallelized. All the experiments were run on the Ubuntu 14.04 LTS machine,
Intel(R) Xeon(R) CPU E5620 2.40GHz, 16 GB RAM. The verification time in the
table corresponds to a single verification run of the correspondent pair of pro-
grams.

To demonstrate the applicability and advantages of EVOLCHECK, we provide
evaluation details of several test cases. The benchmarks p2p_n were provided
by our industrial partners for which the changes were extracted from the project
repositories. diskperf_n, floppy_n, kbfiltr_n were derived from Windows
device driver library. The changes (with different level of impact, from adding an
irrelevant line of code to moving a part of functionality between functions) were
introduced manually there. The rest of the benchmarks are crafted programs
with arithmetic computations. Pre-processing the code with the GOTO-CC tool
generated a collection of goto-binaries that were then processed with EVOLCHECK

focusing the validation to particular functional sub-projects.

109 5.2 eVolCheck Incremental Bounded Model Checker

Table 5.5 represents results of the experiments. Each benchmark is shown
in a separate row, which summarizes statistics about the initial verification and
the incremental verification. Inst [#] measures the original source code size as
a number of instructions in the goto-binary (this is the more accurate parame-
ter than the usual “lines of code” since it does not contain declarations of the
variables, empty lines of code and so on). Total [#] represents the number of
function calls in the program, and Diff [#] – the number of changed function
calls, identified by GOTO-DIFF.

Time (in seconds) for running GOTO-DIFF (Diff [s]) and for generation of the
interpolants (Itp [s]) represents the computational overhead of the incremen-
tal checking procedure, and included to the total running time (Total [s]) of
EVOLCHECK. Note that interpolation can not be performed for the buggy pro-
gram transformations (marked as “err”), for which the corresponded PBMC for-
mula is satisfiable; or for the identical program versions (marked as “id”), for
which GOTO-DIFF returned empty set of changed function calls.

To show advantages of EVOLCHECK, for each change we calculated the speedup
(Speedup) of the incremental check versus standalone verification of the changed
code from scratch, performed only for the sake of comparison and thus not shown
in the table. Finally, the number of invalidated summaries (due to the change)
is listed in Inv [#] column.

Discussion. Our evaluation demonstrates good performance of EVOLCHECK.
In particular, the experiments show high effect of incremental checking for safe
program transformations since they result in a small number of refinements
(both, upward and downward). Moreover, if the changed function are located
deeper in the call tree, this generally leads to a small number of invalidated sum-
maries, as witnessed by the ratio Inv [#] / Total [#]. For example, consider the
case, where summaries of all changed functions were proven valid.

EVOLCHECK is less efficient in case of program transformations, which affect
a large amount of function calls located on the different levels of the call tree.
When the transformation introduced a bug, it will cause an increasing amount
of upward refinements. However, sometimes even a single buggy change intro-
duced in a higher level of the call tree, might be verified efficiently.

In classical model checking, confirming the absence of bugs is usually more
expensive (since it requires the full state-space search) then detecting the bugs
(where the search can be terminated once a counter-example is detected). On
the contrary, EVOLCHECK is less time- and resource-demanding in proving the ab-

110 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

sence of bugs. Thus, it might make sense to run EVOLCHECK and a classical model
checker (e.g., FUNFROG) in parallel, and terminate both processes whenever one
of them returned a result.

The use of GOTO-DIFF has been particularly useful since it managed to de-
tected test cases with small syntactic changes which did not require running the
main EVOLCHECK procedures. For example, in p2p 1/2, the comparator proved
that the models are identical (however, the source code might still be different),
so no further checking was needed.

As expected, in the majority of the experiments, the localized incremental
check provided by EVOLCHECK outperforms the verification from scratch, which
is indicated by speedup > 1. Moreover, in many instances (usually on large
industrial cases) the speedup is large, which demonstrates good efficiency and
usefulness of the tool.

In future we plan to conduct a case study where the incremental BMC is
applied to a realistic line of revisions (e.g., several dozens of successive program
versions from a repository) for a given project.

5.3 Niagara Framework for Simulation Discovery and
Proof Lifting

We present NIAGARA, an LLVM-based framework that contains an implementa-
tion of SIMABS, a novel iterative abstraction-refinement algorithm to find an ab-
straction of the target T that simulates the source S, and an implementation of
PROOFADAPT, a novel algorithm to use a proof of T and a simulation relation
between S and T to obtain a proof of S.

The architecture of SIMABS is illustrated in Fig. 5.4(a). Initially, in the Syn-
thesize step, SIMABS guesses a relation ρ between S and T . Then, in the Solve
step, SIMABS checks whether T simulates S via ρ. If the check fails, SIMABS

iteratively performs the Abstract step to find an abstraction αT of T and a simu-
lation relation ρα between S and αT . Finally, in the Refine step, SIMABS refines
both αT and ρα. The algorithm terminates when either no refinement or no ab-
straction is possible. The search space of the algorithm is shown in Fig. 5.4(b):
SIMABS explores the space of abstractions of T , starting with the most general
abstraction αT that simulates S via ρα, and iteratively refines it to α(n)T that
simulates S via ρα(n) .

111 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

SimAbs

Synthesize

T

S

Abstract

Solve

Refine

nothing to abstract

S � [↵]T

S � [↵]T

⇢[↵][^Sk]

Sk

↵T

S, [↵]T

valid

invalid

(a)
TS

..
.

⇢

↵T

↵0T

↵(n)T

⇢↵

⇢↵0

⇢↵(n)

(b)

Figure 5.4. (a) SIMABS and (b) its search space.

PROOFADAPT takes as input the programs S and T , a proof ϕ of T and an
abstraction α(n)T of T that simulates S via ρα(n) . First, it weakens ϕ to become
an inductive invariant |ϕ| for α(n)T . Second, it adapts |ϕ| to become an invariant
of S using ρα(n) . Finally, it strengthens the adapted invariant to become safe using
the underlying model checker.

We implemented SIMABS, PROOFADAPT and AE-VAL on the top of the state-
of-the-art unbounded model checker UFO [3; 86] . For solving Horn clauses, AE-
VAL uses PDR engine [80] implemented in Z3 [106]. Our tool works with LLVM-
preprocessed abstractions of programs in which procedures are inlined, memory
is lowered to registers, and other memory and procedures are treated as non-
deterministic. While aggressive, this abstraction is precise enough to preserve
properties of Linux Device Drivers in Software Verification Competition.

UFO takes care of the preprocessing the input programs, extracting a CPG-
representation, synthesizing a safe inductive invariant and serializing all these
data into an external storage. NIAGARA restores the invariants and the verifica-
tion conditions and uses them as inputs to SIMABS and PROOFADAPT. As output,
SIMABS and PROOFADAPT provide (whenever possible) a simulation relation and
a new safe inductive invariant, that are also serialized for possible future runs.

For the experiments, we used the version of UFO based on LLVM-2.9, and
compiled UFO and NIAGARA using GCC version 4.7.3. The implementation of NI-
AGARA is totally deterministic and not parallelized. All the experiments were run
on the Ubuntu 12.04 LTS machine, Intel(R) Core(TM) i7-3740QM CPU 2.70GHz,
12 GB RAM.

112 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

5.3.1 Evaluating SimAbs

We evaluated SIMABS on the SVCOMP benchmarks and constprop, globalopt,
instcombine, simplifycfg, adce, and mem2reg optimizations of LLVM. The
constprop performs constant propagation, the globalopt transforms global vari-
ables, the instcombine simplifies local arithmetic operations, the simplifycfg

performs dead code elimination and basic block merging, the adce performs ag-
gressive dead code elimination, and mem2reg promotes memory references to
be register references. Notably, combinations of the optimizations provide more
aggressive optimizations than each individual optimization, thus increasing a se-
mantic gap between the original and the optimized programs. In our evaluation,
we aim at synthesizing concrete or abstract simulation relations for programs
with a bigger semantic gap and empirically demonstrate the power of AE-VAL
(that is expected to have a higher number of AE-VAL iterations in such cases).

For each of the 228 considered source programs S (300 - 5000 lines of source
code), we created an optimized program5 T , and applied SIMABS to discover
abstractions and simulations in two directions: S � [α]T and T � [α]S. We
present the results in two diagrams in Fig. 5.5. Each diagram is a pie chart
and a collection of SIMABS execution times for each benchmark in the spherical
coordinate system. The pie chart in Fig. 5.5(a) represents a proportion of four
main classes of SIMABS results:

: T simulates S via identity relation;

: T simulates S via some Skolem-relation-based ρ;

: some abstraction αT simulates S;

: we did not find an abstraction αT that simulates S.

Each dot represents a runtime of SIMABS on a single benchmark. It is placed in
one of the circular sectors, , , or , with respect to the outcome, and is
assigned the radial distance to represent time in seconds. For example, a bench-
mark on which S�id T solved in 20 seconds is placed in the sector in a distance
20 from the center. Being closer to the center means being faster. Runs that took
longer than 60 seconds are placed on the boundary. Fig. 5.5(b) is structured
similarly, but with inverse order of S and T .

5We combined the optimizations in the following order to create each T : -constprop -globalopt

-instcombine -simplifycfg -mem2reg -adce -instcombine -simplifycfg.

113 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

...
..

..
.. ..

...

.. .

...

. .

..

.. .

.

.
.. .

.

.. .

. . .
..

.

.

.

..

.
. .

.

.

. .
. .

.

.

.

.
.

. .
.

.
.

. . .

.

.

..
. .

.
.

.
.

. . .
.

. .
...

.
.

. .
.
.

.
. .

. . .

.. ..

. .

....
. .
. .

.

.

.
. .
......

.

.

.

..

.

.

.

.
.
..

..
..

..

.
.

.
.......... 20 40 60

sec

S � TS � ↵T

S 6� ↵T S � T
id

(a) Simulation of S by T

...

..

........
.

.
.

.
.

.
.

.
........

.

.
.

.
..

..
.. .
.

.

...

..

..

.. .

.

. .. .

.

..

.

...

..

..

.

. .. .

.

. .

.

.
.
.

.

. .

.

.

.

.
. .

.

.

.
.

.

. .
.

.
.

. . .

.

.

..

.
.
.
.

.
.

. .
.

. .
.

.
..

.
.

.
.
. .

..
.
.

.

. .

........
..

.
.

..
..

.

.

.

.. ..

.

.

..

.

..

.

.

.

.
.
..

..
..

..

.
.

.

20 40 60

sec

id

T � S

T � ST � ↵S

T 6� ↵S

(b) Simulation of T by S

Figure 5.5. Pie chart and running times in the spherical coordinate system.

The experiment shows that SIMABS is able to effectively discover abstractions
and simulations between S and T in both directions. While in many cases (101
in Fig. 5.5(a), and 65 in Fig. 5.5(b)) it proved simulation by identity, in the
remaining cases SIMABS goes deeper into the abstraction-refinement loop and
delivers either a concrete or abstract simulation in 124 and 160 cases respectively.
SIMABS terminates with a positive result in all, but 3 pairs of programs. The 3
negative cases can be explained by the fact that T happened to have some CPG-
edge (u, v) with the inconsistent labeling τT (u, v).

The core solving engine, AE-VAL, invoked on the low level of SIMABS was
shown to be effective while eliminating quantifiers. Overall, it solved 84587 for-
mulas (each formula contains up to 1055 existentially quantified variables, and
requires up to 617 iterations to terminate), and extracted 3503 Skolem relations.

Unfortunately, during the experiment, we were not able to compare SIMABS

with other techniques. There were several practical difficulties. First, SIMABS

works at the level of LLVM, and we are not aware of other incremental-verification-
like tools at LLVM level except of [64]. They, however, require the programs to
contain assertions and furthermore, they require all the assertions to be safe. As
stated in Sect. 3.1.3, SIMABS does not have such restrictions.

There are some tools at the C level [92; 67; 61]. [92] is not available even
in binary form, [67] is based on BMC and cannot handle infinite loops, [61] can

114 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

....

...

......

..

.
.

...
.

.....
...
.
............
.................
.....
.
.

.

.
.

....

.
.
..

.

.
.

. .
.. . .
..

......

... .
.

.
. .

....... .

.

..

.

.
.
.

.

....

.

.

..

.

..................................

.

.

.

.
.
..

..
..

..

..

.

..
.

.

. 20 40 60

sec

S � ↵T

S 6� ↵T S � T
id

(a) Simulation of S by T

.. .

.
.
.

.
.
.
.

........
..
..
..

....
. . .

...
...

..

.
.

...
.

..
.
.
.
..

.

.

.

.
..

.

. ...
.
.

.
.

.. .
.

...
...

.
.
..
..
..

..
..
..

...
.

.
.

.
.
.
.......

.

..

.

.
.
.

.

....

.

.
..

.

..................................

.

.

.

. .. .

..

..

..

..

.

..

.

.
.

20 40 60

sec

id

T � S

T � ST � ↵S

T 6� ↵S

(b) Simulation of T by S

Figure 5.6. constprop, globalopt, adce

only handle very small subset of C. Furthermore, we focus on the case when
programs are not equivalent (may not even simulate each other). So these tools
are not applicable. For example, neither one allows for programs to be non-
deterministic, which they are in our case due to modelling abstraction, i.e., bit-
vector operators, external function calls, etc.

Evaluating other optimizations. In addition to simulation discovery for the
combination of optimizations (depicted in Fig. 5.5), we applied SIMABS to dis-
cover simulation relations between the source program and the target program
resulted from individual (and therefore, less aggressive) optimizations.

Fig. 5.6 depicts the effect of optimizations constprop, globalopt, adce.
SIMABS was able to discover mutual simulation relation between S and T in 223
cases out of 228 ones. This can be explained by our intuition that the considered
optimizations are relatively lightweight.

Fig. 5.7 depicts the effect of optimizations instcombine, simplifycfg. SIMABS

performs similarly to the experiment in Fig. 5.5, but it was able to discover 3 more
total simulation relations in the direction S � T and 2 more total simulation re-
lations in the direction T � S.

Our experiments for discovering simulation relations individually for instcombine,
were identical to the case of instcombine, simplifycfg. We therefore omit

115 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

...
..

..
....

...

.. .

...

. .

..

...

.

.
.
.
.

.

.

.

.

. . .

.

.

.

.

.

..

.

.

.

.

.

.

.
. .

.

.

.

.
.

.

.
.

.
.

. . .

.

.

.
.

.
..
.

.
.

. . .
.

. .
.

..
.

.
.
.
.. .

. .

.

.

.. ..

. .

....
.
.
.
.

.

.

.
. .
........

.

. . .

.

..

..

.

.

.
.
..

..
..

..
.

.
.

.
.......... 20 40 60

sec

S � TS � ↵T

S 6� ↵T S � T
id

(a) Simulation of S by T

...

..

........
.

.
.

.
.

.
.

.
........

.

.

.

.
..

..
.. .
.

.

...

..

..

.. .

.

.
.. .

.

.. .

..

....

..

..

.

... . .

.

.

.
.

.

. .

.

.

.

.
..

.

.

.
.

.

.
.

.
.

.

. . .

.

.

.
.

.
.
.
.

.
.

. .
.

.
.

.
.

..
.

.
.

.
. .

..
........

.
. .

..

.

.
. .

.

.. ..

.

.

..

.

..

..

.

.

.
.
..

..
..

..

.
.
.

.

20 40 60

sec

id

T � S

T � ST � ↵S

T 6� ↵S

(b) Simulation of T by S

Figure 5.7. instcombine, simplifycfg

......
.
.....
.
.
.
.

..
.

.
.
.

.
.

...

..

.

.

.

.
.

.
.

.
.
.

.
.

.

.

.

.
.. . .

.
..
.

.
.
. .

.

.

..

.
. ..

. ...

. .. .

.
.
.. .

.

. .. .

.

... .

.

..
..
....
...
...........

.
.
..

. .
.
.
.
.

. .
. . . .

.
.
.
.

.
.

.
.

.
. ..

.

. . ..

.

.. .
.

.

.

.

.
.
.
. .

.

.
.
. .. .

.

...
.

.
.

.
... .

. .

.. ..

.

.

.

..

... ..

.

.

.

.

.

.

.

. ..

...

.

..

.

.

.

...

. .

.

.

.
. .

.
...

.

.
.

.

.

..

..

.

... ..
.

.
.

..

.
.

.

. ..
.

. 20 40 60

sec

S � ↵T

S 6� ↵T S � T
id

(a) Simulation of S by T

.
.

.
.

.
.

.
..

...
..

.
.

.
.

.
..
.

.
..

.
.. .. .

....

.
.
.

.

.

.

..

. ...

....

.
.
.

.

.

.
.

.

.

.

.
.
..
.. .

.

.

.
...

.

..

..
.....

. ...
.
.

. ..
.. .

.
.

.
.

.
.
..

.
.

.
.

.
.

.
. .

.
.

.
.

.
.

.
.
.

.
.

.
.

.
.

.
.
.
.

.
. ...

.

..
.

.

.
..

.. .. .

.

.

.
. ..

.

.

.

. .

.

.. .

. .

.

.

.

.

.

.

.

.

.. ..

.

. . . .

....
..

...

..

..

.

.

.

.

.

.

..

.

.. ..
.....
.

.
. .

.

..

.

.
..

..

..

.

... ..
.

.
.

..

.
. .
.. 20 40 60

sec

id

T � S

T � ↵S

T 6� ↵S

(b) Simulation of T by S

Figure 5.8. Discovering simulation for program mutants.

presenting the corresponding figures.

Application to mutation testing. We demonstrate the applicability of SIMABS

to a rather different scenario from proving correctness of compiler optimizations.

116 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

Mutation testing is used to evaluate the quality of program specification. The idea
is to generate a so called program mutant using a small random change. It could
change arithmetic operations (e.g., “+” to “-”, as in Fig. 3.1(a)-3.1(b)). Finally,
the goal of testing is to kill such mutant (i.e., to prove that it is inconsistent with
the given specification), and therefore to demonstrate that the change brakes the
specification.

We expand this idea and move it into the verification domain. More specifi-
cally, for a given program S, we generate a mutant program T and then proceed
with synthesizing a simulation relation between S and T . The results of the ex-
periment are shown in Fig. 5.8. SIMABS was applied to 352 pairs of S and T ,
but succeeded in synthesis of total simulation relation (i.e., S � T) less than in
10% of cases (21 cases for S � T and 34 cases for T � S). On the the other
hand, SIMABS was unable to find any abstraction αT , such that S � αT in more
than in 8% cases (45 cases for S 6� αT and 31 cases for T 6� αS). Both numbers
significantly differ from the correspondent ones in the experiments with opti-
mizations: number of ? � ? results was much larger, and the number of ? 6� α?
was much lower. Intuitively, this means that our mutation was successful, and
the correspondent program mutants were killed.

5.3.2 Evaluating ProofAdapt

For evaluation of PROOFADAPT, we used benchmarks from Software Verification
Competition and the following LLVM-optimizations: -indvars -loop-rotate

-licm -loop-simplify -instcombine -simplifycfg -lowerswitch. The
indvars transforms the loops to have a single canonical induction variable ini-
tially assigned to zero and being incremented by one. The loop-rotate per-
forms loop rotations. The licm detects loop invariants and moves them outside
of the loop body. The loop-simplify transforms loops into a simpler form. The
simplifycfg simplifies the control-flow structure, and is particularly effective af-
ter the arithmetic simplifications by the instcombine. Finally, the lowerswitch

rewrites switch instructions. Notably, this combination of optimizations does not
necessarily preserve the program’s loop structure.

We focus our attention only on safe programs, i.e., those for which UFO is
able to find a proof Òψ. We further use Òψ to create a Òψ-safe abstraction αT of
each original program T and discover a simulation relation ρα between αT and
the optimized program S. Both, proof Òψ and simulation relation ρα, are further

117 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

0 200 400 600

0

200

400

600

PROOFADAPT including SIMABS (sec).

Ve
ri

fic
at

io
n

fr
om

sc
ra

tc
h

(s
ec

).

0 200 400 600

0

200

400

600

PROOFADAPT excluding SIMABS (sec).

Ve
ri

fic
at

io
n

fr
om

sc
ra

tc
h

(s
ec

).

Figure 5.9. Verification by PROOFADAPT (including and excluding SIMABS) compare to Verifica-
tion from scratch.

118 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

used to produce a proof bϕ of S.
The need to apply PROOFADAPT to establish equivalence between a program

and its optimization comes from an unfortunate fact that an implementation of
the optimization pass might contain bugs (as shown, e.g., in [96]). Thus, such
program transformations (especially if they contain combinations of optimiza-
tions) could end up with the programs that are not semantically equivalent to
the original programs. Establishing the Property Directed Equivalence is served
to ensure that optimizations do not break the particular safety properties of the
particular programs.

We compared the performance of PROOFADAPT with the performance of the
stand-alone model checker UFO while verifying the optimized program from
scratch (Fig. 5.9(a)). Of course, it would be too naive to expect that PROOFADAPT

outperforms UFO in majority of cases, since PROOFADAPT requires an expensive
run of SIMABS (which in turn proceeds by deciding validity of a sequence of ∀∃-
formulas). Thus, we additionally compared the performance of a lightweight ver-
sion of PROOFADAPT (i.e., PROOFADAPT excluding SIMABS) with UFO (Fig. 5.9(b)).
Having in mind that both abstraction and simulation might already be known be-
fore the run of PROOFADAPT, such application scenario is still practical.

Among 128 pairs of considered programs, and given a timeout of 700 sec,
SIMABS was able to discover an abstraction and a simulation for all but 7 pairs.
Among these 121 pairs, 14 abstractions were Òψ-safe that allowed migrating the
proof directly; the others required a further weakening-strengthening procedure.

PROOFADAPT outperformed UFO in 43 cases (including 5, in which UFO ex-
ceeded timeout). Notably, this includes the time for SIMABS that took in av-
erage 38% of the PROOFADAPT time. Another important observation is that
PROOFADAPT tends to be better than UFO whenever the verification takes more
time. That is, the average time for verifying the benchmarks won by PROOFADAPT

is 137 sec, while the average time for verifying the benchmarks won by UFO is
100 sec.

The overall picture of the comparing PROOFADAPT (excluding SIMABS) versus
UFO is even more impressive: PROOFADAPT outperformed UFO in 99 cases. In
the remaining 29 cases, the performed optimizations dramatically simplified the
program so it became easier to verify it from scratch.

To conclude, we must mention that being an SMT-based framework, NIAGARA

currently supports only LRA that makes it difficult to evaluate programs handling
arrays, floating point arithmetic, bit-vectors and so on. We look forward to en-

119 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

hance the main computation engine (mainly, MBPs) with more recent solutions;
however, it slightly moves out of the scope of this dissertation. NIAGARA shown its
potential to be the first framework that is able to connect reusable and relational
specifications of the versioned software, and we envision multiple improvements
of its workflow in future.

120 5.3 Niagara Framework for Simulation Discovery and Proof Lifting

Chapter 6

Conclusions

In this dissertation, we investigated the new techniques to FIV that aims to au-
tomatically verify different versions of software. The main message, we would
like the reader to take home, is that FIV techniques should not treat the un-
derlying model checking engine as a black box, but instead should exploit all
its subroutines in a certain duly justified manner. Only in this case FIV helps
earning performance benefits without sacrificing soundness of the analysis. Our
contributions extend three complementary approaches to automated formal ver-
ification, thus confirming that FIV capabilities can be implemented on the top of
widely-used model checking tools.

In Chap. 2, we presented our FIV contributions for SAT-based BMC designed
to verify programs with (possibly recursive) functions. We invented the function-
summarization framework based on Craig interpolation that allows generating
reusable specifications between verification runs. We introduced the algorithm
to revalidate the summaries existing from the verification of one program ver-
sion locally in order to prevent re-verification of another program version from
scratch. In order to create function summaries of a better quality, we proposed
to exploit the assertion implication relation during the BMC preprocessing. Ad-
ditionally, we contributed in speeding-up BMC for an individual program version
and finding a proper loop and recursion bound for BMC.

In Chap. 3, we presented our FIV contributions for simulation relation syn-
thesis for loop-free programs, but does not require any assertions to be supplied.
We introduced an SMT-based abstraction-refinement algorithm that proceeds by
guessing a relation and checking whether it is a simulation relation for the given
programs (called the source and the target, respectively). The problem of check-

121

122

ing simulation is therefore reduced to deciding validity of a sequence of ∀∃-
formulas. Our algorithm manipulates implicit abstractions of the target program
by introducing existential quantifiers to the right-hand-side of the ∀∃-formulas.
We presented the algorithm AE-VAL for deciding validity of ∀∃-formulas in LRA
that extracts a Skolem relation to witness the existential quantifiers. This Skolem
relation is the key to refine the considered abstractions of the target, and there-
fore requires to be minimized and factored. The results of AE-VAL are then used
to strengthen both, the discovered simulation relation and the current abstrac-
tion of the target.

In Chap. 4, we presented our FIV contributions for Unbounded Model Check-
ing designed to verify programs with (possibly, nested) loops. We formulated
the challenge as establishing a Property Directed Equivalence (PDE) between pro-
grams and proposed a solution based on migrating safe inductive invariants
across program versions. Our algorithm performs an iterative abstract-refinement
reasoning to automatically derive simulations between programs with different
loop structures. The key insight of the algorithm is it automatically derives an
abstraction of the already verified program that is still precise enough to satisfy
the existing proof. Finally, our algorithm uses the automatically synthesized sim-
ulation relation between the new (not verified) program version and the safe
abstraction of the old (verified) program version to lift the existing proof, thus
preventing generation of a new proof from scratch.

In Chap. 5, we presented the evaluation of all the algorithms we contributed.
We implemented the interpolation-based function summarization, refinement,
automatic recursion depth detection and automatic assertion implication detec-
tion in the tool FUNFROG extending the CBMC model checker and the SAT solver
PERIPLO. We further extended FUNFROG with the incremental BMC-based Up-
grade Checking algorithm resulting in the tool EVOLCHECK. Both tools, FUNFROG

and EVOLCHECK, were evaluated on the range of academic and industrial bench-
marks provided by the EU project PINCETTE.

We implemented the algorithm SIMABS for simulation relation synthesis and
the algorithm PROOFADAPT for establishing PDE in the framework NIAGARA ex-
tending the LLVM-based model checker UFO and the SMT solver Z3. We eval-
uated SIMABS by discovering total simulation relations between programs and
their LLVM optimizations. The results of SIMABS were further used to evaluate
PROOFADAPT. PROOFADAPT confirmed that establishing PDE between two pro-
grams from Software Verification Competition can be made more efficient than

123 6.1 Future Work

verification of both programs from scratch.

6.1 Future Work

We consider two major research directions that would enhance the contributions
outlined in the dissertation. First, the function-summarization framework would
benefit if its main computation engine turns to SMT. Second, our solution to PDE
would benefit of the automated program repair capabilities.

6.1.1 SMT-Based Function Summarization

Function summarization (contributed in Sect. 2.2) is a generic technique for ab-
stracting programs which allows both propositional and first-order instantiations.
In this dissertation, we have focused on the propositional encoding of the BMC
formulas to achieve bit-precise results. However, there are many cases where us-
ing a theory solver might result in a more efficient summary, without sacrificing
the precision.

Our current implementation considers the bit-precise encoding of the pro-
gram, encoding the sums and inequalities as addition circuits. This choice some-
times causes major problems due to the big sizes of the corresponding formulas.
The big formulas often are expensive to solve making the overall verification
procedure impractical in such cases. We believe that the function summaries
resulting from theory interpolation would likely be significantly more compact.

In the potential future work, one can investigate constructing function sum-
maries over theories including uninterpreted functions, difference logic, and lin-
ear arithmetics. We believe that the use of SMT will speed up the calculation and
allow scaling the model checking applications to process much larger projects.

Many of the widely used theories in SMT have interesting properties with re-
spect to over-approximating program behavior and in particular when computing
function summaries. The most precise encoding in case of model checking is to
express the algorithm as a bit-precise propositional satisfiability formula. How-
ever, as discussed above, there are several reasons to try to model a verification
problem with less expensive theories.

In the potential future work, one can do fundamental research on algorithms
that identify iteratively the function calls that violate an assertion, and substi-
tute these functions with increasingly strong theory representation. We believe

124 6.1 Future Work

Simulation
Discovery

...

program

encoding

si
m

ul
at

io
n

re
la

tio
n

ab
st

ra
ct

io
n

of
 V
i

pro
of

to
be

 ad
ap

ted

adapted

proof

candidate repair

ev
ol

ut
io

n

pr
oc

es
s

co
un

te
r-

ex
am

pl
e

ch
an

ge
 im

pa
ct

program

encoding

...

pr
ev

.

ro
un

d

...

...
en

ab
le

ne
xt

 ro
un

d

proof

proof

ev
ol

ut
io

n

pr
oc

es
s

ev
ol

ut
io

n

pr
oc

es
s

Vi Vi

Vi+1 Vi+1
Proof
Adapt

Program
Repair

program encoding

pro
gra

m en
co

din
g

Figure 6.1. A round of NIAGARA for Vi and Vi+1.

that the use of this theory-sensitive refinement (as opposed to the straightforward
propositional refinement described in Sect. 2.2.6) will allow us to automatically
adapt the model so that the parts critical to correctness will be encoded in the
coarsest precision required by the proof.

6.1.2 Automated Program Repair

We envision our FIV framework NIAGARA to combine efforts on unbounded proof-
based upgrade checking and program repair. Its workflow outlined in Fig. 6.1
considers a transition within the evolutionary chain of a given program between

125 6.1 Future Work

versions Vi and Vi+1. NIAGARA obtains a simulation relation between versions,
uses it to verify Vi+1 by adapting the proof of Vi and (if disproven safe) attempts
to incrementally fix the detected bug in Vi+1. Thus, NIAGARA iterates between
the components Simulation Discovery, Proof Adapt, and Program Repair.

Simulation Discovery (already contributed and described in Sect. 4.2) re-
ceives the symbolic encoding of Vi and Vi+1; and discovers an abstraction αVi of
Vi that simulates Vi+1 via some total relation ρ.

Proof Adapt (already contributed and described in Sect. 4.3) takes Vi, Vi+1

simulated by some αVi via ρ and the safety proof bπVi
of Vi; and either adapts

bπVi
to become a proof bπVi+1

of Vi+1, or provides a counter-example. In cases
if Vi+1 is buggy, NIAGARA also generate a change impact certificate (described
in Sect. 4.3.6), a function labeling the CPG of Vi+1 by propositional constants
indicating whether the lifted inductive invariant in the correspondent cutpoint
did (or did not) require strengthening. In other words, it is an indication whether
the code in a particular program location is affected by the change or not.

Program Repair receives Vi+1, a counter-example and the change impact be-
tween Vi and Vi+1; and outputs a candidate repair, a new program version V ′i+1

which does not contain bad behaviors. Our method aims to find an abstraction
of Vi+1 (where the code, not affected by the change, should be kept) such that
it contains at least one safe behavior. This abstraction is further refined using
the witnessing Skolem function to finally deliver the candidate repair. The can-
didate repair is model-checked, and, if another counter-example is found, NIA-
GARA iterates until it discovers the repair fixing each counter-example, or a user
intervention is made.

We believe that the extension of NIAGARA to do Program Repair will have
a broad impact and numerous applications including improving scalability of
automated verification, simplifying software certification, and helping software
engineers to produce new program versions of a higher quality. Furthermore,
since the solutions are often applicable across domains, we hope that all our
delivered and planned contributions will stimulate a new research and give rise
to new thoughts and ideas helping to solve other problems involving verification
and synthesis.

126 6.1 Future Work

Bibliography

[1] ACM: Press Release on the 2007 A.M. Turing Award recipients (2007),
http://www.acm.org/press-room/news-releases-2008/

turing-award-07

[2] Albarghouthi, A., Berdine, J., Cook, B., Kincaid, Z.: Spatial interpolants.
In: ESOP. LNCS, vol. 9032, pp. 634–660. Springer (2015)

[3] Albarghouthi, A., Gurfinkel, A., Chechik, M.: UFO: A Framework for
Abstraction- and Interpolation-Based Software Verification. In: CAV.
LNCS, vol. 7358, pp. 672–678. Springer (2012)

[4] Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An Interpolation-
Based Algorithm for Inter-procedural Verification. In: VMCAI. LNCS, vol.
7148, pp. 39–55. Springer (2012)

[5] Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: CAV. LNCS,
vol. 8044, pp. 313–329. Springer (2013)

[6] Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy
abstraction with interpolants for arrays. In: LPAR. LNCS, vol. 7180, pp.
46–61. Springer (2012)

[7] Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A Proof-
Sensitive Approach for Small Propositional Interpolants. In: VSTTE.
LNCS, vol. 9593. Springer (2015)

[8] Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model
checker for concurrent software. In: CAV. vol. 3114, pp. 484–487. Springer
(2004)

127

http://www.acm.org/press-room/news-releases-2008/turing-award-07
http://www.acm.org/press-room/news-releases-2008/turing-award-07

128 Bibliography

[9] Babic, D., Hu, A.J.: Calysto: scalable and precise extended static checking.
In: ICSE. pp. 211–220. ACM (2008)

[10] Backes, J.D., Person, S., Rungta, N., Tkachuk, O.: Regression verification
using impact summaries. In: SPIN. LNCS, vol. 7976, pp. 99–116. Springer
(2013)

[11] Balabanov, V., Jiang, J.R.: Resolution Proofs and Skolem Functions in
QBF Evaluation and Applications. In: CAV. LNCS, vol. 6806, pp. 149–164
(2011)

[12] Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean
programs. In: SPIN. LNCS, vol. 1885, pp. 113–130. Springer (2000)

[13] Ball, T., Rajamani, S.K.: The SLAM toolkit. In: CAV. LNCS, vol. 2102, pp.
260–264. Springer (2001)

[14] Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product
programs. In: FM. LNCS, vol. 6664, pp. 200–214. Springer (2011)

[15] Basler, G., Kroening, D., Weissenbacher, G.: SAT-based summarization
for Boolean programs. In: SPIN. LNCS, vol. 4595, pp. 131–148. Springer
(2007)

[16] Berman, C.L., Trevillyan, L.H.: Functional comparison of logic designs for
VLSI circuits. In: ICCAD. pp. 456–459. IEEE (1989)

[17] Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-
based approach to solving games on infinite graphs. In: POPL. pp. 221–
234. ACM (2014)

[18] Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Soft-
ware Model Checking via Large-Block Encoding. In: FMCAD. pp. 25–32.
IEEE (2009)

[19] Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Soft-
ware Verification. In: CAV. LNCS, vol. 6806, pp. 184–190. Springer (2011)

[20] Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision
reuse for efficient regression verification. In: Meyer, B., Baresi, L., Mezini,
M. (eds.) ESEC/FSE. pp. 389–399. ACM (2013)

129 Bibliography

[21] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded Model
Checking. Advances in Computers 58, 118–149 (2003)

[22] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking
without BDDs. In: TACAS. LNCS, vol. 1579, pp. 193–207. Springer (1999)

[23] Bjørner, N., Gurfinkel, A.: Property Directed Polyhedral Abstraction. In:
VMCAI. LNCS, vol. 8931, pp. 263–281. Springer (2015)

[24] Bodík, R., Jobstmann, B.: Algorithmic program synthesis: introduction.
STTT 15(5-6), 397–411 (2013)

[25] Bourdoncle, F.A.: Efficient Chaotic Iteration Strategies with Widenings.
In: FMPA. LNCS, vol. 735, pp. 128–141. Springer (1993)

[26] Bradley, A.R.: Sat-based model checking without unrolling. In: VMCAI.
LNCS, vol. 6538, pp. 70–87. Springer (2011)

[27] Brand, D.: Verification of large synthesized designs. In: ICCAD. pp. 534–
537. IEEE (1993)

[28] Brugh, N.H.M.A.D., Nguyen, V.Y., Ruys, T.C.: MoonWalker: Verification
of .NET Programs. In: TACAS. LNCS, vol. 5505, pp. 170–173. Springer
(2009)

[29] Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT
Solver. In: TACAS. LNCS, vol. 6015, pp. 150–153. Springer (2010)

[30] Bryant, R.E.: Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers pp. 677–691 (1986)

[31] Burch, J.R., Singhal, V.: Tight integration of combinational verification
methods. In: ICCAD. pp. 570–576. IEEE (1998)

[32] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
Model Checking: 1020 States and Beyond. In: LICS. pp. 428–439. IEEE
(1990)

[33] Cabodi, G., Murciano, M., Nocco, S., Quer, S.: Stepping forward with in-
terpolants in unbounded model checking. In: ICCAD. pp. 772–778 (2006)

130 Bibliography

[34] Cabodi, G., Palena, M., Pasini, P.: Interpolation with guided refinement:
Revisiting incrementality in SAT-based unbounded model checking. In:
FMCAD. pp. 43–50. IEEE (2014)

[35] Chaki, S., Clarke, E., Sharygina, N., Sinha, N.: Dynamic Component Sub-
stitutability Analysis. In: FM. LNCS, vol. 3582, pp. 512–528. Springer
(2005)

[36] Christakis, M., Godefroid, P.: IC-Cut: A Compositional Search Strategy
for Dynamic Test Generation. In: SPIN. LNCS, vol. 9232, pp. 300–318.
Springer (2015)

[37] Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with
IC3. In: FMCAD. pp. 165–168. IEEE (2013)

[38] Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via
implicit predicate abstraction. In: TACAS. LNCS, vol. 8413, pp. 46–61.
Springer (2014)

[39] Ştefan Ciobâcă, Lucanu, D., Rusu, V., Rosu, G.: A language-independent
proof system for mutual program equivalence. In: ICFEM. LNCS, vol.
8829, pp. 75–90. Springer (2014)

[40] Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.
In: TACAS. LNCS, vol. 2988, pp. 168–176. Springer (2004)

[41] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement. In: CAV. LNCS, vol. 1855, pp. 154–169.
Springer (2000)

[42] Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction.
ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

[43] Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and
Verilog programs using bounded model checking. In: DAC. pp. 368–371.
ACM (2003)

[44] Clarke, E., Emerson, A.: Design and Synthesis of Synchronization Skele-
tons Using Branching-Time Temporal Logic. In: Logics of Programs, Work-
shop. LNCS, vol. 131, pp. 52–71. Springer (1981)

131 Bibliography

[45] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

[46] Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental Algo-
rithms for Inter-procedural Analysis of Safety Properties. In: CAV. LNCS,
vol. 3576, pp. 449–461. Springer (2005)

[47] Cordeiro, L.C., Fischer, B., Marques-Silva, J.: Smt-based bounded model
checking for embedded ANSI-C software. In: ASE. pp. 137–148. ACM
(2009)

[48] Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. In: J. of Symbolic Logic. pp. 269–285 (1957)

[49] Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: An efficient
method of computing static single assignment form. In: POPL. pp. 25–35.
ACM (1989)

[50] Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion us-
ing simulation preorders. In: CAV. LNCS, vol. 575, pp. 255–265. Springer
(1991)

[51] D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant
strength. In: VMCAI. LNCS, vol. 5944, pp. 129–145. Springer (2010)

[52] Dutertre, B.: Solving Exists/Forall Problems With Yices. In: SMT Work-
shop (2015), extended abstract

[53] Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of prop-
erty directed reachability. In: FMCAD. pp. 125–134. IEEE (2011)

[54] Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically dis-
covering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering 27(2), 99–123 (2001)

[55] Fedyukovich, G., Gurfinkel, A., Sharygina, N.: Incremental verification of
compiler optimizations. In: NFM. LNCS, vol. 8430, pp. 300–306. Springer
(2014)

[56] Fedyukovich, G., Callia D’Iddio, A., Hyvärinen, A.E.J., Sharygina, N.:
Symbolic Detection of Assertion Dependencies for Bounded Model Check-
ing. In: FASE. LNCS, vol. 9033, pp. 186–201. Springer (2015)

132 Bibliography

[57] Fedyukovich, G., Gurfinkel, A., Sharygina, N.: Automated discovery of
simulation between programs. In: LPAR. vol. 9450, pp. 606–621. Springer
(2015)

[58] Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: Incremental Up-
grade Checker for C. In: TACAS. LNCS, vol. 7795, pp. 292–307. Springer
(2013)

[59] Fedyukovich, G., Sery, O., Sharygina, N.: Flexible SAT-based Framework
for Incremental Bounded Upgrade Checking. STTT 17, 1–18 (2015)

[60] Fedyukovich, G., Sharygina, N.: Towards Completeness in Bounded
Model Checking through Automatic Recursion Depth Detection. In: SBMF.
LNCS, vol. 8941, pp. 96–112. Springer (2014)

[61] Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: ASE. pp. 349–360. ACM (2014)

[62] Flanagan, C., Leino, K.R.M.: Houdini: an Annotation Assistant for
ESC/Java. In: FME. LNCS, vol. 2021, pp. 500–517. Springer (2001)

[63] Gascón, A., Tiwari, A.: A Synthesized Algorithm for Interactive Consis-
tency. In: NFM. LNCS, vol. 8430, pp. 270–284 (2014)

[64] Gjomemo, R., Namjoshi, K.S., Phung, P.H., Venkatakrishnan, V.N., Zuck,
L.D.: From verification to optimizations. In: VMCAI. LNCS, vol. 8931, pp.
300–317. Springer (2015)

[65] Godefroid, P.: Compositional dynamic test generation. In: POPL. pp. 47–
54. ACM (2007)

[66] Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-
must program analysis: unleashing the power of alternation. In: POPL.
pp. 43–56. ACM (2010)

[67] Godlin, B., Strichman, O.: Regression verification. In: DAC. pp. 466–471.
ACM (2009)

[68] Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In:
CAV. LNCS, vol. 1254, pp. 72–83. Springer (1997)

133 Bibliography

[69] Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthe-
sizing software verifiers from proof rules. In: PLDI. pp. 405–416. ACM
(2012)

[70] Gurfinkel, A., Rollini, S., N.Sharygina: Interpolation Properties and SAT-
Based Model Checking. In: ATVA. LNCS, vol. 8172, pp. 255–271. Springer
(2013)

[71] Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn Ver-
ification Framework. In: CAV. LNCS, vol. 9206, pp. 343–361. Springer
(2015)

[72] Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL.
pp. 471–482. ACM (2010)

[73] Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on
finite and infinite graphs. In: FOCS. pp. 453–462 (1995)

[74] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions
from proofs. In: POPL. pp. 232–244. ACM (2004)

[75] Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme Model
Checking. In: Verification: Theory and Practice. LNCS, vol. 2772, pp. 332–
358. Springer (2003)

[76] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In:
POPL. pp. 58–70. ACM (2002)

[77] Heule, M., Seidl, M., Biere, A.: Efficient Extraction of Skolem Functions
from QRAT Proofs. In: FMCAD. pp. 107–114. IEEE (2014)

[78] Hoare, C.A.R.: An axiomatic basis for computer programming. Commu-
nications of the ACM 12(10), 576–580 (1969)

[79] Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. Sym-
posium on Semantics of Algorithmic Languages pp. 102–116 (1971)

[80] Hoder, K., Bjørner, N.: Generalized property directed reachability. In: SAT.
vol. 7317, pp. 157–171. Springer (2012)

134 Bibliography

[81] Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. pp.
279–295 (1997)

[82] Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
bounded model checking for software verification. Theoretical Computer
Science 404(3), 256–274 (2008)

[83] Jancík, P., Kofron, J., Rollini, S.F., Sharygina, N.: On interpolants and
variable assignments. In: FMCAD. pp. 123–130. IEEE (2014)

[84] John, A.K., Shah, S., Chakraborty, S., Trivedi, A., Akshay, S.: Skolem Func-
tions for Factored Formulas. In: FMCAD. pp. 73–80. IEEE (2015)

[85] Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Conditional equivalence. Tech.
Rep. MSR-TR-2010-119, Microsoft Research (2010)

[86] Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-Based Model Checking for
Recursive Programs. In: CAV. LNCS, vol. 8559, pp. 17–34 (2014)

[87] Kozen, D., Patron, M.: Certification of Compiler Optimizations Using
Kleene Algebra with Tests. In: CL. LNCS, vol. 1861, pp. 568–582. Springer
(2000)

[88] Kroening, D., Weissenbacher, G.: Interpolation-Based Software Verifica-
tion with Wolverine. In: CAV. LNCS, vol. 6806, pp. 573–578. Springer
(2011)

[89] Kuehlmann, A., Krohm, F.: Equivalence checking using cuts and heaps.
In: DAC. pp. 263–268. IEEE (1997)

[90] Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthesis for linear
arithmetic and sets. STTT 15(5-6), 455–474 (2013)

[91] Kunz, W.: Hannibal: An efficient tool for logic verification based on recur-
sive learning. In: ICCAD. pp. 538–543. IEEE (1993)

[92] Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential as-
sertion checking. In: FSE. pp. 345–355. ACM (2013)

[93] Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories.
In: CAV. LNCS, vol. 7358, pp. 427–443. Springer (2012)

135 Bibliography

[94] Logozzo, F., Lahiri, S.K., Fähndrich, M., Blackshear, S.: Verification mod-
ulo versions: towards usable verification. In: PLDI. p. 32. ACM (2014)

[95] Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Com-
put. J. 36(5), 450–462 (1993)

[96] Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably Correct
Peephole Optimizations with Alive. In: PLDI. pp. 22–32. ACM (2015)

[97] Mariani, L., Pastore, F., Pezzè, M.: Dynamic analysis for diagnosing inte-
gration faults. IEEE Transactions on Software Engineering 37(4), 486–508
(2011)

[98] McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: CAV.
LNCS, vol. 2725, pp. 1–13. Springer (2003)

[99] McMillan, K.L.: Lazy abstraction with interpolants. In: CAV. LNCS, vol.
4144, pp. 123–136. Springer (2006)

[100] McMillan, K.L.: Lazy annotation for program testing and verification. In:
CAV. LNCS, vol. 6174, pp. 104–118. Springer (2010)

[101] McMillan, K.L.: Lazy annotation revisited. In: CAV. LNCS, vol. 8559, pp.
243–259. Springer (2014)

[102] McMillan, K.L., Rybalchenko, A.: Solving constrained Horn Clauses using
interpolation. Tech. Rep. MSR-TR-2013-6, Microsoft Research (2013)

[103] Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded Model Checking of C and
C++ Programs Using a Compiler IR. In: VSTTE. LNCS, vol. 7152, pp.
146–161. Springer (2012)

[104] Milner, R.: An algebraic definition of simulation between programs. In:
IJCAI. pp. 481–489 (1971)

[105] Monniaux, D.: A quantifier elimination algorithm for linear real arith-
metic. In: LPAR. LNCS, vol. 5330, pp. 243–257. Springer (2008)

[106] de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS.
LNCS, vol. 4963, pp. 337–340. Springer (2008)

136 Bibliography

[107] Namjoshi, K.S.: Lifting Temporal Proofs through Abstractions. In: VMCAI.
LNCS, vol. 2575, pp. 174–188. Springer (2003)

[108] Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: SAS.
LNCS, vol. 7935, pp. 304–323. Springer (2013)

[109] Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI.
pp. 83–94. ACM (2000)

[110] Paruthi, V., Kuehlmann, A.: Equivalence Checking Combining a Structural
SAT-Solver, BDDs, and Simulation. In: ICCD. pp. 459–464. IEEE (2000)

[111] Pastore, F., Mariani, L., Hyvärinen, A.E.J., Fedyukovich, G., Sharygina, N.,
Sehestedt, S., Muhammad, A.: Verification-aided regression testing. In:
ISSTA. pp. 37–48. ACM (2014)

[112] Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential sym-
bolic execution. In: FSE. pp. 226–237. ACM (2008)

[113] Phan, A.D., Bjørner, N., Monniaux, D.: Anatomy of alternating quantifier
satisfiability (work in progress). In: SMT. EPiC Series, vol. 20, pp. 120–
130. EasyChair (2012)

[114] Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL.
pp. 179–190. ACM Press (1989)

[115] Pudlák, P.: Lower bounds for resolution and cutting plane proofs and
monotone computations. Journal of Symbolic Logic 62(3), 981–998
(1997)

[116] Queille, J.P., Sifakis, J.: Specification and verification of concurrent sys-
tems in cesar. In: ISP. pp. 337–351 (1982)

[117] Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analy-
sis via graph reachability. In: POPL. pp. 49–61. ACM (1995)

[118] Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.W.:
Counterexample-guided quantifier instantiation for synthesis in SMT. In:
CAV. LNCS, vol. 9206, pp. 198–216. Springer (2015)

137 Bibliography

[119] Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.:
PeRIPLO: A framework for producing effective interpolants in SAT-based
software verification. In: LPAR. LNCS, vol. 8312, pp. 683–693. Springer
(2013)

[120] Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in
model checking. In: CAV. LNCS, vol. 7358, pp. 193–209. Springer (2012)

[121] Rümmer, P., Hojjat, H., Kuncak, V.: Classifying and Solving Horn Clauses
for Verification. In: VSTTE. LNCS, vol. 8164, pp. 1–21. Springer (2013)

[122] Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-
Clause verification. In: CAV. LNCS, vol. 8044, pp. 347–363. Springer
(2013)

[123] Schwartz-Narbonne, D., Oh, C., Schäf, M., Wies, T.: VERMEER: A tool for
tracing and explaining faulty C programs. In: ICSE. pp. 737–740. IEEE
(2015)

[124] Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded model check-
ing with interpolation-based function summarization. In: ATVA. LNCS,
vol. 7561, pp. 203–207. Springer (2012)

[125] Sery, O., Fedyukovich, G., Sharygina, N.: Incremental Upgrade Checking
by Means of Interpolation-based Function Summaries. In: FMCAD. pp.
114–121. IEEE (2012)

[126] Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based Function
Summaries in Bounded Model Checking. In: HVC. LNCS, vol. 7261, pp.
160–175. Springer (2012)

[127] Skolem, T.: Über die mathematische logik. In: Norsk Matematisk
Tidsskrift 10. pp. 125–142 (1928)

[128] Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Com-
binatorial sketching for finite programs. In: ASPLOS. pp. 404–415. ACM
(2006)

[129] Unno, H., Terauchi, T.: Inferring simple solutions to recursion-free Horn
Clauses via sampling. In: TACAS. LNCS, vol. 9035, pp. 149–163. Springer
(2015)

138 Bibliography

[130] Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In:
FMCAD. pp. 1–8. IEEE (2009)

[131] Vizel, Y., Gurfinkel, A.: Interpolating Property Directed Reachability. In:
CAV. LNCS, vol. 8559, pp. 260–276. Springer (2014)

[132] Vizel, Y., Gurfinkel, A., Malik, S.: Fast interpolating BMC. In: CAV. LNCS,
vol. 9206, pp. 641–657. Springer (2015)

[133] Vujosevic-Janicic, M., Kuncak, V.: Development and evaluation of LAV: an
SMT-based error finding platform - system description. In: VSTTE. LNCS,
vol. 7152, pp. 98–113. Springer (2012)

[134] Weiser, M.: Program slicing. In: ICSE. pp. 439–449. IEEE (1981)

[135] Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In:
POPL. pp. 351–363. ACM (2005)

[136] Xie, Y., Aiken, A.: Saturn: A SAT-Based Tool for Bug Detection. In: CAV.
LNCS, vol. 3576, pp. 139–143. Springer (2005)

[137] Yang, G., Khurshid, S., Person, S., Rungta, N.: Property differencing for
incremental checking. In: ICSE. pp. 1059–1070. ACM (2014)

	Contents
	Introduction
	Automated Formal Verification
	Challenges and Contributions
	SAT-Based Bounded Model Checking by means of Function Summarization
	SMT-Based Simulation Discovery
	SMT-Based Unbounded Model Checking via Abstract Simulation

	SAT-Based Bounded Model Checking by means of Function Summarization
	Background
	SAT Solving and Craig Interpolation
	Interpolants in Model Checking
	Software Bounded Model Checking and Symbolic Execution

	Bounded Model Checking by means of Function Summarization
	Handling (Recursive) Functions
	PBMC Encoding
	Bounded Model Checking with Automated Detection of Recursion Depth
	Function Summaries
	Interpolation-Based Function Summaries
	Using Function Summaries to Verify Different Assertions
	Detecting and Exploiting the Assertion Implication Relation

	Checking Software Versions within Bounded Model Checking
	Incremental BMC Algorithm
	Tree Interpolation for SAT Equisatisfiability
	Optimization and Refinement
	Soundness of the Incremental BMC Algorithm

	Related Work to Function Summarization
	Summary of Contributions

	SMT-Based Simulation Discovery
	Background
	SMT Solving and Quantifier Elimination
	Model-Based Projection for Linear Rational Arithmetic
	Programs and Abstractions

	From Simulation to Validity
	Deciding Simulation Symbolically
	Abstract Simulation
	Refining Simulation by Skolem Relations

	Validity and Skolem Extraction
	Deciding Validity of -Formulas
	Extracting Skolem Relation
	Towards Minimal Skolem Refinement

	Related Work to Simulation Synthesis
	Summary of Contributions

	SMT-Based Unbounded Model Checking via Abstract Simulation
	Background
	Large-Block Encoding for Unbounded Model Checking
	Verification Based on Horn Solving

	Simulation Relations for Proof Lifting
	Simulation Relations in Large-Block Encoding with Invariants
	SimAbs: Simulation-Abstraction-Refinement Loop
	Horn Solving for Skolem Extraction

	Migrating Proofs between Programs
	Abstract Simulations for Proof Lifting
	Basic Proof Lifting Algorithm
	Counter-Example Guided Inductive Weakening
	Eliminating Quantifiers from Lifted Invariants
	Strengthening Inductive Invariants without Quantifier Elimination
	Calculating the Change Impact

	Related Work to Incremental Verification
	Summary of Contributions

	Tool Support
	FunFrog Bounded Model Checker
	Evaluating Recursion Depth Detection
	Evaluating Summarization-Based Recursion Depth Detection
	Evaluating Assertion Implication Checking

	eVolCheck Incremental Bounded Model Checker
	Evaluating eVolCheck

	Niagara Framework for Simulation Discovery and Proof Lifting
	Evaluating SimAbs
	Evaluating ProofAdapt

	Conclusions
	Future Work
	SMT-Based Function Summarization
	Automated Program Repair

	Bibliography

