
FunFrog: Bounded Model Checking with
Interpolation-based Function Summarization?

Ondrej Sery1,2, Grigory Fedyukovich1, and Natasha Sharygina1

1 University of Lugano, Switzerland, {name.surname}@usi.ch
2 D3S, Faculty of Mathematics and Physics, Charles University, Czech Rep.

Abstract This paper presents FunFrog, a tool that implements a function sum-
marization approach for software bounded model checking. It uses interpolation-
based function summaries as over-approximation of function calls. In every suc-
cessful verification run, FunFrog generates function summaries of the analyzed
program functions and reuses them to reduce the complexity of the successive
verification. To prevent reporting spurious errors, the tool incorporates a counter-
example-guided refinement loop. Experimental evaluation demonstrates compet-
itiveness of FunFrog with respect to state-of-the-art software model checkers.

1 Introduction

Bounded model checkers (BMC) [1] search for errors in a program within the given
bound on the maximal number of loop iterations and recursion depth. Typically, the
check is repeated for different properties to be verified and thus large amount of the
work is repeated. This raises a problem of constructing an incremental model checker.
In this paper, we present a tool, FunFrog, that serves this goal. From a successful ver-
ification run, FunFrog extracts function summaries using Craig interpolation [3]. The
summaries are then used to represent the functions in subsequent verification runs, when
the same code is analyzed again (e.g., with respect to different properties). Significant
time savings can be achieved by reusing summaries between the verification runs.

To be able to use interpolation for function summarization, FunFrog converts the
unwound program into a partitioned bounded model checking (PBMC) formula. For
each function to be summarized, this formula is partitioned into two parts. The first part
symbolically encodes the function itself and all its callee functions. The second part
encodes the remaining functions, i.e., the calling context of the function. Given the two
parts, Craig interpolant that constitutes the function summary is then computed. Our
function summaries are over-approximations of the actual behavior of the functions. As
a result, spurious errors may occur due to a too coarse over-approximation. To discard
spurious errors, FunFrog implements a counterexample-guided refinement loop.

The paper provides an architectural description of the tool implementing the func-
tion summarization approach to bounded model checking and discusses the tool usage
and experimentation on various benchmarks3.

? This work is partially supported by the European Community under the call FP7-ICT-2009-5
— project PINCETTE 257647.

3 Further details on interpolation-based function summarization can be found in [4].



Figure 1: FunFrog architecture overview

2 Tool Architecture

The architecture of FunFrog is depicted in Fig. 1. The tool takes a C program and
uses the parser for pre-processing. The parser produces an intermediate code repre-
sentation, which is then used for encoding into a PBMC formula by PBMC encoder.
Encoding is achieved using symbolic execution, which unwinds the program and pre-
pares its static single assignment (SSA) form, SSA slicing that removes the SSA steps
irrelevant to the property, and SAT flattening that produces the final formula by en-
coding it into propositional logic. FunFrog loads function summaries from a persistent
storage and attempts to use them during encoding as over-approximations of the cor-
responding program functions. The tool passes the resulting formula to a solver. If the
formula is unsatisfiable, the program is safe and FunFrog uses interpolation to generate
new function summaries and stores them for use in later runs. In case of a satisfiable
formula, FunFrog asks refiner whether a refinement is necessary and if so, it continues
by precisely encoding the functions identified by the refiner. If a refinement is impossi-
ble (there is no function to be refined), the counterexample is real, and the program is
proven unsafe. In the following, we describe each step of FunFrog in more detail.

Parsing. As the first step, the source codes are parsed and transformed into a goto-
program, where the complicated conditional statements and loops are simplified using
only guards and goto statements. For this purpose, FunFrog uses goto-cc4 , i.e., a
parser specifically designed to produce intermediate representation suitable for formal
verification. Other tools from the CProver4 framework can be used to alter this repre-
sentation. For example, goto-instrument injects additional assertions (e.g., array
bound tests) to be checked during analysis.

Symbolic execution. In order to unwind the program, the intermediate representa-
tion is symbolically executed tracking the number of iterations of loops. The result of
this step is the SSA form of the unwound program, i.e., a form where every variable is
assigned at most once. This is achieved by adding version numbers to the variables. In

4 http://www.cprover.org/

http://www.cprover.org/


FunFrog, this step is also influenced by the choice of an initial substitution scenario.
Intuitively, it defines how different functions should be encoded (e.g., using precise
encoding or using a summary).

Slicing. After the symbolic execution step, slicing is performed on the resulting
SSA form. It uses dependency analysis in order to figure out which variables and in-
structions are relevant for the property being analyzed. The dependency analysis also
takes summaries into account. Whenever an output variable of a function is not con-
strained by a function summary, its dependencies need not be propagated and a more
aggressive slicing is achieved.

SAT flattening. When the SSA form is pruned, the PBMC formula is created by
flattening into propositional logic. The choice of using SAT allows for bit-precise rea-
soning. However, in principle, the SAT flattening step could be substituted by encoding
into a suitable SMT theory that supports interpolation.

Solving. The PBMC formula is passed to a SAT solver to decide its satisfiability.
FunFrog uses OpenSMT [2] in the SAT solver mode for both satisfiability checks and
as an interpolating engine. Certain performance penalties follow from the additional
bookkeeping in order to produce a proof of unsatisfiability used for interpolation.

Summaries extraction. For an unsatisfiable PBMC formula, FunFrog extracts func-
tion summaries using interpolantion using the proof of unsatisfiability. The extracted
summaries are serialized in a persistent storage so that they are available for other Fun-
Frog runs. In this step, FunFrog also compares the new summaries with any existing
summaries for the same function and the same bound, and keeps the more precise one.

Refiner. The refiner is used to identify and to mark summaries directly involved
in the error trace. We call this strategy CEG (counterexample-guided). Alternatively,
the refiner can avoid identification of summaries in the error trace and can mark all
summaries for refinement (greedy strategy). In other words, greedy strategy falls back
to the standard BMC, when the summaries are not strong enough to prove the property.

3 Tool usage

When running FunFrog, the user can choose the preferred initial substitution scenario,
a refinement strategy and whether summaries optimization and slicing should be per-
formed. In addition, the user can specify the desired unwinding bound; the overall
bound as well as bounds for particular loops. It is also expected that the code contains
user provided assertions to be checked for possible violations. The user can choose
which assertion(s) should be checked by FunFrog.

Linux binaries of FunFrog as well as the benchmarks used for evaluation are avail-
able online for other researchers5. The webpage also contains a tutorial explaining how
to use FunFrog and explanation of the most important parameters.

Experiments. In order to evaluate FunFrog, we compared it with other state-of-
the-art C-model checkers CBMC (v4.0), SATABS (v3.0 with Cadence SMV v10-11-
02p46), and CPAchecker (v1.1). CBMC and FunFrog are BMC tools, provided with
the same bound. We evaluated all tools (with default options) on both real-life indus-
trial benchmarks (including Windows device drivers) and on smaller crafted examples

5 www.verify.inf.usi.ch/funfrog

www.verify.inf.usi.ch/funfrog


Table 1: Verification times [s] of FunFrog, CBMC, SATABS, and CPAchecker, where
‘∞’ is a timeout (1h), ‘×’ - bug in safe code, ‘†’ - other failure (We notified the tool
authors about the issues), number of lines of code, preprocessed code instructions in
goto-cc, function calls, and assertions.

benchmark FunFrog details total

#L
oC

#I
ns

tr
uc

tio
ns

#f
un

c.
ca

lls
#a

ss
er

tio
ns

#r
ef

.i
te

r.
sy

m
b.

ex
.

sl
ic

in
g

fla
tte

ni
ng

so
lv

in
g

in
te

rp
ol

.

Fu
nF

ro
g

C
B

M
C

SA
TA

B
S

C
PA

ch
ec

ke
r

floppy 10288 2164 227 8 0 4.80 0.07 6.05 2.94 0.57 14.54 19.59 918.25 383.97
kbfiltr 12247 1052 64 8 0 1.72 0.01 2.38 0.23 0.15 4.60 5.33 91.37 †
diskperf 6324 2037 182 5 0 2.41 0.01 2.31 0.42 0.36 5.60 21.42 146.82 259.26
no_sprintf 178 68 6 2 0 0.01 0.00 0.03 0.03 0.01 0.08 0.01 125.69 2.96
gd_simp 207 82 4 5 0 0.03 0.00 0.07 0.05 0.01 0.17 0.03 ∞ ×
do_loop 126 176 12 7 3 7.74 2.66 2.58 2.29 0.11 15.78 19.52 ∞ ×
goldbach 268 344 22 6 0 0.41 0.00 1.53 2.03 0.78 5.78 15.44 ∞ †

designed to stress-test the implementation of our tool and verified them for user defined
assertions (separate run for each assertion). The assertions held, so FunFrog had the
opportunity to extract and reuse function summaries.

Table 1 reports the running times of all the tools6. In case of FunFrog, the summaries
were generated after the first run (for the first assertion in each group) and reused in the
consecutive runs (for the rest of (#asserts - 1) assertions). To demonstrate the perfor-
mance of FunFrog, the running times of different phases of its algorithm were summed
across all runs for the same benchmark. Note that the time spent in counterexample
analysis (i.e., the only computation, needed for refinement) is negligible, and thus not
reported in a separate column, but still included to the total.

As expected, FunFrog was outperformed by CBMC on the smaller examples with-
out many function calls, but FunFrog’s running times were still very competitive. On
majority of the larger benchmarks, FunFrog outperformed all the other tools. These
benchmarks feature large number of function calls so FunFrog benefited from function
summarization.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Tools and Alg. for Con. and Anal. of Sys. (TACAS ’99). LNCS, vol. 1579, pp. 193–207 (1999)

2. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: Tools and
Alg. for Con. and Anal. of Sys. (TACAS ’10). LNCS, vol. 6015, pp. 150–153 (2010)

3. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. of Symbolic Logic pp. 269–285 (1957)

4. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based Function Summaries in
Bounded Model Checking. In: HVC ’11. LNCS (2011), to appear

6 The complete set of experiments can be found at www.verify.inf.usi.ch/funfrog.

www.verify.inf.usi.ch/funfrog

	 FunFrog: Bounded Model Checking with Interpolation-based Function Summarization

